metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A redetermination of bis­­(5,5′-di­ethyl­barbiturato)bis­­(imidazole)cobalt(II)

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, bSchool of Food Science and Technology, Guang Dong Ocean University, Zhan Jiang 524088, People's Republic of China, and cCollege of Science, Guang Dong Ocean University, Zhan Jiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 16 November 2007; accepted 19 December 2007; online 4 January 2008)

The title complex, [Co(C8H12N2O3)2(C3H4N2)2], whose structure was first determined by Wang & Craven [(1971). J. Chem. Soc. D, pp. 290–291], has been redetermined with improved precision. A crystallographic twofold rotation axis passes through the Co atom, which is tetrahedrally coordinated by two N atoms from two barbital ligands and two N atoms from two imidazole ligands. The mol­ecules are self-assembled via inter­molecular N—H⋯O hydrogen-bonding inter­actions into a supra­molecular network.

Related literature

For related literature, see: Wang & Craven (1971[Wang, B. C. & Craven, B. M. (1971). J. Chem. Soc. D, pp. 290-291.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H12N2O3)2(C3H4N2)2]

  • Mr = 561.47

  • Monoclinic, C 2/c

  • a = 13.3750 (3) Å

  • b = 10.1371 (2) Å

  • c = 20.5791 (4) Å

  • β = 100.409 (1)°

  • V = 2744.27 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 296 (2) K

  • 0.32 × 0.26 × 0.25 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.813, Tmax = 0.849

  • 18228 measured reflections

  • 3141 independent reflections

  • 2596 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.079

  • S = 0.98

  • 3141 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.15 2.7932 (19) 131
N4—H4⋯O3ii 0.86 2.12 2.9312 (18) 156
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.23A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.23A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: XP in SHELXTL (Bruker, 2004[Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.23A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the present paper we report the redetermination of the crystal structure of the title complex using CCD data at room temperature. The structure agrees with the results reported previously by Wang & Craven (1971; CCDC refcode BARICO) with lattice parameters a = 13.362 (2) Å, b = 10.133 (2) Å, c = 20.544 (4) Å β = 100.33 (3) °), but with improved precision.

As illustrated in Figure 1, the cobalt(II) atom, possesses a crystallogarphically imposed C2 symmetry, and displays a tetrahedral coordination geometry provided by two N atoms from two barbital ligands and two N atoms from two imidazole ligands. Intermolecular N—H···O hydrogen bonding interactions (Table 1) govern the crystal packing (Fig. 2).

Related literature top

For related literature, see: Wang & Craven (1971).

Experimental top

A mixture of cobalt nitrate (1 mmol), imidazole (1 mmol), barbital (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

All H atoms were placed at calculated positions and treated as riding on the parent atoms with C—H = 0.93–0.97 Å; N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL (Bruker, 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom numbering scheme and 30% probability displacement ellipsoids. Unlabelled atoms are related to the labelled atoms by the symmetry operator (-x, y, 0.5 - z).
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Intermolecluar hydrogen bonds are shown as dashed lines.
bis(5,5'-diethylbarbiturato)bis(imidazole)cobalt(II) top
Crystal data top
[Co(C8H12N2O3)2(C3H4N2)2]F(000) = 1172
Mr = 561.47Dx = 1.359 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3600 reflections
a = 13.3750 (3) Åθ = 1.4–28°
b = 10.1371 (2) ŵ = 0.68 mm1
c = 20.5791 (4) ÅT = 296 K
β = 100.409 (1)°Block, pink
V = 2744.27 (10) Å30.32 × 0.26 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3141 independent reflections
Radiation source: fine-focus sealed tube2596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1716
Tmin = 0.813, Tmax = 0.849k = 1213
18228 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0343P)2 + 2.0613P]
where P = (Fo2 + 2Fc2)/3
3141 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Co(C8H12N2O3)2(C3H4N2)2]V = 2744.27 (10) Å3
Mr = 561.47Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.3750 (3) ŵ = 0.68 mm1
b = 10.1371 (2) ÅT = 296 K
c = 20.5791 (4) Å0.32 × 0.26 × 0.25 mm
β = 100.409 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3141 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2596 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.849Rint = 0.029
18228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 0.98Δρmax = 0.21 e Å3
3141 reflectionsΔρmin = 0.29 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.07766 (14)0.1841 (2)0.16104 (9)0.0574 (5)
H10.02120.16840.12840.069*
C20.14986 (15)0.2732 (2)0.15704 (9)0.0579 (5)
H20.15330.33030.12210.069*
C30.18454 (13)0.17053 (19)0.25137 (8)0.0524 (4)
H30.21780.14570.29320.063*
C40.01891 (13)0.20721 (19)0.34360 (8)0.0502 (4)
C50.00221 (14)0.3032 (2)0.40182 (9)0.0581 (5)
C60.10237 (14)0.27581 (19)0.44751 (8)0.0535 (5)
C70.13212 (12)0.08668 (17)0.37956 (7)0.0418 (4)
C80.0058 (2)0.4435 (2)0.37466 (12)0.0845 (8)
H8A0.05830.46150.34560.101*
H8B0.01210.50500.41130.101*
C90.0911 (3)0.4694 (3)0.33716 (17)0.1117 (11)
H9A0.15530.45840.36630.168*
H9B0.08580.55800.32030.168*
H9C0.08650.40840.30110.168*
C100.08480 (17)0.2920 (3)0.44236 (11)0.0849 (8)
H10A0.07110.35330.47910.102*
H10B0.14790.31900.41450.102*
C110.0995 (2)0.1564 (4)0.46924 (16)0.1166 (11)
H11A0.11800.09580.43330.175*
H11B0.15260.15940.49500.175*
H11C0.03740.12790.49660.175*
Co10.00000.00895 (3)0.25000.03642 (10)
N10.09912 (10)0.11875 (14)0.22073 (6)0.0452 (3)
N20.21731 (12)0.26297 (17)0.21478 (8)0.0589 (4)
H2A0.27190.30870.22570.071*
N30.04631 (10)0.11057 (14)0.33481 (6)0.0408 (3)
N40.15545 (11)0.16886 (15)0.43447 (6)0.0497 (4)
H40.20890.14950.46280.060*
O10.19031 (11)0.00247 (13)0.37358 (7)0.0620 (4)
O20.09826 (10)0.21962 (16)0.30314 (6)0.0724 (4)
O30.13421 (11)0.34732 (15)0.49451 (7)0.0751 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0473 (10)0.0736 (13)0.0437 (9)0.0084 (10)0.0125 (8)0.0131 (9)
C20.0524 (11)0.0659 (12)0.0504 (10)0.0040 (10)0.0038 (8)0.0171 (9)
C30.0449 (10)0.0648 (12)0.0412 (9)0.0095 (9)0.0089 (7)0.0080 (8)
C40.0446 (10)0.0619 (11)0.0368 (8)0.0068 (9)0.0122 (7)0.0087 (8)
C50.0504 (11)0.0683 (12)0.0452 (9)0.0222 (9)0.0187 (8)0.0180 (9)
C60.0497 (10)0.0634 (12)0.0394 (8)0.0134 (9)0.0132 (7)0.0120 (8)
C70.0401 (9)0.0465 (9)0.0343 (7)0.0006 (8)0.0052 (6)0.0031 (7)
C80.0978 (19)0.0642 (14)0.0731 (14)0.0269 (14)0.0336 (14)0.0164 (12)
C90.141 (3)0.0743 (18)0.105 (2)0.0077 (18)0.018 (2)0.0143 (16)
C100.0596 (14)0.127 (2)0.0608 (13)0.0337 (15)0.0081 (11)0.0310 (14)
C110.096 (2)0.168 (4)0.090 (2)0.012 (2)0.0298 (17)0.004 (2)
Co10.03201 (16)0.04302 (19)0.02885 (14)0.0000.00886 (11)0.000
N10.0395 (8)0.0538 (9)0.0371 (7)0.0054 (6)0.0067 (6)0.0036 (6)
N20.0468 (9)0.0704 (11)0.0539 (9)0.0185 (8)0.0056 (7)0.0098 (8)
N30.0375 (7)0.0476 (8)0.0319 (6)0.0007 (6)0.0080 (5)0.0059 (5)
N40.0439 (8)0.0590 (9)0.0370 (7)0.0130 (7)0.0174 (6)0.0115 (6)
O10.0582 (8)0.0623 (9)0.0564 (7)0.0201 (7)0.0142 (6)0.0180 (6)
O20.0549 (8)0.0944 (11)0.0536 (8)0.0226 (8)0.0281 (6)0.0210 (7)
O30.0684 (9)0.0848 (10)0.0570 (8)0.0268 (8)0.0291 (7)0.0361 (7)
Geometric parameters (Å, º) top
C1—C21.336 (3)C8—C91.512 (4)
C1—N11.379 (2)C8—H8A0.9700
C1—H10.9300C8—H8B0.9700
C2—N21.360 (2)C9—H9A0.9600
C2—H20.9300C9—H9B0.9600
C3—N11.311 (2)C9—H9C0.9600
C3—N21.325 (2)C10—C111.507 (4)
C3—H30.9300C10—H10A0.9700
C4—O21.231 (2)C10—H10B0.9700
C4—N31.346 (2)C11—H11A0.9600
C4—C51.529 (2)C11—H11B0.9600
C5—C61.517 (2)C11—H11C0.9600
C5—C81.532 (3)Co1—N1i2.0210 (14)
C5—C101.554 (3)Co1—N12.0210 (14)
C6—O31.222 (2)Co1—N32.0249 (12)
C6—N41.349 (2)Co1—N3i2.0249 (12)
C7—O11.213 (2)N2—H2A0.8600
C7—N31.3571 (19)N4—H40.8600
C7—N41.393 (2)
C2—C1—N1110.08 (15)C8—C9—H9C109.5
C2—C1—H1125.0H9A—C9—H9C109.5
N1—C1—H1125.0H9B—C9—H9C109.5
C1—C2—N2105.50 (16)C11—C10—C5115.1 (2)
C1—C2—H2127.3C11—C10—H10A108.5
N2—C2—H2127.3C5—C10—H10A108.5
N1—C3—N2111.02 (15)C11—C10—H10B108.5
N1—C3—H3124.5C5—C10—H10B108.5
N2—C3—H3124.5H10A—C10—H10B107.5
O2—C4—N3118.95 (15)C10—C11—H11A109.5
O2—C4—C5118.64 (16)C10—C11—H11B109.5
N3—C4—C5122.41 (14)H11A—C11—H11B109.5
C6—C5—C8108.28 (18)C10—C11—H11C109.5
C6—C5—C4112.75 (15)H11A—C11—H11C109.5
C8—C5—C4108.56 (16)H11B—C11—H11C109.5
C6—C5—C10108.49 (16)N1i—Co1—N1100.33 (9)
C8—C5—C10109.85 (19)N1i—Co1—N3100.60 (5)
C4—C5—C10108.90 (17)N1—Co1—N3117.89 (5)
O3—C6—N4120.88 (15)N1i—Co1—N3i117.89 (5)
O3—C6—C5121.64 (16)N1—Co1—N3i100.60 (5)
N4—C6—C5117.47 (14)N3—Co1—N3i118.85 (8)
O1—C7—N3122.91 (14)C3—N1—C1105.02 (15)
O1—C7—N4118.29 (14)C3—N1—Co1132.44 (12)
N3—C7—N4118.80 (15)C1—N1—Co1122.06 (11)
C9—C8—C5115.1 (2)C3—N2—C2108.38 (15)
C9—C8—H8A108.5C3—N2—H2A125.8
C5—C8—H8A108.5C2—N2—H2A125.8
C9—C8—H8B108.5C4—N3—C7121.87 (13)
C5—C8—H8B108.5C4—N3—Co1112.43 (10)
H8A—C8—H8B107.5C7—N3—Co1125.70 (11)
C8—C9—H9A109.5C6—N4—C7126.37 (14)
C8—C9—H9B109.5C6—N4—H4116.8
H9A—C9—H9B109.5C7—N4—H4116.8
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2ii0.862.152.7932 (19)131
N4—H4···O3iii0.862.122.9312 (18)156
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Co(C8H12N2O3)2(C3H4N2)2]
Mr561.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)13.3750 (3), 10.1371 (2), 20.5791 (4)
β (°) 100.409 (1)
V3)2744.27 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.32 × 0.26 × 0.25
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.813, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
18228, 3141, 2596
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 0.98
No. of reflections3141
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Bruker, 2004), SHELXTL (Bruker, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.152.7932 (19)130.9
N4—H4···O3ii0.862.122.9312 (18)156.3
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationBruker (2004). APEX2 (Version 1.08), SAINT (Version 7.23A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationWang, B. C. & Craven, B. M. (1971). J. Chem. Soc. D, pp. 290–291.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds