organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexa­hydro-1H-pyrrolo[3,4-b]quinoline

aDepartment of Physics, Anna University, Chennai 600 025, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: kali@annauniv.edu, hkfun@usm.my

(Received 21 November 2007; accepted 7 January 2008; online 11 January 2008)

In the mol­ecule of the title compound, C26H28N2O2S, the pyrrolidine ring adopts an envelope conformation and the tetra­hydro­pyridine ring is in a half-chair conformation; these two rings are trans-fused. The dihedral angle between the pyridine- and sulfonyl-bound benzene rings is 36.15 (5)°. In the crystalline state, the mol­ecules are linked into a two-dimensional network parallel to the ab plane by C—H⋯O and C—H⋯π inter­actions.

Related literature

For the orientations of phenyl and ethyl substituents with respect to the fused ring system in the related 7-chloro- and 7-bromo-derivatives, see: Sudha et al. (2007[Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4914-o4915.], 2008[Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008). Acta Cryst. E64, o134.]). For biological activities of pyrrolo[3,4-b]quinoline derivatives, see: Anzini et al. (1990[Anzini, M., Cappelli, A., Vomero, S., Botta, M. & Cagnotto, A. (1990). Il Farmaco, 45, 1169-1179.], 1992[Anzini, M., Cappelli, A., Vomero, S., Cagnotto, A. & Skorupska, M. (1992). Il Farmaco, 47, 191-202.]); Crenshaw et al. (1976[Crenshaw, R. R., Luke, G. M. & Siminoff, P. (1976). J. Med. Chem. 19, 262-275.]); Fujita et al. (1996[Fujita, M., Egawa, H., Miyamoto, T., Nakano, J. & Matsumoto, J. (1996). Eur. J. Med. Chem. 31, 981-988.]); Xiao et al. (2006[Xiao, X.-S., Antony, S., Pommier, Y. & Cushman, M. (2006). J. Med. Chem. 49, 1408-1412.]). For related literature, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271-383. New York: Wiley.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28N2O2S

  • Mr = 432.56

  • Triclinic, [P \overline 1]

  • a = 9.3990 (1) Å

  • b = 10.9077 (2) Å

  • c = 12.5654 (3) Å

  • α = 64.3190 (8)°

  • β = 72.5291 (8)°

  • γ = 76.3803 (8)°

  • V = 1099.07 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100.0 (1) K

  • 0.48 × 0.37 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.878, Tmax = 0.971

  • 49024 measured reflections

  • 11697 independent reflections

  • 9445 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.122

  • S = 1.03

  • 11697 reflections

  • 285 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C4–C9, C12–C17 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.40 3.3215 (13) 171
C23—H23⋯O2ii 0.93 2.53 3.2821 (13) 138
C2—H2⋯Cg1 0.98 2.94 3.8269 (9) 151
C7—H7⋯Cg3i 0.93 2.95 3.7883 (12) 151
C10—H10⋯Cg2iii 0.98 2.83 3.8072 (9) 178
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Version 5.1; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Pyrrolo[3,4-b]quinoline derivatives exhibit cytotoxic (Xiao et al., 2006) and antibacterial (Fujita et al., 1996) activities. The derivatives are also found to have interferon inducing activities (Crenshaw et al., 1976) and ability to bind benzodiazepine receptors (Anzini et al., 1990, 1992). We report here the crystal structure of the title compound, a pyrrolo[3,4-b]quinoline derivative (Fig. 1).

Bond lengths and angles are comparable with those in the 7-chloro- and 7-bromo- derivatives (Sudha et al., 2007a,b). The pyrrolidine ring adopts an envelope conformation, with the local mirror plane passing through C2 and the midpoint of the bond N1—C11. The relevant asymmetry parameters (Duax et al., 1976) are ΔCs[C2] = 1.90 (7)° and the puckering parameters q2 and ϕ2 (Cremer & Pople, 1975) are 0.444 (1) Å and 74.6 (1)°. The tetrahydropyridine ring adopts a half-chair conformation, with the local twofold rotation axis passing through the midpoints of bonds C4—C9 and C2—C10. The asymmetry parameter ΔC2[C4—c9] is 5.0 (1)°, and the puckering parameters Q, θ and ϕ are 0.505 (1) Å, 133.2 (1)° and 81.6 (1)°.

The tosyl group is attached to the pyrrolidine ring in a biaxial position. The sum of the bond angles around atoms N1 (342.6°) and N2 (347.2°) indicates sp3 hybridization. The pyrrolidine and tetrahydropyridine rings show trans-fusion. The C19–C24 phenyl ring is equatorially attached to the tetrahydropyridine ring, and it forms dihedral angles of 74.80 (5) and 36.15 (5)°, respectively, with the C4–C9 and C12–C17 benzene rings.

An intramolecular C—H···π interaction involving the sulfonyl-bound phenyl ring (C12–C17, centroid Cg1) is observed. In the solid state, the molecules exist as centrosymmetrically C—H···π hydrogen-bonded dimers involving the C10—H10 group of the molecule at (x, y, z) and the C4–C9 benzene ring (centroid Cg2) of the molecule at (2 - x, -y, 1 - z). The dimers are linked into a chain along the a axis through C8—H8···O1i hydrogen bonds, and C7—H7···π interaction involving the C19–C24 phenyl ring (centroid Cg3) of the molecule at (1 + x, y, z). The chains are cross-linked via C23—H23···O2ii hydrogen bonds (Table 1), forming a two-dimensional network parallel to the ab plane (Fig. 2).

Related literature top

For the orientations of phenyl and ethyl substituents with respect to the fused ring system in the related 7-chloro- and 7-bromo-derivatives, see: Sudha et al. (2007a,b). For biological activities of pyrrolo[3,4-b]quinoline derivatives, see: Anzini et al. (1990, 1992); Crenshaw et al. (1976); Fujita et al. (1996); Xiao et al. (2006). For related literature, see: Duax et al. (1976); Cremer & Pople (1975).

Experimental top

InCl3 (20 mol%) was added to a mixture of 2-(N-cinnamyl-N-tosylamino)butanal (1 mmol) and arylamine (1 mmol) in acetonitrile (20 ml). The reaction mixture was stirred at room temperature for 30 min. On completion of the reaction, as indicated by TLC, the mixture was quenched with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over Na2SO4. The solvent was evaporated in vacuo and the crude product was chromatographed using a hexane–ethyl acetate (8.5:1.5 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement top

The N-bound H atom was located from a difference map and refined freely. The remaining H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups attached to aromatic rings.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Version 5.1; Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Version 5.1; Sheldrick, 2008); molecular graphics: SHELXTL (Version 5.1; Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Version 5.1; Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering. Displacement ellipsoids are drawn at the 80% probability level.
[Figure 2] Fig. 2. Part of the two-dimensional network in the title compound. Dashed and dotted lines indicate C—H···O and C—H···π interactions, respectively. For the sake of clarity, H atoms not involved in the interactions have been omitted.
3-Ethyl-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexahydro-1H- pyrrolo[3,4-b]quinoline top
Crystal data top
C26H28N2O2SZ = 2
Mr = 432.56F(000) = 460
Triclinic, P1Dx = 1.307 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3990 (1) ÅCell parameters from 7071 reflections
b = 10.9077 (2) Åθ = 2.2–37.7°
c = 12.5654 (3) ŵ = 0.17 mm1
α = 64.3190 (8)°T = 100 K
β = 72.5291 (8)°Block, colourless
γ = 76.3803 (8)°0.48 × 0.37 × 0.17 mm
V = 1099.07 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
11697 independent reflections
Radiation source: fine-focus sealed tube9445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.33 pixels mm-1θmax = 37.8°, θmin = 1.9°
ω scansh = 1516
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1818
Tmin = 0.878, Tmax = 0.971l = 2121
49024 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.2032P]
where P = (Fo2 + 2Fc2)/3
11697 reflections(Δ/σ)max = 0.001
285 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C26H28N2O2Sγ = 76.3803 (8)°
Mr = 432.56V = 1099.07 (4) Å3
Triclinic, P1Z = 2
a = 9.3990 (1) ÅMo Kα radiation
b = 10.9077 (2) ŵ = 0.17 mm1
c = 12.5654 (3) ÅT = 100 K
α = 64.3190 (8)°0.48 × 0.37 × 0.17 mm
β = 72.5291 (8)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
11697 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
9445 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.971Rint = 0.038
49024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.54 e Å3
11697 reflectionsΔρmin = 0.47 e Å3
285 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49683 (2)0.424122 (19)0.278537 (17)0.01327 (5)
O10.35740 (7)0.37308 (7)0.30453 (6)0.01740 (11)
O20.49608 (8)0.55466 (6)0.28077 (6)0.01737 (11)
N10.59007 (8)0.30981 (7)0.37860 (6)0.01346 (11)
N20.99769 (8)0.23374 (7)0.33005 (7)0.01746 (13)
H1N21.0420 (18)0.2777 (15)0.3524 (14)0.034 (4)*
C10.61499 (9)0.16668 (8)0.38536 (7)0.01513 (13)
H1A0.55720.15710.33770.018*
H1B0.58870.10160.46850.018*
C20.78261 (9)0.14729 (7)0.33219 (7)0.01321 (12)
H20.80070.20380.24510.016*
C30.86315 (9)0.00361 (8)0.34922 (7)0.01390 (12)
H30.83970.05480.43590.017*
C41.03201 (9)0.01342 (8)0.30922 (7)0.01426 (12)
C51.13274 (10)0.08705 (8)0.27522 (8)0.01671 (13)
H51.09510.15890.27570.020*
C61.28696 (10)0.08326 (9)0.24074 (8)0.01913 (15)
H61.35140.15110.21790.023*
C71.34377 (11)0.02374 (9)0.24084 (9)0.02159 (16)
H71.44690.02690.21930.026*
C81.24635 (10)0.12555 (9)0.27314 (9)0.02058 (15)
H81.28510.19660.27300.025*
C91.09059 (9)0.12303 (8)0.30597 (7)0.01567 (13)
C100.84289 (9)0.21313 (8)0.39204 (7)0.01400 (12)
H100.83700.15350.47780.017*
C110.73416 (9)0.34598 (8)0.38053 (7)0.01333 (12)
H110.77040.41970.30310.016*
C120.60265 (9)0.42650 (8)0.13594 (7)0.01398 (12)
C130.71831 (10)0.50922 (8)0.07365 (7)0.01698 (14)
H130.73060.57140.10160.020*
C140.81489 (11)0.49778 (9)0.03058 (8)0.01997 (15)
H140.89160.55330.07270.024*
C150.79834 (11)0.40407 (9)0.07292 (7)0.01950 (15)
C160.67845 (11)0.32643 (9)0.01229 (7)0.01902 (15)
H160.66390.26670.04200.023*
C170.58026 (10)0.33691 (8)0.09193 (7)0.01663 (13)
H170.50060.28470.13180.020*
C180.90773 (13)0.38731 (12)0.18222 (9)0.0290 (2)
H18A0.95240.29360.16080.044*
H18B0.98490.44550.21040.044*
H18C0.85580.41220.24520.044*
C190.81012 (9)0.05736 (8)0.28198 (7)0.01477 (13)
C200.83943 (11)0.00052 (9)0.15531 (8)0.01856 (14)
H200.89490.07340.11200.022*
C210.78685 (12)0.05303 (10)0.09319 (9)0.02300 (17)
H210.80710.01420.00890.028*
C220.70390 (12)0.16372 (10)0.15726 (11)0.02572 (19)
H220.66830.19870.11590.031*
C230.67453 (11)0.22161 (9)0.28268 (11)0.02484 (18)
H230.61910.29560.32560.030*
C240.72808 (10)0.16905 (8)0.34479 (9)0.01953 (15)
H240.70880.20900.42900.023*
C250.70648 (10)0.39338 (8)0.48343 (7)0.01598 (13)
H25A0.62920.47160.47190.019*
H25B0.66900.32040.55940.019*
C260.84606 (11)0.43310 (10)0.49243 (8)0.01998 (15)
H26A0.82110.46190.55870.030*
H26B0.88260.50690.41830.030*
H26C0.92240.35560.50590.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01224 (8)0.01495 (8)0.01383 (8)0.00040 (6)0.00266 (6)0.00755 (6)
O10.0120 (3)0.0218 (3)0.0199 (3)0.0020 (2)0.0028 (2)0.0102 (2)
O20.0197 (3)0.0158 (2)0.0195 (3)0.0003 (2)0.0050 (2)0.0105 (2)
N10.0123 (3)0.0147 (2)0.0142 (2)0.0013 (2)0.0032 (2)0.0064 (2)
N20.0121 (3)0.0180 (3)0.0266 (3)0.0015 (2)0.0028 (3)0.0138 (3)
C10.0138 (3)0.0146 (3)0.0168 (3)0.0023 (2)0.0026 (3)0.0063 (2)
C20.0128 (3)0.0135 (3)0.0138 (3)0.0018 (2)0.0026 (2)0.0060 (2)
C30.0142 (3)0.0133 (3)0.0140 (3)0.0022 (2)0.0030 (2)0.0050 (2)
C40.0141 (3)0.0138 (3)0.0154 (3)0.0009 (2)0.0041 (2)0.0061 (2)
C50.0172 (3)0.0152 (3)0.0190 (3)0.0005 (3)0.0054 (3)0.0083 (2)
C60.0166 (4)0.0190 (3)0.0225 (4)0.0021 (3)0.0046 (3)0.0108 (3)
C70.0139 (4)0.0220 (3)0.0297 (4)0.0003 (3)0.0032 (3)0.0133 (3)
C80.0131 (3)0.0207 (3)0.0304 (4)0.0021 (3)0.0032 (3)0.0133 (3)
C90.0136 (3)0.0157 (3)0.0193 (3)0.0006 (2)0.0036 (3)0.0089 (2)
C100.0132 (3)0.0153 (3)0.0147 (3)0.0010 (2)0.0032 (2)0.0073 (2)
C110.0124 (3)0.0155 (3)0.0132 (3)0.0018 (2)0.0021 (2)0.0071 (2)
C120.0147 (3)0.0147 (3)0.0128 (3)0.0001 (2)0.0035 (2)0.0064 (2)
C130.0179 (4)0.0175 (3)0.0155 (3)0.0033 (3)0.0027 (3)0.0066 (2)
C140.0184 (4)0.0224 (3)0.0160 (3)0.0037 (3)0.0012 (3)0.0058 (3)
C150.0201 (4)0.0206 (3)0.0146 (3)0.0033 (3)0.0035 (3)0.0073 (3)
C160.0248 (4)0.0182 (3)0.0152 (3)0.0000 (3)0.0048 (3)0.0087 (3)
C170.0190 (4)0.0172 (3)0.0154 (3)0.0020 (3)0.0046 (3)0.0077 (2)
C180.0290 (5)0.0336 (5)0.0188 (4)0.0037 (4)0.0008 (4)0.0130 (3)
C190.0138 (3)0.0130 (3)0.0187 (3)0.0014 (2)0.0038 (3)0.0073 (2)
C200.0202 (4)0.0185 (3)0.0195 (3)0.0021 (3)0.0059 (3)0.0090 (3)
C210.0232 (4)0.0267 (4)0.0266 (4)0.0031 (3)0.0108 (3)0.0169 (3)
C220.0211 (4)0.0255 (4)0.0431 (5)0.0049 (3)0.0149 (4)0.0237 (4)
C230.0187 (4)0.0187 (3)0.0428 (5)0.0015 (3)0.0103 (4)0.0153 (4)
C240.0167 (4)0.0151 (3)0.0266 (4)0.0026 (3)0.0046 (3)0.0078 (3)
C250.0151 (3)0.0199 (3)0.0153 (3)0.0019 (3)0.0019 (3)0.0101 (3)
C260.0190 (4)0.0267 (4)0.0198 (3)0.0047 (3)0.0036 (3)0.0136 (3)
Geometric parameters (Å, º) top
S1—O21.4346 (6)C12—C171.3930 (11)
S1—O11.4363 (7)C12—C131.3955 (12)
S1—N11.6406 (7)C13—C141.3890 (12)
S1—C121.7613 (8)C13—H130.93
N1—C11.4913 (10)C14—C151.3957 (13)
N1—C111.5068 (10)C14—H140.93
N2—C91.4049 (10)C15—C161.3936 (14)
N2—C101.4478 (11)C15—C181.5026 (13)
N2—H1N20.874 (15)C16—C171.3907 (12)
C1—C21.5188 (11)C16—H160.93
C1—H1A0.97C17—H170.93
C1—H1B0.97C18—H18A0.96
C2—C101.5225 (11)C18—H18B0.96
C2—C31.5241 (10)C18—H18C0.96
C2—H20.98C19—C241.3947 (11)
C3—C191.5167 (11)C19—C201.3984 (12)
C3—C41.5289 (12)C20—C211.3906 (12)
C3—H30.98C20—H200.93
C4—C51.3979 (11)C21—C221.3921 (15)
C4—C91.4100 (11)C21—H210.93
C5—C61.3879 (13)C22—C231.3846 (16)
C5—H50.93C22—H220.93
C6—C71.3937 (13)C23—C241.3967 (13)
C6—H60.93C23—H230.93
C7—C81.3874 (12)C24—H240.93
C7—H70.93C25—C261.5234 (12)
C8—C91.4003 (12)C25—H25A0.97
C8—H80.93C25—H25B0.97
C10—C111.5410 (11)C26—H26A0.96
C10—H100.98C26—H26B0.96
C11—C251.5235 (10)C26—H26C0.96
C11—H110.98
O2—S1—O1119.99 (4)N1—C11—H11109.5
O2—S1—N1106.92 (4)C25—C11—H11109.5
O1—S1—N1106.32 (4)C10—C11—H11109.5
O2—S1—C12107.98 (4)C17—C12—C13120.56 (7)
O1—S1—C12108.51 (4)C17—C12—S1120.00 (6)
N1—S1—C12106.36 (4)C13—C12—S1119.15 (6)
C1—N1—C11109.19 (6)C14—C13—C12119.34 (8)
C1—N1—S1116.25 (5)C14—C13—H13120.3
C11—N1—S1117.17 (5)C12—C13—H13120.3
C9—N2—C10116.54 (7)C13—C14—C15120.86 (8)
C9—N2—H1N2113.8 (10)C13—C14—H14119.6
C10—N2—H1N2116.9 (10)C15—C14—H14119.6
N1—C1—C2102.47 (6)C16—C15—C14118.90 (8)
N1—C1—H1A111.3C16—C15—C18120.51 (9)
C2—C1—H1A111.3C14—C15—C18120.59 (9)
N1—C1—H1B111.3C17—C16—C15120.98 (8)
C2—C1—H1B111.3C17—C16—H16119.5
H1A—C1—H1B109.2C15—C16—H16119.5
C1—C2—C10101.01 (6)C16—C17—C12119.25 (8)
C1—C2—C3119.66 (6)C16—C17—H17120.4
C10—C2—C3111.59 (6)C12—C17—H17120.4
C1—C2—H2108.0C15—C18—H18A109.5
C10—C2—H2108.0C15—C18—H18B109.5
C3—C2—H2108.0H18A—C18—H18B109.5
C19—C3—C2111.25 (6)C15—C18—H18C109.5
C19—C3—C4113.39 (6)H18A—C18—H18C109.5
C2—C3—C4107.44 (6)H18B—C18—H18C109.5
C19—C3—H3108.2C24—C19—C20118.46 (8)
C2—C3—H3108.2C24—C19—C3120.93 (7)
C4—C3—H3108.2C20—C19—C3120.59 (7)
C5—C4—C9118.20 (8)C21—C20—C19120.91 (8)
C5—C4—C3120.56 (7)C21—C20—H20119.5
C9—C4—C3121.24 (7)C19—C20—H20119.5
C6—C5—C4122.28 (8)C20—C21—C22119.93 (9)
C6—C5—H5118.9C20—C21—H21120.0
C4—C5—H5118.9C22—C21—H21120.0
C5—C6—C7118.98 (8)C23—C22—C21119.88 (8)
C5—C6—H6120.5C23—C22—H22120.1
C7—C6—H6120.5C21—C22—H22120.1
C8—C7—C6119.98 (9)C22—C23—C24120.05 (9)
C8—C7—H7120.0C22—C23—H23120.0
C6—C7—H7120.0C24—C23—H23120.0
C7—C8—C9121.06 (8)C19—C24—C23120.76 (9)
C7—C8—H8119.5C19—C24—H24119.6
C9—C8—H8119.5C23—C24—H24119.6
C8—C9—N2118.22 (7)C26—C25—C11113.64 (7)
C8—C9—C4119.46 (7)C26—C25—H25A108.8
N2—C9—C4122.27 (8)C11—C25—H25A108.8
N2—C10—C2108.59 (6)C26—C25—H25B108.8
N2—C10—C11114.73 (6)C11—C25—H25B108.8
C2—C10—C11103.44 (6)H25A—C25—H25B107.7
N2—C10—H10109.9C25—C26—H26A109.5
C2—C10—H10109.9C25—C26—H26B109.5
C11—C10—H10109.9H26A—C26—H26B109.5
N1—C11—C25109.71 (6)C25—C26—H26C109.5
N1—C11—C10103.05 (6)H26A—C26—H26C109.5
C25—C11—C10115.45 (6)H26B—C26—H26C109.5
O2—S1—N1—C1175.61 (6)S1—N1—C11—C25100.35 (7)
O1—S1—N1—C155.08 (6)C1—N1—C11—C101.35 (7)
C12—S1—N1—C160.43 (6)S1—N1—C11—C10136.16 (5)
O2—S1—N1—C1143.94 (6)N2—C10—C11—N1146.21 (6)
O1—S1—N1—C11173.24 (5)C2—C10—C11—N128.11 (7)
C12—S1—N1—C1171.25 (6)N2—C10—C11—C2594.20 (8)
C11—N1—C1—C225.88 (8)C2—C10—C11—C25147.70 (7)
S1—N1—C1—C2109.40 (6)O2—S1—C12—C17157.41 (7)
N1—C1—C2—C1042.60 (7)O1—S1—C12—C1725.90 (8)
N1—C1—C2—C3165.43 (6)N1—S1—C12—C1788.13 (7)
C1—C2—C3—C1966.47 (9)O2—S1—C12—C1328.75 (8)
C10—C2—C3—C19176.03 (6)O1—S1—C12—C13160.27 (7)
C1—C2—C3—C4168.88 (7)N1—S1—C12—C1385.71 (7)
C10—C2—C3—C451.38 (8)C17—C12—C13—C142.42 (13)
C19—C3—C4—C534.90 (10)S1—C12—C13—C14171.38 (7)
C2—C3—C4—C5158.25 (7)C12—C13—C14—C150.53 (13)
C19—C3—C4—C9145.35 (7)C13—C14—C15—C163.15 (13)
C2—C3—C4—C922.00 (10)C13—C14—C15—C18176.99 (9)
C9—C4—C5—C61.08 (12)C14—C15—C16—C172.88 (13)
C3—C4—C5—C6178.67 (7)C18—C15—C16—C17177.26 (8)
C4—C5—C6—C70.52 (13)C15—C16—C17—C120.00 (13)
C5—C6—C7—C81.07 (14)C13—C12—C17—C162.68 (12)
C6—C7—C8—C90.01 (15)S1—C12—C17—C16171.07 (6)
C7—C8—C9—N2175.93 (9)C2—C3—C19—C24112.37 (8)
C7—C8—C9—C41.62 (14)C4—C3—C19—C24126.40 (8)
C10—N2—C9—C8165.08 (8)C2—C3—C19—C2066.09 (10)
C10—N2—C9—C417.45 (12)C4—C3—C19—C2055.15 (10)
C5—C4—C9—C82.12 (12)C24—C19—C20—C210.65 (13)
C3—C4—C9—C8177.63 (8)C3—C19—C20—C21177.84 (8)
C5—C4—C9—N2175.32 (8)C19—C20—C21—C220.05 (14)
C3—C4—C9—N24.93 (12)C20—C21—C22—C230.27 (14)
C9—N2—C10—C245.97 (9)C21—C22—C23—C240.02 (14)
C9—N2—C10—C11161.12 (7)C20—C19—C24—C230.94 (13)
C1—C2—C10—N2166.38 (6)C3—C19—C24—C23177.54 (8)
C3—C2—C10—N265.36 (8)C22—C23—C24—C190.64 (14)
C1—C2—C10—C1144.09 (7)N1—C11—C25—C26179.71 (7)
C3—C2—C10—C11172.34 (6)C10—C11—C25—C2664.43 (9)
C1—N1—C11—C25124.83 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.403.3215 (13)171
C23—H23···O2ii0.932.533.2821 (13)138
C2—H2···Cg10.982.943.8269 (9)151
C7—H7···Cg3i0.932.953.7883 (12)151
C10—H10···Cg2iii0.982.833.8072 (9)178
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H28N2O2S
Mr432.56
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.3990 (1), 10.9077 (2), 12.5654 (3)
α, β, γ (°)64.3190 (8), 72.5291 (8), 76.3803 (8)
V3)1099.07 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.48 × 0.37 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.878, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
49024, 11697, 9445
Rint0.038
(sin θ/λ)max1)0.863
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.03
No. of reflections11697
No. of parameters285
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.47

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Version 5.1; Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.403.3215 (13)171
C23—H23···O2ii0.932.533.2821 (13)138
C2—H2···Cg10.982.943.8269 (9)151
C7—H7···Cg3i0.932.953.7883 (12)151
C10—H10···Cg2iii0.982.833.8072 (9)178
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+2, y, z+1.
 

Footnotes

Currently working at: Department of Physics, R. M. K. Engineering College, R. S. M. Nagar, Kavaraipettai 601 206, Tamil Nadu, India.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS), grant No. 203/PFIZIK/671064.

References

First citationAnzini, M., Cappelli, A., Vomero, S., Botta, M. & Cagnotto, A. (1990). Il Farmaco, 45, 1169–1179.  PubMed CAS Web of Science Google Scholar
First citationAnzini, M., Cappelli, A., Vomero, S., Cagnotto, A. & Skorupska, M. (1992). Il Farmaco, 47, 191–202.  PubMed CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCrenshaw, R. R., Luke, G. M. & Siminoff, P. (1976). J. Med. Chem. 19, 262–275.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271–383. New York: Wiley.  Google Scholar
First citationFujita, M., Egawa, H., Miyamoto, T., Nakano, J. & Matsumoto, J. (1996). Eur. J. Med. Chem. 31, 981–988.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4914–o4915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008). Acta Cryst. E64, o134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, X.-S., Antony, S., Pommier, Y. & Cushman, M. (2006). J. Med. Chem. 49, 1408–1412.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds