organic compounds
2-Amino-4,6-dimethylpyrimidinium 3,5-dinitrobenzoate dihydrate
aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and bFaculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, England
*Correspondence e-mail: tommtrichy@yahoo.co.in
In the title compound, C6H10N3+·C7H3N2O6−·2H2O, the aminopyrimidine molecule is protonated at one of the pyrimidine N atoms. The carboxylate group of the 3,5-dinitrobenzoate anion interacts with the protonated pyrimidine N atom and the 2-amino group through a pair of N—H⋯O hydrogen bonds, forming an R22(8) motif. Two inversion-related pyrimidine rings are linked via a pair of N—H⋯N hydrogen bonds, also forming an R22(8) ring motif.
Related literature
For related literature, see: Allen et al. (1998); Baker & Santi (1965); Baskar Raj et al. (2003); Desiraju (1989); Hunt et al. (1980); Lynch & Jones (2004); Panneerselvam et al. (2004); Prince et al. (1991); Stanley et al. (2005); Subashini et al. (2006).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536808000524/rz2189sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808000524/rz2189Isup2.hkl
A hot ethanol solution of 2-amino-4,6-dimethylpyrimidine (31 mg, Aldrich) was added to a hot aqueous solution of 3,5-dinitrobenzoic acid (53 mg, LOBA) in a 1:1 molar ratio. The resultant solution was warmed over a water bath for an hour. After a few days brown colored block shaped crystals were obtained as a result of slow evaporation.
All H atoms were placed in idealized locations and were refined using a riding model, with C—H = 0.95–0.99 Å, N—H = 0.88 Å and Uiso(H) = 1.2 Ueq(C, N). The thermal parameters of both water molecules are very high. All the H atoms of the water molecules have been fixed and were not refined.
Data collection: COLLECT (Nonius, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).C6H10N3+·C7H3N2O6−·2H2O | Z = 2 |
Mr = 371.32 | F(000) = 388 |
Triclinic, P1 | Dx = 1.491 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1465 (3) Å | Cell parameters from 2.5 reflections |
b = 11.0215 (5) Å | θ = 3.8–26.0° |
c = 11.1531 (4) Å | µ = 0.13 mm−1 |
α = 99.473 (3)° | T = 120 K |
β = 101.322 (3)° | Block, brown |
γ = 100.826 (2)° | 0.44 × 0.36 × 0.23 mm |
V = 827.33 (6) Å3 |
Bruker–Nonius KappaCCD area-detector diffractometer | 2283 reflections with I > 2σ(I) |
Radiation source: Bruker–Nonius FR591 rotating anode | Rint = 0.043 |
Graphite monochromator | θmax = 26.0°, θmin = 3.8° |
ϕ and ω scans | h = −8→8 |
15739 measured reflections | k = −13→13 |
3235 independent reflections | l = −13→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.171 | w = 1/[σ2(Fo2) + (0.0801P)2 + 0.6543P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3235 reflections | Δρmax = 0.50 e Å−3 |
238 parameters | Δρmin = −0.55 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001Fc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.026 (9) |
C6H10N3+·C7H3N2O6−·2H2O | γ = 100.826 (2)° |
Mr = 371.32 | V = 827.33 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.1465 (3) Å | Mo Kα radiation |
b = 11.0215 (5) Å | µ = 0.13 mm−1 |
c = 11.1531 (4) Å | T = 120 K |
α = 99.473 (3)° | 0.44 × 0.36 × 0.23 mm |
β = 101.322 (3)° |
Bruker–Nonius KappaCCD area-detector diffractometer | 2283 reflections with I > 2σ(I) |
15739 measured reflections | Rint = 0.043 |
3235 independent reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.171 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.50 e Å−3 |
3235 reflections | Δρmin = −0.55 e Å−3 |
238 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2> σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.2027 (3) | 0.33914 (19) | 0.72583 (18) | 0.0274 (6) | |
N2 | 0.1151 (3) | 0.35467 (18) | 0.51987 (17) | 0.0283 (6) | |
N3 | 0.0823 (3) | 0.51366 (18) | 0.67131 (17) | 0.0284 (6) | |
C2 | 0.1339 (3) | 0.4032 (2) | 0.6397 (2) | 0.0255 (7) | |
C4 | 0.1050 (4) | 0.5608 (2) | 0.7929 (2) | 0.0316 (7) | |
C5 | 0.1819 (4) | 0.4998 (2) | 0.8853 (2) | 0.0344 (8) | |
C6 | 0.2299 (4) | 0.3872 (2) | 0.8500 (2) | 0.0321 (8) | |
C7 | 0.0403 (4) | 0.6801 (3) | 0.8255 (2) | 0.0434 (9) | |
C8 | 0.3079 (4) | 0.3114 (3) | 0.9388 (2) | 0.0425 (9) | |
O1 | 0.2748 (3) | 0.11664 (16) | 0.66737 (15) | 0.0340 (5) | |
O2 | 0.1737 (3) | 0.11087 (15) | 0.46282 (15) | 0.0330 (5) | |
O3 | 0.2112 (3) | −0.24607 (19) | 0.15879 (17) | 0.0491 (7) | |
O4 | 0.3323 (3) | −0.39796 (18) | 0.21663 (17) | 0.0432 (6) | |
O5 | 0.5402 (3) | −0.39570 (18) | 0.65403 (19) | 0.0467 (7) | |
O6 | 0.4999 (3) | −0.2476 (2) | 0.79214 (18) | 0.0545 (8) | |
N4 | 0.2803 (3) | −0.2987 (2) | 0.23984 (19) | 0.0335 (7) | |
N5 | 0.4871 (3) | −0.2986 (2) | 0.6838 (2) | 0.0355 (7) | |
C9 | 0.2796 (3) | −0.0654 (2) | 0.5226 (2) | 0.0258 (7) | |
C10 | 0.2515 (3) | −0.1244 (2) | 0.3983 (2) | 0.0271 (7) | |
C11 | 0.3026 (3) | −0.2394 (2) | 0.3714 (2) | 0.0275 (7) | |
C12 | 0.3787 (3) | −0.3000 (2) | 0.4618 (2) | 0.0285 (7) | |
C13 | 0.4021 (3) | −0.2388 (2) | 0.5846 (2) | 0.0284 (7) | |
C14 | 0.3543 (3) | −0.1233 (2) | 0.6170 (2) | 0.0279 (7) | |
C15 | 0.2368 (3) | 0.0642 (2) | 0.5522 (2) | 0.0282 (7) | |
O1W | 0.0473 (17) | 0.0204 (5) | 0.1315 (8) | 0.279 (6) | |
O2W | 0.229 (3) | −0.0073 (6) | −0.0151 (9) | 0.474 (10) | |
H1 | 0.23000 | 0.26580 | 0.70130 | 0.0330* | |
H2A | 0.06960 | 0.39440 | 0.46230 | 0.0340* | |
H2B | 0.14830 | 0.28270 | 0.49790 | 0.0340* | |
H5 | 0.20050 | 0.53630 | 0.97130 | 0.0410* | |
H7A | 0.08110 | 0.73780 | 0.77250 | 0.0650* | |
H7B | 0.09990 | 0.71960 | 0.91350 | 0.0650* | |
H7C | −0.10280 | 0.66140 | 0.81180 | 0.0650* | |
H8A | 0.20720 | 0.23550 | 0.93330 | 0.0640* | |
H8B | 0.34390 | 0.36210 | 1.02420 | 0.0640* | |
H8C | 0.42380 | 0.28660 | 0.91730 | 0.0640* | |
H10 | 0.19820 | −0.08650 | 0.33280 | 0.0320* | |
H12 | 0.41290 | −0.37870 | 0.44120 | 0.0340* | |
H14 | 0.37250 | −0.08460 | 0.70240 | 0.0330* | |
H1W | 0.08570 | 0.03120 | 0.21100 | 0.5000* | |
H2W | 0.08640 | 0.09280 | 0.11360 | 0.5000* | |
H3W | 0.27840 | −0.06530 | 0.01730 | 0.5000* | |
H4W | 0.31380 | 0.01390 | −0.06280 | 0.5000* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0299 (11) | 0.0296 (11) | 0.0237 (10) | 0.0107 (8) | 0.0048 (8) | 0.0057 (8) |
N2 | 0.0387 (11) | 0.0276 (11) | 0.0201 (10) | 0.0132 (9) | 0.0051 (8) | 0.0048 (8) |
N3 | 0.0335 (11) | 0.0288 (11) | 0.0224 (10) | 0.0102 (9) | 0.0049 (8) | 0.0023 (8) |
C2 | 0.0258 (12) | 0.0260 (12) | 0.0247 (12) | 0.0069 (9) | 0.0044 (9) | 0.0057 (9) |
C4 | 0.0340 (13) | 0.0349 (13) | 0.0242 (12) | 0.0086 (11) | 0.0057 (10) | 0.0019 (10) |
C5 | 0.0377 (14) | 0.0418 (15) | 0.0210 (12) | 0.0098 (12) | 0.0052 (10) | −0.0002 (11) |
C6 | 0.0310 (13) | 0.0429 (15) | 0.0223 (12) | 0.0089 (11) | 0.0044 (10) | 0.0079 (11) |
C7 | 0.0584 (18) | 0.0442 (16) | 0.0293 (14) | 0.0246 (14) | 0.0089 (13) | −0.0008 (12) |
C8 | 0.0509 (17) | 0.0532 (17) | 0.0275 (13) | 0.0204 (14) | 0.0061 (12) | 0.0137 (12) |
O1 | 0.0443 (10) | 0.0293 (9) | 0.0276 (9) | 0.0117 (8) | 0.0058 (8) | 0.0034 (7) |
O2 | 0.0418 (10) | 0.0282 (9) | 0.0306 (9) | 0.0130 (8) | 0.0058 (7) | 0.0081 (7) |
O3 | 0.0682 (14) | 0.0540 (13) | 0.0280 (10) | 0.0282 (11) | 0.0047 (9) | 0.0079 (9) |
O4 | 0.0543 (12) | 0.0393 (11) | 0.0371 (10) | 0.0195 (9) | 0.0120 (9) | −0.0005 (8) |
O5 | 0.0540 (12) | 0.0408 (11) | 0.0513 (12) | 0.0265 (10) | 0.0066 (9) | 0.0150 (9) |
O6 | 0.0819 (16) | 0.0477 (12) | 0.0293 (11) | 0.0239 (11) | −0.0054 (10) | 0.0069 (9) |
N4 | 0.0348 (12) | 0.0362 (12) | 0.0286 (11) | 0.0105 (10) | 0.0052 (9) | 0.0038 (9) |
N5 | 0.0394 (12) | 0.0330 (12) | 0.0334 (12) | 0.0108 (10) | 0.0018 (9) | 0.0098 (9) |
C9 | 0.0220 (11) | 0.0244 (12) | 0.0295 (12) | 0.0042 (9) | 0.0043 (9) | 0.0045 (10) |
C10 | 0.0237 (12) | 0.0293 (13) | 0.0274 (12) | 0.0055 (10) | 0.0019 (9) | 0.0093 (10) |
C11 | 0.0253 (12) | 0.0314 (13) | 0.0245 (12) | 0.0063 (10) | 0.0050 (9) | 0.0034 (10) |
C12 | 0.0261 (12) | 0.0261 (12) | 0.0333 (13) | 0.0078 (10) | 0.0060 (10) | 0.0049 (10) |
C13 | 0.0245 (12) | 0.0291 (12) | 0.0317 (13) | 0.0068 (10) | 0.0020 (10) | 0.0110 (10) |
C14 | 0.0257 (12) | 0.0301 (13) | 0.0260 (12) | 0.0039 (10) | 0.0047 (9) | 0.0048 (10) |
C15 | 0.0259 (12) | 0.0271 (12) | 0.0318 (13) | 0.0065 (10) | 0.0072 (10) | 0.0057 (10) |
O1W | 0.516 (15) | 0.093 (4) | 0.240 (8) | 0.075 (6) | 0.084 (9) | 0.065 (4) |
O2W | 1.00 (3) | 0.072 (3) | 0.178 (6) | −0.018 (11) | −0.117 (16) | 0.013 (4) |
O1—C15 | 1.272 (3) | C4—C7 | 1.487 (4) |
O2—C15 | 1.241 (3) | C5—C6 | 1.366 (3) |
O3—N4 | 1.226 (3) | C6—C8 | 1.490 (4) |
O4—N4 | 1.224 (3) | C5—H5 | 0.9499 |
O5—N5 | 1.218 (3) | C7—H7C | 0.9802 |
O6—N5 | 1.224 (3) | C7—H7A | 0.9801 |
O1W—H1W | 0.8562 | C7—H7B | 0.9797 |
O1W—H2W | 0.8633 | C8—H8B | 0.9799 |
O2W—H4W | 0.9051 | C8—H8C | 0.9797 |
O2W—H3W | 0.8801 | C8—H8A | 0.9803 |
N1—C2 | 1.353 (3) | C9—C14 | 1.389 (3) |
N1—C6 | 1.360 (3) | C9—C15 | 1.514 (3) |
N2—C2 | 1.326 (3) | C9—C10 | 1.389 (3) |
N3—C2 | 1.349 (3) | C10—C11 | 1.386 (3) |
N3—C4 | 1.336 (3) | C11—C12 | 1.379 (3) |
N1—H1 | 0.8796 | C12—C13 | 1.386 (3) |
N2—H2B | 0.8804 | C13—C14 | 1.389 (3) |
N2—H2A | 0.8797 | C10—H10 | 0.9509 |
N4—C11 | 1.469 (3) | C12—H12 | 0.9492 |
N5—C13 | 1.468 (3) | C14—H14 | 0.9502 |
C4—C5 | 1.400 (3) | ||
O1···N1 | 2.605 (3) | C9···C10i | 3.461 (3) |
O1···C8 | 3.349 (3) | C9···O2iii | 3.224 (3) |
O1···C11i | 3.211 (3) | C9···C9i | 3.378 (3) |
O1W···O2W | 2.30 (2) | C10···C14i | 3.588 (3) |
O1W···O1Wii | 2.817 (12) | C10···C9i | 3.461 (3) |
O1W···O2Wii | 2.10 (2) | C10···C15i | 3.506 (3) |
O2···N2 | 2.787 (3) | C11···C2iii | 3.266 (3) |
O2···C15iii | 3.151 (3) | C11···O1i | 3.211 (3) |
O2···C9iii | 3.224 (3) | C11···C15i | 3.355 (3) |
O2···C12i | 3.339 (3) | C12···O2i | 3.339 (3) |
O2···C13i | 3.275 (3) | C12···C15i | 3.457 (3) |
O2W···O1Wii | 2.10 (2) | C12···C2iii | 3.518 (3) |
O2W···O1W | 2.30 (2) | C13···O2i | 3.275 (3) |
O3···C6iii | 3.218 (4) | C14···C10i | 3.588 (3) |
O4···O5iv | 3.070 (3) | C15···N1 | 3.395 (3) |
O4···C4iii | 3.271 (3) | C15···C10i | 3.506 (3) |
O4···C6i | 3.340 (4) | C15···C11i | 3.355 (3) |
O4···N1i | 3.177 (3) | C15···C12i | 3.457 (3) |
O5···C2v | 3.264 (3) | C15···C15iii | 3.305 (3) |
O5···O4iv | 3.070 (3) | C15···O2iii | 3.151 (3) |
O6···C8vi | 3.290 (3) | C4···H2Ax | 3.0334 |
O6···C7v | 3.340 (4) | C7···H2Wx | 2.8424 |
O6···C4v | 3.194 (3) | C7···H2Ax | 3.0813 |
O1···H1 | 1.7288 | C15···H1 | 2.5614 |
O1···H14 | 2.5138 | C15···H2B | 2.7328 |
O1W···H3Wii | 2.7574 | H1···H8C | 2.4826 |
O1W···H3W | 2.5016 | H1···O1 | 1.7288 |
O1W···H2Wii | 2.7104 | H1···O2 | 2.8247 |
O1W···H10 | 2.8265 | H1···C15 | 2.5614 |
O1W···H4Wii | 2.4802 | H1···H2B | 2.2763 |
O2···H1 | 2.8247 | H1W···H10 | 2.1720 |
O2···H2B | 1.9198 | H1W···O2W | 2.9005 |
O2···H10 | 2.4637 | H1W···O2 | 2.7096 |
O2···H1W | 2.7096 | H1W···O2Wii | 2.7495 |
O2W···H8Avii | 2.8539 | H2A···C4x | 3.0334 |
O2W···H1W | 2.9005 | H2A···C7x | 3.0813 |
O2W···H2Wii | 2.2504 | H2A···N3x | 2.1682 |
O2W···H2W | 2.1890 | H2B···O2 | 1.9198 |
O2W···H7Bviii | 2.9025 | H2B···H1 | 2.2763 |
O2W···H1Wii | 2.7495 | H2B···C15 | 2.7328 |
O3···H3W | 2.7683 | H2W···O1Wii | 2.7104 |
O3···H5viii | 2.8895 | H2W···C7x | 2.8424 |
O3···H7Bviii | 2.6367 | H2W···O2W | 2.1890 |
O3···H10 | 2.4242 | H2W···O2Wii | 2.2504 |
O4···H8Ci | 2.7564 | H3W···H7Bviii | 2.4431 |
O4···H5viii | 2.6416 | H3W···O1W | 2.5016 |
O4···H12 | 2.4213 | H3W···O1Wii | 2.7574 |
O5···H12iv | 2.6470 | H3W···O3 | 2.7683 |
O5···H12 | 2.4207 | H4W···O1Wii | 2.4802 |
O5···H7Cix | 2.6965 | H5···H8B | 2.4411 |
O6···H14 | 2.4304 | H5···H7B | 2.4096 |
O6···H8Bvi | 2.7417 | H5···O4xii | 2.6416 |
N1···O4i | 3.177 (3) | H5···O3xii | 2.8895 |
N1···O1 | 2.605 (3) | H7B···O2Wxii | 2.9025 |
N1···C15 | 3.395 (3) | H7B···O3xii | 2.6367 |
N2···N3x | 3.041 (3) | H7B···H5 | 2.4096 |
N2···O2 | 2.787 (3) | H7B···H3Wxii | 2.4431 |
N3···N2x | 3.041 (3) | H7C···O5xiii | 2.6965 |
N3···N5xi | 3.189 (3) | H8A···O2Wxiv | 2.8539 |
N5···C4v | 3.417 (3) | H8B···O6vi | 2.7417 |
N5···N3v | 3.189 (3) | H8B···H5 | 2.4411 |
N3···H2Ax | 2.1682 | H8C···H1 | 2.4826 |
C2···C12iii | 3.518 (3) | H8C···O4i | 2.7564 |
C2···C11iii | 3.266 (3) | H10···O2 | 2.4637 |
C2···O5xi | 3.264 (3) | H10···O3 | 2.4242 |
C4···N5xi | 3.417 (3) | H10···O1W | 2.8265 |
C4···O6xi | 3.194 (3) | H10···H1W | 2.1720 |
C4···O4iii | 3.271 (3) | H12···O5iv | 2.6470 |
C6···O3iii | 3.218 (4) | H12···O5 | 2.4207 |
C6···O4i | 3.340 (4) | H12···O4 | 2.4213 |
C7···O6xi | 3.340 (4) | H14···O6 | 2.4304 |
C8···O6vi | 3.290 (3) | H14···O1 | 2.5138 |
C8···O1 | 3.349 (3) | ||
H1W—O1W—H2W | 105.95 | H7B—C7—H7C | 109.53 |
H3W—O2W—H4W | 100.59 | C4—C7—H7B | 109.45 |
C2—N1—C6 | 120.5 (2) | C4—C7—H7A | 109.44 |
C2—N3—C4 | 117.6 (2) | H8B—C8—H8C | 109.45 |
C6—N1—H1 | 119.74 | C6—C8—H8B | 109.50 |
C2—N1—H1 | 119.71 | C6—C8—H8A | 109.44 |
H2A—N2—H2B | 119.98 | H8A—C8—H8C | 109.41 |
C2—N2—H2B | 119.99 | H8A—C8—H8B | 109.50 |
C2—N2—H2A | 120.02 | C6—C8—H8C | 109.53 |
O3—N4—C11 | 118.3 (2) | C10—C9—C15 | 118.94 (19) |
O4—N4—C11 | 118.4 (2) | C14—C9—C15 | 121.27 (19) |
O3—N4—O4 | 123.3 (2) | C10—C9—C14 | 119.7 (2) |
O6—N5—C13 | 117.7 (2) | C9—C10—C11 | 118.9 (2) |
O5—N5—C13 | 118.5 (2) | N4—C11—C12 | 117.9 (2) |
O5—N5—O6 | 123.8 (2) | N4—C11—C10 | 118.59 (19) |
N1—C2—N3 | 122.4 (2) | C10—C11—C12 | 123.5 (2) |
N1—C2—N2 | 118.5 (2) | C11—C12—C13 | 115.8 (2) |
N2—C2—N3 | 119.0 (2) | N5—C13—C14 | 119.25 (19) |
C5—C4—C7 | 121.4 (2) | C12—C13—C14 | 123.1 (2) |
N3—C4—C7 | 116.7 (2) | N5—C13—C12 | 117.6 (2) |
N3—C4—C5 | 121.8 (2) | C9—C14—C13 | 118.9 (2) |
C4—C5—C6 | 119.1 (2) | O1—C15—C9 | 116.30 (19) |
N1—C6—C5 | 118.5 (2) | O1—C15—O2 | 126.1 (2) |
C5—C6—C8 | 124.3 (2) | O2—C15—C9 | 117.57 (19) |
N1—C6—C8 | 117.2 (2) | C11—C10—H10 | 120.58 |
C6—C5—H5 | 120.51 | C9—C10—H10 | 120.55 |
C4—C5—H5 | 120.44 | C11—C12—H12 | 122.06 |
H7A—C7—H7C | 109.42 | C13—C12—H12 | 122.12 |
H7A—C7—H7B | 109.53 | C13—C14—H14 | 120.45 |
C4—C7—H7C | 109.45 | C9—C14—H14 | 120.62 |
C6—N1—C2—N2 | 178.0 (2) | C4—C5—C6—C8 | −178.4 (3) |
C6—N1—C2—N3 | −2.6 (4) | C4—C5—C6—N1 | 0.6 (4) |
C2—N1—C6—C5 | 1.5 (4) | C14—C9—C10—C11 | −1.2 (3) |
C2—N1—C6—C8 | −179.4 (2) | C15—C9—C10—C11 | 175.9 (2) |
C4—N3—C2—N1 | 1.3 (4) | C10—C9—C14—C13 | 0.9 (3) |
C4—N3—C2—N2 | −179.3 (2) | C15—C9—C14—C13 | −176.1 (2) |
C2—N3—C4—C5 | 0.9 (4) | C10—C9—C15—O1 | −176.4 (2) |
C2—N3—C4—C7 | −177.8 (2) | C10—C9—C15—O2 | 1.6 (3) |
O4—N4—C11—C12 | −0.9 (3) | C14—C9—C15—O1 | 0.7 (3) |
O3—N4—C11—C10 | −2.4 (3) | C14—C9—C15—O2 | 178.7 (2) |
O4—N4—C11—C10 | 177.4 (2) | C9—C10—C11—N4 | −177.5 (2) |
O3—N4—C11—C12 | 179.4 (2) | C9—C10—C11—C12 | 0.7 (3) |
O5—N5—C13—C14 | −175.2 (2) | N4—C11—C12—C13 | 178.3 (2) |
O5—N5—C13—C12 | 3.0 (3) | C10—C11—C12—C13 | 0.1 (3) |
O6—N5—C13—C12 | −176.9 (2) | C11—C12—C13—N5 | −178.6 (2) |
O6—N5—C13—C14 | 4.9 (3) | C11—C12—C13—C14 | −0.4 (3) |
N3—C4—C5—C6 | −1.9 (4) | N5—C13—C14—C9 | 178.0 (2) |
C7—C4—C5—C6 | 176.7 (3) | C12—C13—C14—C9 | −0.1 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z; (iii) −x, −y, −z+1; (iv) −x+1, −y−1, −z+1; (v) x, y−1, z; (vi) −x+1, −y, −z+2; (vii) x, y, z−1; (viii) x, y−1, z−1; (ix) x+1, y−1, z; (x) −x, −y+1, −z+1; (xi) x, y+1, z; (xii) x, y+1, z+1; (xiii) x−1, y+1, z; (xiv) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.88 | 1.73 | 2.605 (3) | 174 |
N2—H2A···N3x | 0.88 | 2.17 | 3.041 (3) | 172 |
N2—H2B···O2 | 0.88 | 1.92 | 2.787 (3) | 168 |
Symmetry code: (x) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C6H10N3+·C7H3N2O6−·2H2O |
Mr | 371.32 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 7.1465 (3), 11.0215 (5), 11.1531 (4) |
α, β, γ (°) | 99.473 (3), 101.322 (3), 100.826 (2) |
V (Å3) | 827.33 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.44 × 0.36 × 0.23 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15739, 3235, 2283 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.171, 1.04 |
No. of reflections | 3235 |
No. of parameters | 238 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.55 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.88 | 1.73 | 2.605 (3) | 174 |
N2—H2A···N3i | 0.88 | 2.17 | 3.041 (3) | 172 |
N2—H2B···O2 | 0.88 | 1.92 | 2.787 (3) | 168 |
Symmetry code: (i) −x, −y+1, −z+1. |
Acknowledgements
AS thanks Bharathidasan University for the award of a Research Student Fellowship (Reference CCCD/PhD-2/15504/2004). DEL thanks the EPSRC National Crystallography Service (Southampton, England) for the X-ray data collection.
References
Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044. Web of Science CrossRef Google Scholar
Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257. CrossRef CAS PubMed Web of Science Google Scholar
Baskar Raj, S., Muthiah, P. T., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 48–53. Web of Science CSD CrossRef Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536. CAS PubMed Web of Science Google Scholar
Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Panneerselvam, P., Muthiah, P. T. & Francis, S. (2004). Acta Cryst. E60, o747–o749. Web of Science CSD CrossRef IUCr Journals Google Scholar
Prince, P., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 895–898. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210. Web of Science CSD CrossRef CAS Google Scholar
Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2006). Acta Cryst. E62, o3847–o3849. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrogen-bonding patterns involving aminopyrimidine and carboxylates have been observed in drug–receptor interactions, protein–nucleic acid interactions and supramolecular architectures (Desiraju, 1989). Studies of such interactions are also of current interest because of their applications in drug design and the crystal engineering of pharmaceuticals (Stanley et al., 2005). Pyrimidine and aminopyrimidine derivatives are biologically important compounds as they occur in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). Two monoclinic polymorphic forms of 3,5-dinitrobenzoic acid (Prince et al., 1991) have already been reported. From our laboratory, the crystal structures of 2-amino-4,6-dimethylpyrimidinium bromide 2-amino-4,6-dimethyl pyrimidine monohydrate (Panneerselvam et al., 2004) and 2-amino-4,6-dimethylpyrimidinium picrate (Subashini et al., 2006) have been reported. The present study was undertaken to explore the hydrogen-bonding patterns involving aminopyrimidine–carboxylate interactions.
The asymmetric unit of the title compound contains one 2-amino-4,6-dimethylpyrimidinium cation, one 3,5-dinitrobenzoate anion and two water molecules (Fig. 1). Protonation of the pyrimidine base on the N1 site is reflected in a change in bond angle. The C2—N3—C4 angle at unprotonated atom N3 is 117.6 (2)°, while for protonated atom N1, the C2—N1—C6 angle is 120.5 (2)°. The carboxylate group of the 3,5-dinitrobenzoate anion (O1 and O2) interacts with the protonated N1 atom and the 2-amino group of the pyrimidine moiety through a pair of N—H···O hydrogen bonds, forming a fork-like interaction with graph-set R22(8) (Lynch & Jones, 2004). This R22(8) motif is one of the 24 most frequently observed bimolecular cyclic hydrogen-bonded motifs in organic crystal structures (Allen et al., 1998). The aminopyrimidinium cations are centrosymmetrically paired through two N—H···N hydrogen hydrogen bonds involving the 2-amino group and the N3 nitrogen atom (graph-set R22(8)) (Fig. 2). A similar type of interaction has been observed in crystal structure of trimethoprim m-chlorobenzoate and trimethoprim m-chlorobenzoate dihydrate (Baskar Raj et al., 2003).