organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Dihydr­­oxy-N′-(4-meth­oxy­benzyl­­idene)benzohydrazide

aSchool of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China, and bLiaoning University of Traditional Chinese Medicine, Shenyang 110032, People's Republic of China
*Correspondence e-mail: diaoyiwen@126.com

(Received 21 December 2007; accepted 10 January 2008; online 18 January 2008)

The mol­ecule of the title compound, C15H14N2O4, displays a trans configuration with respect to the hydrazide C=N bond. The dihedral angle between the two benzene rings is 15.0 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular O—H⋯N and O—H⋯O hydrogen bonds, forming layers parallel to the ab plane; an intramolecular N—H⋯O hydrogen bond is also present.

Related literature

For the biological properties of Schiff base compounds, see: Brückner et al. (2000[Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100-6106.]); Harrop et al. (2003[Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For related structures, see: Diao (2007[Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.]); Diao et al. (2007[Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.]); Li et al. (2007[Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.]); Huang et al. (2007[Huang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O4

  • Mr = 286.28

  • Orthorhombic, P n a 21

  • a = 12.494 (3) Å

  • b = 5.196 (1) Å

  • c = 20.825 (4) Å

  • V = 1351.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.980

  • 7661 measured reflections

  • 1519 independent reflections

  • 1382 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.06

  • 1519 reflections

  • 196 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.901 (10) 1.94 (2) 2.646 (2) 134 (3)
O4—H4⋯O2i 0.82 1.85 2.671 (2) 174
O3—H3⋯N1ii 0.82 2.48 3.234 (2) 154
O3—H3⋯O2ii 0.82 2.14 2.788 (2) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{7\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have received much attention in recent years. Some Schiff base metal complexes have been found to have pharmacological and antitumor properties (Brückner et al., 2000; Harrop et al., 2003; Ren et al., 2002). As part of our research programme on the synthesis and characterization of Schiff base compounds (Diao et al., 2007; Diao, 2007; Li et al., 2007; Huang et al., 2007), we report here the structure of the title ligand.

The molecule of the title compound displays a trans configuration with respect to the C=N bond (Fig. 1). The dihedral angle between the two benzene rings is 15.0 (2)°. The molecular conformation is stabilized by an intramolecular N—H···O hydrogen interaction (Table 1). In the crystal, molecules are linked through intermolecular O—H···N and O—H···O hydrogen bonds (Table 1), forming layers parallel to the ab plane (Fig. 2).

Related literature top

For the biological properties of Schiff base compounds, see: Brückner et al. (2000); Harrop et al. (2003); Ren et al. (2002). For related structures, see: Diao (2007); Diao et al. (2007); Li et al. (2007); Huang et al. (2007).

Experimental top

4-Methoxybenzaldehyde (0.1 mmol, 13.6 mg) and 2,4-dihydroxybenzoic acid hydrazide (0.1 mmol, 16.8 mg) were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear colourless solution. Crystals of the title compound were formed by gradual evaporation of the solvent over a period of three days at room temperature.

Refinement top

Atom H2A was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with O—H = 0.82 Å, C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxy H atoms. In the absence of significant anomalous scattering effects, Friedel opposites were merged in the final refinement.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.
2,4-Dihydroxy-N'-(4-methoxybenzylidene)benzohydrazide top
Crystal data top
C15H14N2O4F(000) = 600
Mr = 286.28Dx = 1.407 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3064 reflections
a = 12.494 (3) Åθ = 2.7–27.2°
b = 5.196 (1) ŵ = 0.10 mm1
c = 20.825 (4) ÅT = 298 K
V = 1351.9 (5) Å3Block, colourless
Z = 40.22 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1519 independent reflections
Radiation source: fine-focus sealed tube1382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1515
Tmin = 0.978, Tmax = 0.980k = 65
7661 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.123P]
where P = (Fo2 + 2Fc2)/3
1519 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.13 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H14N2O4V = 1351.9 (5) Å3
Mr = 286.28Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.494 (3) ŵ = 0.10 mm1
b = 5.196 (1) ÅT = 298 K
c = 20.825 (4) Å0.22 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1519 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1382 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.980Rint = 0.025
7661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.13 e Å3
1519 reflectionsΔρmin = 0.15 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07270 (13)0.0953 (3)0.95352 (10)0.0550 (5)
O20.05579 (11)1.2801 (3)0.67387 (9)0.0461 (4)
O30.37031 (11)1.3774 (3)0.73708 (8)0.0411 (4)
H30.43591.37770.73570.062*
O40.41377 (12)2.0606 (3)0.58664 (8)0.0438 (4)
H40.46072.10380.61200.066*
N10.11530 (13)0.9630 (3)0.76750 (9)0.0358 (4)
N20.18526 (13)1.1298 (3)0.73763 (9)0.0354 (4)
C10.09837 (17)0.6230 (4)0.84516 (11)0.0361 (4)
C20.01216 (19)0.5952 (5)0.83938 (12)0.0461 (6)
H20.04990.69740.81050.055*
C30.06553 (18)0.4174 (5)0.87614 (13)0.0490 (6)
H3A0.13920.39940.87170.059*
C40.01114 (18)0.2637 (4)0.91993 (11)0.0394 (5)
C50.09840 (18)0.2886 (4)0.92608 (12)0.0421 (5)
H50.13600.18550.95480.051*
C60.15162 (17)0.4694 (4)0.88882 (12)0.0424 (5)
H60.22530.48760.89340.051*
C70.15821 (17)0.8097 (4)0.80745 (11)0.0377 (5)
H70.23200.81730.81290.045*
C80.15001 (14)1.2894 (4)0.69171 (10)0.0317 (4)
C90.22691 (14)1.4776 (4)0.66456 (10)0.0304 (4)
C100.33078 (14)1.5226 (4)0.68779 (10)0.0306 (4)
C110.39332 (15)1.7176 (4)0.66248 (10)0.0324 (4)
H110.46101.74890.67930.039*
C120.35562 (16)1.8657 (4)0.61231 (10)0.0335 (4)
C130.25493 (16)1.8182 (4)0.58614 (11)0.0394 (5)
H130.23031.91290.55120.047*
C140.19282 (16)1.6282 (4)0.61303 (10)0.0373 (5)
H140.12501.59870.59610.045*
C150.0203 (2)0.0748 (5)0.99722 (14)0.0540 (6)
H15A0.01350.02351.03060.081*
H15B0.03280.17290.97460.081*
H15C0.07200.18931.01590.081*
H2A0.2547 (11)1.133 (6)0.7492 (17)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0502 (9)0.0531 (9)0.0618 (11)0.0010 (8)0.0024 (9)0.0263 (8)
O20.0247 (7)0.0480 (8)0.0657 (11)0.0043 (6)0.0063 (7)0.0119 (8)
O30.0221 (6)0.0521 (9)0.0490 (9)0.0013 (6)0.0039 (6)0.0161 (8)
O40.0398 (8)0.0458 (9)0.0458 (8)0.0114 (7)0.0038 (7)0.0110 (7)
N10.0311 (8)0.0368 (9)0.0395 (9)0.0081 (7)0.0034 (7)0.0004 (8)
N20.0258 (8)0.0401 (9)0.0404 (9)0.0046 (7)0.0007 (8)0.0049 (7)
C10.0364 (10)0.0354 (10)0.0364 (10)0.0019 (8)0.0005 (8)0.0012 (8)
C20.0383 (11)0.0517 (13)0.0481 (13)0.0061 (10)0.0100 (10)0.0175 (11)
C30.0346 (10)0.0557 (13)0.0567 (14)0.0070 (10)0.0084 (11)0.0186 (11)
C40.0422 (12)0.0360 (10)0.0399 (11)0.0009 (9)0.0012 (9)0.0062 (9)
C50.0439 (12)0.0400 (11)0.0425 (11)0.0066 (9)0.0042 (9)0.0068 (10)
C60.0347 (10)0.0451 (12)0.0476 (13)0.0029 (9)0.0033 (10)0.0006 (10)
C70.0311 (10)0.0418 (11)0.0404 (11)0.0033 (9)0.0001 (9)0.0023 (9)
C80.0239 (9)0.0318 (9)0.0394 (10)0.0013 (7)0.0020 (8)0.0037 (8)
C90.0233 (8)0.0324 (9)0.0356 (10)0.0009 (7)0.0000 (8)0.0020 (8)
C100.0240 (8)0.0333 (9)0.0346 (10)0.0032 (7)0.0006 (8)0.0007 (8)
C110.0227 (8)0.0371 (10)0.0376 (10)0.0001 (7)0.0016 (8)0.0006 (8)
C120.0296 (9)0.0346 (10)0.0363 (10)0.0020 (8)0.0024 (8)0.0004 (8)
C130.0333 (10)0.0460 (11)0.0389 (11)0.0003 (9)0.0065 (9)0.0089 (10)
C140.0262 (9)0.0437 (11)0.0419 (11)0.0031 (8)0.0081 (8)0.0019 (9)
C150.0663 (16)0.0453 (12)0.0504 (14)0.0093 (13)0.0052 (13)0.0159 (11)
Geometric parameters (Å, º) top
O1—C41.359 (3)C4—C51.381 (3)
O1—C151.427 (3)C5—C61.388 (3)
O2—C81.235 (2)C5—H50.9300
O3—C101.366 (2)C6—H60.9300
O3—H30.8200C7—H70.9300
O4—C121.356 (2)C8—C91.483 (3)
O4—H40.8200C9—C141.394 (3)
N1—C71.270 (3)C9—C101.405 (3)
N1—N21.379 (2)C10—C111.384 (3)
N2—C81.340 (3)C11—C121.380 (3)
N2—H2A0.901 (10)C11—H110.9300
C1—C61.381 (3)C12—C131.393 (3)
C1—C21.394 (3)C13—C141.375 (3)
C1—C71.455 (3)C13—H130.9300
C2—C31.373 (3)C14—H140.9300
C2—H20.9300C15—H15A0.9600
C3—C41.390 (3)C15—H15B0.9600
C3—H3A0.9300C15—H15C0.9600
C4—O1—C15117.86 (19)O2—C8—N2120.23 (18)
C10—O3—H3109.5O2—C8—C9121.91 (18)
C12—O4—H4109.5N2—C8—C9117.85 (16)
C7—N1—N2114.96 (16)C14—C9—C10117.00 (17)
C8—N2—N1120.15 (16)C14—C9—C8117.74 (17)
C8—N2—H2A120 (2)C10—C9—C8125.23 (17)
N1—N2—H2A120 (2)O3—C10—C11119.10 (16)
C6—C1—C2118.3 (2)O3—C10—C9120.06 (16)
C6—C1—C7119.57 (19)C11—C10—C9120.82 (17)
C2—C1—C7122.1 (2)C12—C11—C10120.26 (17)
C3—C2—C1120.2 (2)C12—C11—H11119.9
C3—C2—H2119.9C10—C11—H11119.9
C1—C2—H2119.9O4—C12—C11122.14 (18)
C2—C3—C4121.0 (2)O4—C12—C13117.50 (18)
C2—C3—H3A119.5C11—C12—C13120.36 (18)
C4—C3—H3A119.5C14—C13—C12118.52 (19)
O1—C4—C5125.0 (2)C14—C13—H13120.7
O1—C4—C3115.5 (2)C12—C13—H13120.7
C5—C4—C3119.5 (2)C13—C14—C9122.94 (18)
C4—C5—C6119.1 (2)C13—C14—H14118.5
C4—C5—H5120.4C9—C14—H14118.5
C6—C5—H5120.4O1—C15—H15A109.5
C1—C6—C5121.9 (2)O1—C15—H15B109.5
C1—C6—H6119.0H15A—C15—H15B109.5
C5—C6—H6119.0O1—C15—H15C109.5
N1—C7—C1123.69 (19)H15A—C15—H15C109.5
N1—C7—H7118.2H15B—C15—H15C109.5
C1—C7—H7118.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.90 (1)1.94 (2)2.646 (2)134 (3)
O4—H4···O2i0.821.852.671 (2)174
O3—H3···N1ii0.822.483.234 (2)154
O3—H3···O2ii0.822.142.788 (2)136
Symmetry codes: (i) x+1/2, y+7/2, z; (ii) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O4
Mr286.28
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)12.494 (3), 5.196 (1), 20.825 (4)
V3)1351.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.978, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
7661, 1519, 1382
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.06
No. of reflections1519
No. of parameters196
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.901 (10)1.94 (2)2.646 (2)134 (3)
O4—H4···O2i0.821.852.671 (2)174.1
O3—H3···N1ii0.822.483.234 (2)153.5
O3—H3···O2ii0.822.142.788 (2)136.1
Symmetry codes: (i) x+1/2, y+7/2, z; (ii) x+1/2, y+5/2, z.
 

Acknowledgements

This project was supported by a research grant from Dalian Medical University.

References

First citationBrückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100–6106.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART (Version 5.625), SAINT (Version 6.01) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P. (2007). Acta Cryst. E63, m1453–m1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.  CSD CrossRef IUCr Journals Google Scholar
First citationHarrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411.  Web of Science CSD CrossRef Google Scholar
First citationHuang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds