organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4,6-di­methyl­pyrimidinium 3,5-di­nitro­benzoate dihydrate

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and bFaculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, England
*Correspondence e-mail: tommtrichy@yahoo.co.in

(Received 21 November 2007; accepted 7 January 2008; online 11 January 2008)

In the title compound, C6H10N3+·C7H3N2O6·2H2O, the amino­pyrimidine mol­ecule is protonated at one of the pyrimidine N atoms. The carboxyl­ate group of the 3,5-dinitro­benzoate anion inter­acts with the protonated pyrimidine N atom and the 2-amino group through a pair of N—H⋯O hydrogen bonds, forming an R22(8) motif. Two inversion-related pyrimidine rings are linked via a pair of N—H⋯N hydrogen bonds, also forming an R22(8) ring motif.

Related literature

For related literature, see: Allen et al. (1998[Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043-1044.]); Baker & Santi (1965[Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.]); Baskar Raj et al. (2003[Baskar Raj, S., Muthiah, P. T., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 48-53.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]); Hunt et al. (1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533-536.]); Lynch & Jones (2004[Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.]); Panneerselvam et al. (2004[Panneerselvam, P., Muthiah, P. T. & Francis, S. (2004). Acta Cryst. E60, o747-o749.]); Prince et al. (1991[Prince, P., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 895-898.]); Stanley et al. (2005[Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201-7210.]); Subashini et al. (2006[Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2006). Acta Cryst. E62, o3847-o3849.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N3+·C7H3N2O6·2H2O

  • Mr = 371.32

  • Triclinic, [P \overline 1]

  • a = 7.1465 (3) Å

  • b = 11.0215 (5) Å

  • c = 11.1531 (4) Å

  • α = 99.473 (3)°

  • β = 101.322 (3)°

  • γ = 100.826 (2)°

  • V = 827.33 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 120 K

  • 0.44 × 0.36 × 0.23 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 15739 measured reflections

  • 3235 independent reflections

  • 2283 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.171

  • S = 1.04

  • 3235 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 1.73 2.605 (3) 174
N2—H2A⋯N3i 0.88 2.17 3.041 (3) 172
N2—H2B⋯O2 0.88 1.92 2.787 (3) 168
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Hydrogen-bonding patterns involving aminopyrimidine and carboxylates have been observed in drug–receptor interactions, protein–nucleic acid interactions and supramolecular architectures (Desiraju, 1989). Studies of such interactions are also of current interest because of their applications in drug design and the crystal engineering of pharmaceuticals (Stanley et al., 2005). Pyrimidine and aminopyrimidine derivatives are biologically important compounds as they occur in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). Two monoclinic polymorphic forms of 3,5-dinitrobenzoic acid (Prince et al., 1991) have already been reported. From our laboratory, the crystal structures of 2-amino-4,6-dimethylpyrimidinium bromide 2-amino-4,6-dimethyl pyrimidine monohydrate (Panneerselvam et al., 2004) and 2-amino-4,6-dimethylpyrimidinium picrate (Subashini et al., 2006) have been reported. The present study was undertaken to explore the hydrogen-bonding patterns involving aminopyrimidine–carboxylate interactions.

The asymmetric unit of the title compound contains one 2-amino-4,6-dimethylpyrimidinium cation, one 3,5-dinitrobenzoate anion and two water molecules (Fig. 1). Protonation of the pyrimidine base on the N1 site is reflected in a change in bond angle. The C2—N3—C4 angle at unprotonated atom N3 is 117.6 (2)°, while for protonated atom N1, the C2—N1—C6 angle is 120.5 (2)°. The carboxylate group of the 3,5-dinitrobenzoate anion (O1 and O2) interacts with the protonated N1 atom and the 2-amino group of the pyrimidine moiety through a pair of N—H···O hydrogen bonds, forming a fork-like interaction with graph-set R22(8) (Lynch & Jones, 2004). This R22(8) motif is one of the 24 most frequently observed bimolecular cyclic hydrogen-bonded motifs in organic crystal structures (Allen et al., 1998). The aminopyrimidinium cations are centrosymmetrically paired through two N—H···N hydrogen hydrogen bonds involving the 2-amino group and the N3 nitrogen atom (graph-set R22(8)) (Fig. 2). A similar type of interaction has been observed in crystal structure of trimethoprim m-chlorobenzoate and trimethoprim m-chlorobenzoate dihydrate (Baskar Raj et al., 2003).

Related literature top

For related literature, see: Allen et al. (1998); Baker & Santi (1965); Baskar Raj, Muthiah, Rychlewska & Warzajtis (2003); Desiraju (1989); Hunt et al. (1980); Lynch & Jones (2004); Panneerselvam et al. (2004); Prince et al. (1991); Stanley et al. (2005); Subashini et al. (2006).

Experimental top

A hot ethanol solution of 2-amino-4,6-dimethylpyrimidine (31 mg, Aldrich) was added to a hot aqueous solution of 3,5-dinitrobenzoic acid (53 mg, LOBA) in a 1:1 molar ratio. The resultant solution was warmed over a water bath for an hour. After a few days brown colored block shaped crystals were obtained as a result of slow evaporation.

Refinement top

All H atoms were placed in idealized locations and were refined using a riding model, with C—H = 0.95–0.99 Å, N—H = 0.88 Å and Uiso(H) = 1.2 Ueq(C, N). The thermal parameters of both water molecules are very high. All the H atoms of the water molecules have been fixed and were not refined.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the asymmetric unit of the title compound showing 30% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Hydrogen bonding patterns in the title compound. Symmetry codes: (i) -x, -y + 1, -z + 1.
2-Amino-4,6-dimethylpyrimidinium 3,5-dinitrobenzoate dihydrate top
Crystal data top
C6H10N3+·C7H3N2O6·2H2OZ = 2
Mr = 371.32F(000) = 388
Triclinic, P1Dx = 1.491 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1465 (3) ÅCell parameters from 2.5 reflections
b = 11.0215 (5) Åθ = 3.8–26.0°
c = 11.1531 (4) ŵ = 0.13 mm1
α = 99.473 (3)°T = 120 K
β = 101.322 (3)°Block, brown
γ = 100.826 (2)°0.44 × 0.36 × 0.23 mm
V = 827.33 (6) Å3
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2283 reflections with I > 2σ(I)
Radiation source: Bruker–Nonius FR591 rotating anodeRint = 0.043
Graphite monochromatorθmax = 26.0°, θmin = 3.8°
ϕ and ω scansh = 88
15739 measured reflectionsk = 1313
3235 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0801P)2 + 0.6543P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3235 reflectionsΔρmax = 0.50 e Å3
238 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (9)
Crystal data top
C6H10N3+·C7H3N2O6·2H2Oγ = 100.826 (2)°
Mr = 371.32V = 827.33 (6) Å3
Triclinic, P1Z = 2
a = 7.1465 (3) ÅMo Kα radiation
b = 11.0215 (5) ŵ = 0.13 mm1
c = 11.1531 (4) ÅT = 120 K
α = 99.473 (3)°0.44 × 0.36 × 0.23 mm
β = 101.322 (3)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2283 reflections with I > 2σ(I)
15739 measured reflectionsRint = 0.043
3235 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
3235 reflectionsΔρmin = 0.55 e Å3
238 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2> σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2027 (3)0.33914 (19)0.72583 (18)0.0274 (6)
N20.1151 (3)0.35467 (18)0.51987 (17)0.0283 (6)
N30.0823 (3)0.51366 (18)0.67131 (17)0.0284 (6)
C20.1339 (3)0.4032 (2)0.6397 (2)0.0255 (7)
C40.1050 (4)0.5608 (2)0.7929 (2)0.0316 (7)
C50.1819 (4)0.4998 (2)0.8853 (2)0.0344 (8)
C60.2299 (4)0.3872 (2)0.8500 (2)0.0321 (8)
C70.0403 (4)0.6801 (3)0.8255 (2)0.0434 (9)
C80.3079 (4)0.3114 (3)0.9388 (2)0.0425 (9)
O10.2748 (3)0.11664 (16)0.66737 (15)0.0340 (5)
O20.1737 (3)0.11087 (15)0.46282 (15)0.0330 (5)
O30.2112 (3)0.24607 (19)0.15879 (17)0.0491 (7)
O40.3323 (3)0.39796 (18)0.21663 (17)0.0432 (6)
O50.5402 (3)0.39570 (18)0.65403 (19)0.0467 (7)
O60.4999 (3)0.2476 (2)0.79214 (18)0.0545 (8)
N40.2803 (3)0.2987 (2)0.23984 (19)0.0335 (7)
N50.4871 (3)0.2986 (2)0.6838 (2)0.0355 (7)
C90.2796 (3)0.0654 (2)0.5226 (2)0.0258 (7)
C100.2515 (3)0.1244 (2)0.3983 (2)0.0271 (7)
C110.3026 (3)0.2394 (2)0.3714 (2)0.0275 (7)
C120.3787 (3)0.3000 (2)0.4618 (2)0.0285 (7)
C130.4021 (3)0.2388 (2)0.5846 (2)0.0284 (7)
C140.3543 (3)0.1233 (2)0.6170 (2)0.0279 (7)
C150.2368 (3)0.0642 (2)0.5522 (2)0.0282 (7)
O1W0.0473 (17)0.0204 (5)0.1315 (8)0.279 (6)
O2W0.229 (3)0.0073 (6)0.0151 (9)0.474 (10)
H10.230000.265800.701300.0330*
H2A0.069600.394400.462300.0340*
H2B0.148300.282700.497900.0340*
H50.200500.536300.971300.0410*
H7A0.081100.737800.772500.0650*
H7B0.099900.719600.913500.0650*
H7C0.102800.661400.811800.0650*
H8A0.207200.235500.933300.0640*
H8B0.343900.362101.024200.0640*
H8C0.423800.286600.917300.0640*
H100.198200.086500.332800.0320*
H120.412900.378700.441200.0340*
H140.372500.084600.702400.0330*
H1W0.085700.031200.211000.5000*
H2W0.086400.092800.113600.5000*
H3W0.278400.065300.017300.5000*
H4W0.313800.013900.062800.5000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0299 (11)0.0296 (11)0.0237 (10)0.0107 (8)0.0048 (8)0.0057 (8)
N20.0387 (11)0.0276 (11)0.0201 (10)0.0132 (9)0.0051 (8)0.0048 (8)
N30.0335 (11)0.0288 (11)0.0224 (10)0.0102 (9)0.0049 (8)0.0023 (8)
C20.0258 (12)0.0260 (12)0.0247 (12)0.0069 (9)0.0044 (9)0.0057 (9)
C40.0340 (13)0.0349 (13)0.0242 (12)0.0086 (11)0.0057 (10)0.0019 (10)
C50.0377 (14)0.0418 (15)0.0210 (12)0.0098 (12)0.0052 (10)0.0002 (11)
C60.0310 (13)0.0429 (15)0.0223 (12)0.0089 (11)0.0044 (10)0.0079 (11)
C70.0584 (18)0.0442 (16)0.0293 (14)0.0246 (14)0.0089 (13)0.0008 (12)
C80.0509 (17)0.0532 (17)0.0275 (13)0.0204 (14)0.0061 (12)0.0137 (12)
O10.0443 (10)0.0293 (9)0.0276 (9)0.0117 (8)0.0058 (8)0.0034 (7)
O20.0418 (10)0.0282 (9)0.0306 (9)0.0130 (8)0.0058 (7)0.0081 (7)
O30.0682 (14)0.0540 (13)0.0280 (10)0.0282 (11)0.0047 (9)0.0079 (9)
O40.0543 (12)0.0393 (11)0.0371 (10)0.0195 (9)0.0120 (9)0.0005 (8)
O50.0540 (12)0.0408 (11)0.0513 (12)0.0265 (10)0.0066 (9)0.0150 (9)
O60.0819 (16)0.0477 (12)0.0293 (11)0.0239 (11)0.0054 (10)0.0069 (9)
N40.0348 (12)0.0362 (12)0.0286 (11)0.0105 (10)0.0052 (9)0.0038 (9)
N50.0394 (12)0.0330 (12)0.0334 (12)0.0108 (10)0.0018 (9)0.0098 (9)
C90.0220 (11)0.0244 (12)0.0295 (12)0.0042 (9)0.0043 (9)0.0045 (10)
C100.0237 (12)0.0293 (13)0.0274 (12)0.0055 (10)0.0019 (9)0.0093 (10)
C110.0253 (12)0.0314 (13)0.0245 (12)0.0063 (10)0.0050 (9)0.0034 (10)
C120.0261 (12)0.0261 (12)0.0333 (13)0.0078 (10)0.0060 (10)0.0049 (10)
C130.0245 (12)0.0291 (12)0.0317 (13)0.0068 (10)0.0020 (10)0.0110 (10)
C140.0257 (12)0.0301 (13)0.0260 (12)0.0039 (10)0.0047 (9)0.0048 (10)
C150.0259 (12)0.0271 (12)0.0318 (13)0.0065 (10)0.0072 (10)0.0057 (10)
O1W0.516 (15)0.093 (4)0.240 (8)0.075 (6)0.084 (9)0.065 (4)
O2W1.00 (3)0.072 (3)0.178 (6)0.018 (11)0.117 (16)0.013 (4)
Geometric parameters (Å, º) top
O1—C151.272 (3)C4—C71.487 (4)
O2—C151.241 (3)C5—C61.366 (3)
O3—N41.226 (3)C6—C81.490 (4)
O4—N41.224 (3)C5—H50.9499
O5—N51.218 (3)C7—H7C0.9802
O6—N51.224 (3)C7—H7A0.9801
O1W—H1W0.8562C7—H7B0.9797
O1W—H2W0.8633C8—H8B0.9799
O2W—H4W0.9051C8—H8C0.9797
O2W—H3W0.8801C8—H8A0.9803
N1—C21.353 (3)C9—C141.389 (3)
N1—C61.360 (3)C9—C151.514 (3)
N2—C21.326 (3)C9—C101.389 (3)
N3—C21.349 (3)C10—C111.386 (3)
N3—C41.336 (3)C11—C121.379 (3)
N1—H10.8796C12—C131.386 (3)
N2—H2B0.8804C13—C141.389 (3)
N2—H2A0.8797C10—H100.9509
N4—C111.469 (3)C12—H120.9492
N5—C131.468 (3)C14—H140.9502
C4—C51.400 (3)
O1···N12.605 (3)C9···C10i3.461 (3)
O1···C83.349 (3)C9···O2iii3.224 (3)
O1···C11i3.211 (3)C9···C9i3.378 (3)
O1W···O2W2.30 (2)C10···C14i3.588 (3)
O1W···O1Wii2.817 (12)C10···C9i3.461 (3)
O1W···O2Wii2.10 (2)C10···C15i3.506 (3)
O2···N22.787 (3)C11···C2iii3.266 (3)
O2···C15iii3.151 (3)C11···O1i3.211 (3)
O2···C9iii3.224 (3)C11···C15i3.355 (3)
O2···C12i3.339 (3)C12···O2i3.339 (3)
O2···C13i3.275 (3)C12···C15i3.457 (3)
O2W···O1Wii2.10 (2)C12···C2iii3.518 (3)
O2W···O1W2.30 (2)C13···O2i3.275 (3)
O3···C6iii3.218 (4)C14···C10i3.588 (3)
O4···O5iv3.070 (3)C15···N13.395 (3)
O4···C4iii3.271 (3)C15···C10i3.506 (3)
O4···C6i3.340 (4)C15···C11i3.355 (3)
O4···N1i3.177 (3)C15···C12i3.457 (3)
O5···C2v3.264 (3)C15···C15iii3.305 (3)
O5···O4iv3.070 (3)C15···O2iii3.151 (3)
O6···C8vi3.290 (3)C4···H2Ax3.0334
O6···C7v3.340 (4)C7···H2Wx2.8424
O6···C4v3.194 (3)C7···H2Ax3.0813
O1···H11.7288C15···H12.5614
O1···H142.5138C15···H2B2.7328
O1W···H3Wii2.7574H1···H8C2.4826
O1W···H3W2.5016H1···O11.7288
O1W···H2Wii2.7104H1···O22.8247
O1W···H102.8265H1···C152.5614
O1W···H4Wii2.4802H1···H2B2.2763
O2···H12.8247H1W···H102.1720
O2···H2B1.9198H1W···O2W2.9005
O2···H102.4637H1W···O22.7096
O2···H1W2.7096H1W···O2Wii2.7495
O2W···H8Avii2.8539H2A···C4x3.0334
O2W···H1W2.9005H2A···C7x3.0813
O2W···H2Wii2.2504H2A···N3x2.1682
O2W···H2W2.1890H2B···O21.9198
O2W···H7Bviii2.9025H2B···H12.2763
O2W···H1Wii2.7495H2B···C152.7328
O3···H3W2.7683H2W···O1Wii2.7104
O3···H5viii2.8895H2W···C7x2.8424
O3···H7Bviii2.6367H2W···O2W2.1890
O3···H102.4242H2W···O2Wii2.2504
O4···H8Ci2.7564H3W···H7Bviii2.4431
O4···H5viii2.6416H3W···O1W2.5016
O4···H122.4213H3W···O1Wii2.7574
O5···H12iv2.6470H3W···O32.7683
O5···H122.4207H4W···O1Wii2.4802
O5···H7Cix2.6965H5···H8B2.4411
O6···H142.4304H5···H7B2.4096
O6···H8Bvi2.7417H5···O4xii2.6416
N1···O4i3.177 (3)H5···O3xii2.8895
N1···O12.605 (3)H7B···O2Wxii2.9025
N1···C153.395 (3)H7B···O3xii2.6367
N2···N3x3.041 (3)H7B···H52.4096
N2···O22.787 (3)H7B···H3Wxii2.4431
N3···N2x3.041 (3)H7C···O5xiii2.6965
N3···N5xi3.189 (3)H8A···O2Wxiv2.8539
N5···C4v3.417 (3)H8B···O6vi2.7417
N5···N3v3.189 (3)H8B···H52.4411
N3···H2Ax2.1682H8C···H12.4826
C2···C12iii3.518 (3)H8C···O4i2.7564
C2···C11iii3.266 (3)H10···O22.4637
C2···O5xi3.264 (3)H10···O32.4242
C4···N5xi3.417 (3)H10···O1W2.8265
C4···O6xi3.194 (3)H10···H1W2.1720
C4···O4iii3.271 (3)H12···O5iv2.6470
C6···O3iii3.218 (4)H12···O52.4207
C6···O4i3.340 (4)H12···O42.4213
C7···O6xi3.340 (4)H14···O62.4304
C8···O6vi3.290 (3)H14···O12.5138
C8···O13.349 (3)
H1W—O1W—H2W105.95H7B—C7—H7C109.53
H3W—O2W—H4W100.59C4—C7—H7B109.45
C2—N1—C6120.5 (2)C4—C7—H7A109.44
C2—N3—C4117.6 (2)H8B—C8—H8C109.45
C6—N1—H1119.74C6—C8—H8B109.50
C2—N1—H1119.71C6—C8—H8A109.44
H2A—N2—H2B119.98H8A—C8—H8C109.41
C2—N2—H2B119.99H8A—C8—H8B109.50
C2—N2—H2A120.02C6—C8—H8C109.53
O3—N4—C11118.3 (2)C10—C9—C15118.94 (19)
O4—N4—C11118.4 (2)C14—C9—C15121.27 (19)
O3—N4—O4123.3 (2)C10—C9—C14119.7 (2)
O6—N5—C13117.7 (2)C9—C10—C11118.9 (2)
O5—N5—C13118.5 (2)N4—C11—C12117.9 (2)
O5—N5—O6123.8 (2)N4—C11—C10118.59 (19)
N1—C2—N3122.4 (2)C10—C11—C12123.5 (2)
N1—C2—N2118.5 (2)C11—C12—C13115.8 (2)
N2—C2—N3119.0 (2)N5—C13—C14119.25 (19)
C5—C4—C7121.4 (2)C12—C13—C14123.1 (2)
N3—C4—C7116.7 (2)N5—C13—C12117.6 (2)
N3—C4—C5121.8 (2)C9—C14—C13118.9 (2)
C4—C5—C6119.1 (2)O1—C15—C9116.30 (19)
N1—C6—C5118.5 (2)O1—C15—O2126.1 (2)
C5—C6—C8124.3 (2)O2—C15—C9117.57 (19)
N1—C6—C8117.2 (2)C11—C10—H10120.58
C6—C5—H5120.51C9—C10—H10120.55
C4—C5—H5120.44C11—C12—H12122.06
H7A—C7—H7C109.42C13—C12—H12122.12
H7A—C7—H7B109.53C13—C14—H14120.45
C4—C7—H7C109.45C9—C14—H14120.62
C6—N1—C2—N2178.0 (2)C4—C5—C6—C8178.4 (3)
C6—N1—C2—N32.6 (4)C4—C5—C6—N10.6 (4)
C2—N1—C6—C51.5 (4)C14—C9—C10—C111.2 (3)
C2—N1—C6—C8179.4 (2)C15—C9—C10—C11175.9 (2)
C4—N3—C2—N11.3 (4)C10—C9—C14—C130.9 (3)
C4—N3—C2—N2179.3 (2)C15—C9—C14—C13176.1 (2)
C2—N3—C4—C50.9 (4)C10—C9—C15—O1176.4 (2)
C2—N3—C4—C7177.8 (2)C10—C9—C15—O21.6 (3)
O4—N4—C11—C120.9 (3)C14—C9—C15—O10.7 (3)
O3—N4—C11—C102.4 (3)C14—C9—C15—O2178.7 (2)
O4—N4—C11—C10177.4 (2)C9—C10—C11—N4177.5 (2)
O3—N4—C11—C12179.4 (2)C9—C10—C11—C120.7 (3)
O5—N5—C13—C14175.2 (2)N4—C11—C12—C13178.3 (2)
O5—N5—C13—C123.0 (3)C10—C11—C12—C130.1 (3)
O6—N5—C13—C12176.9 (2)C11—C12—C13—N5178.6 (2)
O6—N5—C13—C144.9 (3)C11—C12—C13—C140.4 (3)
N3—C4—C5—C61.9 (4)N5—C13—C14—C9178.0 (2)
C7—C4—C5—C6176.7 (3)C12—C13—C14—C90.1 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z; (iii) x, y, z+1; (iv) x+1, y1, z+1; (v) x, y1, z; (vi) x+1, y, z+2; (vii) x, y, z1; (viii) x, y1, z1; (ix) x+1, y1, z; (x) x, y+1, z+1; (xi) x, y+1, z; (xii) x, y+1, z+1; (xiii) x1, y+1, z; (xiv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.732.605 (3)174
N2—H2A···N3x0.882.173.041 (3)172
N2—H2B···O20.881.922.787 (3)168
Symmetry code: (x) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H10N3+·C7H3N2O6·2H2O
Mr371.32
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.1465 (3), 11.0215 (5), 11.1531 (4)
α, β, γ (°)99.473 (3), 101.322 (3), 100.826 (2)
V3)827.33 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.44 × 0.36 × 0.23
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15739, 3235, 2283
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.171, 1.04
No. of reflections3235
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.55

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.732.605 (3)174
N2—H2A···N3i0.882.173.041 (3)172
N2—H2B···O20.881.922.787 (3)168
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

AS thanks Bharathidasan University for the award of a Research Student Fellowship (Reference CCCD/PhD-2/15504/2004). DEL thanks the EPSRC National Crystallography Service (Southampton, England) for the X-ray data collection.

References

First citationAllen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.  Web of Science CrossRef Google Scholar
First citationBaker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBaskar Raj, S., Muthiah, P. T., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 48–53.  Web of Science CSD CrossRef Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationHunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536.  CAS PubMed Web of Science Google Scholar
First citationLynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPanneerselvam, P., Muthiah, P. T. & Francis, S. (2004). Acta Cryst. E60, o747–o749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrince, P., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 895–898.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210.  Web of Science CSD CrossRef CAS Google Scholar
First citationSubashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2006). Acta Cryst. E62, o3847–o3849.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds