metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m364-m365

{2-[(S)-({2-[(S)-1-Benzyl­pyrrolidine-2-carboxamido]phen­yl}(phen­yl)methyl­ene)amino]-4-hy­droxy­butanoato-κ4N,N′,N′′,O}nickel(II)

aDepartment of Nuclear Medicine and Molecular Imaging, University Medical Center, PO Box 30.001, 9700 RB Groningen, The Netherlands, bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, Pardubice University, 53210 Pardubice, Czech Republic, and cInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: jozef.kozisek@stuba.sk

(Received 29 November 2007; accepted 10 January 2008; online 16 January 2008)

The central Ni atom of the title compound, [Ni(C29H29N3O4)], is coordinated by three N atoms [Ni—N = 1.955 (2), 1.844 (2) and 1.872 (2) Å] and by one O atom [Ni—O = 1.862 (2) Å] in a pseudo-square-planar geometry. The conformation of the hydroxy­butanoate side chain is controlled by a strong intra­molecular hydrogen bond (H⋯O = 1.84 Å).

Related literature

For related literature, see: Belokon (1992[Belokon, Y. N. (1992). Pure Appl. Chem. 64, 1917-1924.]); Belokon et al. (1988[Belokon, Y. N., Bulychev, A. G., Pavlov, V. A., Fedorova, E. B., Tsyryapkin, V. A., Bakhmutov, V. I. & Belikov, V. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 2075-2083.]); Carducci et al. (2006[Carducci, M. D., Gu, X., Cole, J. R. & Hruby, V. J. (2006). Acta Cryst. E62, m1219-m1220.]); Chung et al. (1993[Chung, H.-H., Benson, D. R. & Schultz, P. G. (1993). Science, 259, 806-809.]); Gu et al. (2004[Gu, X. Y., Ndungu, J. A., Qiu, W., Ying, J. F., Carducci, M. D., Wooden, H. & Hruby, V. J. (2004). Tetrahedron, 60, 8233-8243.]); Jirman & Popkov (1995[Jirman, J. & Popkov, A. (1995). Collect. Czech. Chem. Commun. 60, 990-998.]); Jirman et al. (1998[Jirman, J., Nádvorník, M., Sopkova, J. & Popkov, A. (1998). Magn. Reson. Chem. 36, 351-355.]); Kožíšek et al. (2004[Kožíšek, J., Fronc, M., Skubák, P., Popkov, A., Breza, M., Fuess, H. & Paulmann, C. (2004). Acta Cryst. A60, 510-516.]); Langer et al. (2007[Langer, V., Popkov, A., Nádvorník, M. & Lyčka, A. (2007). Polyhedron, 26, 911-917.]); Nádvorník & Popkov (2002[Nádvorník, M. & Popkov, A. (2002). Green Chem. 4, 71-72.]); Popkov et al. (2003[Popkov, A., Langer, V., Manorik, P. A. & Weidlich, T. (2003). Transition Met. Chem. 28, 475-481.], 2005[Popkov, A., Císařová, I., Sopková, J., Jirman, J., Lyčka, A. & Kochetkov, K. A. (2005). Collect. Czech. Chem. Commun. 70, 1397-1410 .], and references therein).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C29H29N3O4)]

  • Mr = 542.26

  • Orthorhombic, P 21 21 21

  • a = 9.743 (1) Å

  • b = 10.222 (1) Å

  • c = 26.016 (1) Å

  • V = 2591.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 100 (2) K

  • 0.25 × 0.19 × 0.16 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.840, Tmax = 0.897

  • 62972 measured reflections

  • 5273 independent reflections

  • 4968 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.08

  • 5273 reflections

  • 337 parameters

  • 112 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2260 Friedel pairs

  • Flack parameter: 0.04 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4W⋯O3 0.950 (7) 1.840 (8) 2.726 (3) 154.0 (9)
C7—H7A⋯O1 0.95 2.26 2.837 (3) 118
C1—H1B⋯O2 0.99 2.31 2.879 (3) 115

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

NiII complexes of Schiff bases of (S)—N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and α-amino acids are frequently used as chiral α-amino acids synthons in preparative asymmetric syntheses of non-proteinogenic α-amino acids (Belokon et al., 1992; Popkov et al., 2005). One of the most unique applications is syntheses of enantiomerically pure α-imino acids which are of great importance in design of conformationally restricted peptidomimetics (Belokon et al., 1988; Chung et al., 1993). X-ray structures of intermediate complexes bearing a hydroxy group in ω-position of the amino acid fragment side chain have not been published. During course of search for chiral nickel(II) complexes suitable for charge-density studies (Kožíšek et al., 2004), we investigated the first representative of this class, viz. the NiII complex of the Schiff base of (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and (S)-2-amino-4-hydroxybutanoic acid.

The asymmetric unit of the title compound (Fig. 1) contains one molecule. The Ni atom is pseudo-square-planar coordinated by three N atoms [1.955 (2), 1.844 (2) and 1.872 (2) Å] and by one O atom [1.862 (2) Å].

Crystal structure studied could be compared to those ones which differ by substituents in position C(19). In the case if there are no substituents (NiII complex of the Schiff base of (S)—N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and glycine), the complex has in average 0.022 Å shorter Ni—N and Ni—O distances due to lower steric hindrance [Popkov et al., 2003].

A very similar complex to the studied one, bearing (S)-2-aminohept-6-enoic acid residue which does not form the hydrogen bond with O3 as (S)-2-amino-4-hydroxybutanoic acid does, also have shorter Ni—N distances (Ni—N1 1.941 Å, Ni—N2 1.845 Å, Ni—N3 1.862 Å, Ni—O4 1.861 Å and Ni—N1 1.955 Å, Ni—N2 1.844 Å, Ni—N3 1.872 Å, Ni—O2 1.862 Å, respectively), but the difference is not statistically significant [Carducci et al., 2006]. The difference can be attributed to not so strong distortion of the amino acid residue ring and distortion of the whole complex due to lack of the intramolecular hydrogen bond.

The most sterically hindered complexes derived from α-quaternary α-amino acids demonstrate similar average Ni—N and Ni—O distances as the studied compound (the NiII complex of the Schiff base of (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and (S)-2-amino-2-methylhex-5-enoic acid (Gu et al., 2004) and the NiII complex of the Schiff base of (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and 2-amino-2-methyl-propanoic acid (Langer et al., 2007).

Subsequent addition of the substituents has similar effect to distances of the benzyl groups from the nickel atoms. In the non-substituted complex [Popkov et al., 2003] the distance Ni—C22 is the shortest - 2.928 Å; in the monosubstituted it is half-angstrom longer [Ni—C22 3.431 and 3.467 Å (due to disorder) Carducci, et al., 2006], and in both bis-substituted [Gu et al., 2004 and Langer et al., 2007] the distances are third-angstrom longer (3.268 and 3.337 Å, respectively). The distances of the benzyl groups from the nickel atoms should be similar in deuterochloroform solutions; in NMR spectra of the complexes a number of unique long-range spin-spin interactions and NOE interactions were observed for the NiII complex of the Schiff base of (S)—N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and glycine, but not for the NiII complex of the Schiff base of (S)—N-(2-benzoylphenyl)-1-benzyl-pyrrolidine-2-carboxamide and 2-amino-2-methylpropanoic acid [Jirman & Popkov, 1995, Jirman et al., 1998, Popkov et al., 2003, Langer et al., 2007].

Interesting feature of the crystal structure is a strong intramolecular hydrogen bond O4—H4AW···O3 (153.7 °) (Table 2, Fig.1), which controls the conformation of a hydroxybutanoic acid side-chain.

Related literature top

For related literature, see: Belokon (1992); Belokon et al. (1988); Carducci et al. (2006); Chung et al. (1993); Gu et al. (2004); Jirman & Popkov (1995); Jirman et al. (1998); Kožíšek et al. (2004); Langer et al. (2007); Nádvorník & Popkov (2002); Popkov et al. (2003, 2005 and works cited therein).

Experimental top

NiII complex of the Schiff base of (S)—N-(2-benzoylphenyl)-1- benzylpyrrolidine-2-carboxamide and (S)-2-amino-4-hydroxybutanoic acid (L-homoserine) was prepared using a standard procedure previously described for a similar complex derived from glycine (Nádvorník, Popkov 2002). Single crystals were grown from acetone solution; the compound was fully characterized by 1H-NMR, 13C-NMR and tandem MSn techniques.

Refinement top

(type here to add refinement details)

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of I, with the numbering scheme of the molecule. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen-bond is indicated by dashed line.
{2-[(S)-({2-[(S)-1-Benzylpyrrolidine-2- carboxamido]phenyl}(phenyl)methylene)amino]-4-hydroxybutanoato- κ4N,N',N'',O}nickel(II) top
Crystal data top
[Ni(C29H29N3O4)]F(000) = 1136
Mr = 542.26Dx = 1.390 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 35886 reflections
a = 9.743 (1) Åθ = 3.2–35.3°
b = 10.222 (1) ŵ = 0.79 mm1
c = 26.016 (1) ÅT = 100 K
V = 2591.0 (4) Å3Block, orange
Z = 40.25 × 0.19 × 0.16 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
5273 independent reflections
Radiation source: fine-focus sealed tube4968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 4.2°
Absorption correction: analytical
(Clark & Reid, 1995)
h = 1212
Tmin = 0.840, Tmax = 0.897k = 1212
62972 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0343P)2 + 1.651P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5273 reflectionsΔρmax = 0.81 e Å3
337 parametersΔρmin = 0.29 e Å3
112 restraintsAbsolute structure: (Flack, 1983), 2260 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (1)
Crystal data top
[Ni(C29H29N3O4)]V = 2591.0 (4) Å3
Mr = 542.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.743 (1) ŵ = 0.79 mm1
b = 10.222 (1) ÅT = 100 K
c = 26.016 (1) Å0.25 × 0.19 × 0.16 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
5273 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
4968 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.897Rint = 0.038
62972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073Δρmax = 0.81 e Å3
S = 1.08Δρmin = 0.29 e Å3
5273 reflectionsAbsolute structure: (Flack, 1983), 2260 Friedel pairs
337 parametersAbsolute structure parameter: 0.04 (1)
112 restraints
Special details top

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1251 (2)0.7826 (2)0.09762 (9)0.0266 (5)
H1B1.17970.83050.12360.032*
H1A1.18360.76500.06730.032*
C21.0675 (3)0.6558 (3)0.11981 (10)0.0298 (6)
H2B1.03230.66900.15510.036*
H2A1.13780.58590.12020.036*
C30.9499 (3)0.6230 (2)0.08195 (10)0.0292 (5)
H3B0.87000.58600.10050.035*
H3A0.98080.55930.05570.035*
C40.9116 (3)0.7574 (2)0.05630 (8)0.0212 (5)
H4A0.93350.75500.01880.025*
C50.7633 (2)0.7917 (2)0.06404 (8)0.0207 (5)
C60.6196 (2)0.9454 (2)0.11106 (8)0.0191 (4)
C70.5289 (2)0.9622 (3)0.06902 (9)0.0249 (5)
H7A0.54960.92280.03690.030*
C80.4110 (3)1.0349 (3)0.07429 (10)0.0307 (5)
H8A0.35171.04670.04570.037*
C90.3781 (3)1.0920 (3)0.12203 (10)0.0358 (6)
H9A0.29561.14080.12540.043*
C100.4646 (2)1.0779 (3)0.16439 (10)0.0298 (5)
H10A0.44051.11650.19640.036*
C110.5877 (2)1.0065 (2)0.15983 (8)0.0208 (5)
C120.6754 (2)1.0000 (2)0.20620 (9)0.0200 (5)
C130.6158 (3)1.0400 (2)0.25796 (8)0.0220 (5)
C140.5219 (3)0.9572 (3)0.28276 (10)0.0327 (6)
H14A0.49970.87460.26820.039*
C150.4606 (3)0.9970 (3)0.32928 (11)0.0388 (7)
H15A0.39800.94010.34610.047*
C160.4906 (3)1.1192 (3)0.35113 (10)0.0371 (6)
H16A0.44791.14560.38230.045*
C170.5839 (3)1.2014 (3)0.32650 (10)0.0318 (6)
H17A0.60531.28420.34100.038*
C180.6471 (2)1.1622 (3)0.28005 (10)0.0267 (5)
H18A0.71091.21860.26360.032*
C190.8890 (3)0.9518 (2)0.24976 (8)0.0210 (4)
H19A0.86421.02190.27490.025*
C201.0355 (3)0.9710 (2)0.23118 (9)0.0239 (5)
C211.0390 (2)0.9727 (2)0.04879 (10)0.0237 (5)
H21B1.09921.03180.06880.028*
H21A1.09360.93890.01960.028*
C220.9215 (2)1.0526 (2)0.02739 (9)0.0204 (5)
C230.8585 (3)1.1494 (2)0.05785 (10)0.0280 (5)
H23A0.88971.16590.09180.034*
C240.7494 (3)1.2206 (3)0.03723 (15)0.0481 (8)
H24A0.70421.28470.05750.058*
C250.7059 (3)1.1975 (3)0.01382 (18)0.0618 (11)
H25A0.63101.24570.02750.074*
C260.7713 (4)1.1055 (3)0.04396 (15)0.0617 (11)
H26A0.74331.09260.07860.074*
C270.8778 (4)1.0321 (3)0.02365 (10)0.0393 (7)
H27A0.92170.96770.04420.047*
C280.8688 (3)0.8146 (2)0.27477 (9)0.0287 (6)
H28B0.77050.80420.28360.034*
H28A0.89150.74700.24890.034*
C290.9549 (3)0.7881 (3)0.32357 (11)0.0346 (6)
H29B0.94540.86380.34700.041*
H29A0.91670.71060.34130.041*
N10.99995 (19)0.8581 (2)0.08284 (7)0.0204 (4)
N20.7433 (2)0.87954 (18)0.10419 (7)0.0184 (4)
N30.80154 (19)0.96293 (18)0.20289 (7)0.0181 (4)
Ni10.89673 (3)0.91512 (3)0.143270 (10)0.01780 (8)
O10.67597 (18)0.73706 (18)0.03689 (6)0.0271 (4)
O21.05357 (17)0.95424 (18)0.18116 (7)0.0261 (4)
O31.12652 (18)0.99616 (19)0.26255 (7)0.0324 (4)
O41.0957 (2)0.7663 (2)0.31439 (8)0.0480 (5)
H4W1.1334 (14)0.8443 (19)0.3004 (11)0.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0218 (12)0.0316 (13)0.0265 (11)0.0112 (10)0.0007 (9)0.0017 (10)
C20.0376 (15)0.0261 (13)0.0258 (12)0.0120 (11)0.0002 (10)0.0024 (10)
C30.0357 (13)0.0230 (13)0.0290 (12)0.0036 (10)0.0032 (10)0.0033 (10)
C40.0257 (12)0.0194 (11)0.0186 (10)0.0041 (10)0.0031 (9)0.0000 (8)
C50.0244 (11)0.0196 (11)0.0180 (10)0.0018 (9)0.0023 (9)0.0010 (9)
C60.0163 (10)0.0217 (11)0.0192 (10)0.0045 (9)0.0020 (8)0.0020 (8)
C70.0169 (11)0.0349 (13)0.0229 (11)0.0022 (10)0.0021 (9)0.0009 (10)
C80.0173 (11)0.0444 (15)0.0304 (12)0.0019 (11)0.0059 (10)0.0041 (11)
C90.0219 (12)0.0484 (16)0.0372 (13)0.0101 (13)0.0022 (10)0.0050 (13)
C100.0180 (11)0.0410 (15)0.0305 (12)0.0064 (12)0.0012 (9)0.0086 (12)
C110.0172 (11)0.0230 (11)0.0221 (10)0.0020 (9)0.0004 (9)0.0020 (8)
C120.0201 (11)0.0187 (11)0.0213 (11)0.0022 (9)0.0017 (9)0.0030 (9)
C130.0205 (11)0.0260 (11)0.0194 (10)0.0033 (10)0.0005 (9)0.0048 (8)
C140.0342 (14)0.0338 (14)0.0300 (13)0.0007 (11)0.0077 (11)0.0042 (11)
C150.0359 (15)0.0488 (18)0.0317 (14)0.0007 (13)0.0116 (12)0.0010 (13)
C160.0351 (14)0.0528 (17)0.0234 (12)0.0185 (12)0.0014 (11)0.0074 (12)
C170.0257 (13)0.0383 (14)0.0313 (13)0.0151 (11)0.0080 (10)0.0153 (11)
C180.0213 (12)0.0271 (13)0.0318 (13)0.0071 (10)0.0047 (10)0.0057 (10)
C190.0225 (11)0.0204 (11)0.0201 (10)0.0026 (10)0.0030 (9)0.0032 (8)
C200.0238 (12)0.0206 (12)0.0272 (12)0.0015 (10)0.0034 (10)0.0004 (9)
C210.0180 (11)0.0256 (12)0.0277 (12)0.0014 (10)0.0054 (10)0.0042 (10)
C220.0187 (11)0.0196 (11)0.0229 (10)0.0043 (8)0.0001 (8)0.0047 (8)
C230.0295 (14)0.0213 (12)0.0333 (13)0.0010 (10)0.0065 (10)0.0029 (10)
C240.0300 (14)0.0269 (15)0.088 (2)0.0076 (12)0.0157 (16)0.0203 (15)
C250.0363 (17)0.0403 (19)0.109 (3)0.0102 (14)0.0359 (19)0.040 (2)
C260.085 (3)0.0305 (18)0.069 (2)0.0197 (17)0.054 (2)0.0208 (15)
C270.065 (2)0.0250 (13)0.0283 (13)0.0059 (14)0.0126 (14)0.0033 (10)
C280.0347 (15)0.0225 (12)0.0289 (12)0.0039 (10)0.0014 (10)0.0015 (10)
C290.0317 (13)0.0392 (16)0.0328 (14)0.0095 (12)0.0071 (11)0.0141 (12)
N10.0174 (9)0.0215 (10)0.0221 (9)0.0029 (8)0.0009 (7)0.0032 (8)
N20.0185 (9)0.0221 (10)0.0148 (8)0.0003 (7)0.0016 (7)0.0009 (7)
N30.0172 (9)0.0166 (9)0.0205 (9)0.0007 (7)0.0017 (7)0.0011 (7)
Ni10.01522 (12)0.02042 (13)0.01776 (12)0.00077 (11)0.00044 (11)0.00103 (11)
O10.0277 (9)0.0332 (10)0.0204 (8)0.0057 (8)0.0002 (7)0.0052 (7)
O20.0178 (8)0.0332 (10)0.0272 (8)0.0001 (7)0.0009 (7)0.0035 (7)
O30.0254 (10)0.0390 (11)0.0328 (9)0.0015 (8)0.0097 (8)0.0034 (8)
O40.0386 (11)0.0538 (13)0.0516 (12)0.0148 (11)0.0041 (11)0.0190 (10)
Geometric parameters (Å, º) top
C1—N11.494 (3)C16—H16A0.9500
C1—C21.526 (4)C17—C181.414 (3)
C1—H1B0.9900C17—H17A0.9500
C1—H1A0.9900C18—H18A0.9500
C2—C31.548 (4)C19—N31.492 (3)
C2—H2B0.9900C19—C201.519 (3)
C2—H2A0.9900C19—C281.559 (3)
C3—C41.573 (3)C19—H19A1.0000
C3—H3B0.9900C20—O31.232 (3)
C3—H3A0.9900C20—O21.324 (3)
C4—C51.501 (3)C21—C221.512 (3)
C4—N11.509 (3)C21—N11.517 (3)
C4—H4A1.0000C21—H21B0.9900
C5—O11.239 (3)C21—H21A0.9900
C5—N21.391 (3)C22—C231.408 (3)
C6—N21.392 (3)C22—C271.410 (3)
C6—C71.417 (3)C23—C241.396 (4)
C6—C111.448 (3)C23—H23A0.9500
C7—C81.374 (4)C24—C251.414 (6)
C7—H7A0.9500C24—H24A0.9500
C8—C91.409 (4)C25—C261.380 (6)
C8—H8A0.9500C25—H25A0.9500
C9—C101.395 (4)C26—C271.386 (5)
C9—H9A0.9500C26—H26A0.9500
C10—C111.409 (3)C27—H27A0.9500
C10—H10A0.9500C28—C291.546 (4)
C11—C121.480 (3)C28—H28B0.9900
C12—N31.289 (3)C28—H28A0.9900
C12—C131.522 (3)C29—O41.409 (4)
C13—C141.403 (4)C29—H29B0.9900
C13—C181.408 (3)C29—H29A0.9900
C14—C151.409 (4)N1—Ni11.9552 (19)
C14—H14A0.9500N2—Ni11.8439 (19)
C15—C161.404 (4)N3—Ni11.8721 (19)
C15—H15A0.9500Ni1—O21.8619 (17)
C16—C171.393 (4)O4—H4W0.950 (7)
N1—C1—C2103.65 (19)N3—C19—C20105.45 (18)
N1—C1—H1B111.0N3—C19—C28109.73 (19)
C2—C1—H1B111.0C20—C19—C28111.6 (2)
N1—C1—H1A111.0N3—C19—H19A110.0
C2—C1—H1A111.0C20—C19—H19A110.0
H1B—C1—H1A109.0C28—C19—H19A110.0
C1—C2—C3102.46 (19)O3—C20—O2125.6 (2)
C1—C2—H2B111.3O3—C20—C19119.5 (2)
C3—C2—H2B111.3O2—C20—C19114.9 (2)
C1—C2—H2A111.3C22—C21—N1116.21 (19)
C3—C2—H2A111.3C22—C21—H21B108.2
H2B—C2—H2A109.2N1—C21—H21B108.2
C2—C3—C4104.8 (2)C22—C21—H21A108.2
C2—C3—H3B110.8N1—C21—H21A108.2
C4—C3—H3B110.8H21B—C21—H21A107.4
C2—C3—H3A110.8C23—C22—C27120.2 (2)
C4—C3—H3A110.8C23—C22—C21120.1 (2)
H3B—C3—H3A108.9C27—C22—C21119.7 (2)
C5—C4—N1109.19 (18)C24—C23—C22118.8 (3)
C5—C4—C3112.0 (2)C24—C23—H23A120.6
N1—C4—C3105.49 (18)C22—C23—H23A120.6
C5—C4—H4A110.0C23—C24—C25120.1 (3)
N1—C4—H4A110.0C23—C24—H24A119.9
C3—C4—H4A110.0C25—C24—H24A119.9
O1—C5—N2128.5 (2)C26—C25—C24120.6 (3)
O1—C5—C4118.7 (2)C26—C25—H25A119.7
N2—C5—C4112.71 (19)C24—C25—H25A119.7
N2—C6—C7119.99 (19)C25—C26—C27119.9 (3)
N2—C6—C11120.46 (19)C25—C26—H26A120.1
C7—C6—C11119.4 (2)C27—C26—H26A120.1
C8—C7—C6120.6 (2)C26—C27—C22120.3 (3)
C8—C7—H7A119.7C26—C27—H27A119.8
C6—C7—H7A119.7C22—C27—H27A119.8
C7—C8—C9120.2 (2)C29—C28—C19115.6 (2)
C7—C8—H8A119.9C29—C28—H28B108.4
C9—C8—H8A119.9C19—C28—H28B108.4
C10—C9—C8121.0 (2)C29—C28—H28A108.4
C10—C9—H9A119.5C19—C28—H28A108.4
C8—C9—H9A119.5H28B—C28—H28A107.5
C9—C10—C11120.1 (2)O4—C29—C28114.6 (2)
C9—C10—H10A120.0O4—C29—H29B108.6
C11—C10—H10A120.0C28—C29—H29B108.6
C10—C11—C6118.7 (2)O4—C29—H29A108.6
C10—C11—C12116.5 (2)C28—C29—H29A108.6
C6—C11—C12124.8 (2)H29B—C29—H29A107.6
N3—C12—C11120.6 (2)C1—N1—C4103.35 (18)
N3—C12—C13120.1 (2)C1—N1—C21110.15 (18)
C11—C12—C13119.3 (2)C4—N1—C21113.74 (18)
C14—C13—C18119.2 (2)C1—N1—Ni1111.52 (14)
C14—C13—C12119.5 (2)C4—N1—Ni1106.14 (13)
C18—C13—C12121.1 (2)C21—N1—Ni1111.62 (15)
C13—C14—C15119.8 (3)C5—N2—C6121.98 (19)
C13—C14—H14A120.1C5—N2—Ni1115.33 (15)
C15—C14—H14A120.1C6—N2—Ni1122.40 (15)
C16—C15—C14121.1 (3)C12—N3—C19120.82 (19)
C16—C15—H15A119.5C12—N3—Ni1127.19 (16)
C14—C15—H15A119.5C19—N3—Ni1111.98 (14)
C17—C16—C15119.1 (2)N2—Ni1—O2178.29 (8)
C17—C16—H16A120.5N2—Ni1—N396.12 (8)
C15—C16—H16A120.5O2—Ni1—N384.94 (8)
C16—C17—C18120.4 (2)N2—Ni1—N185.11 (8)
C16—C17—H17A119.8O2—Ni1—N193.88 (8)
C18—C17—H17A119.8N3—Ni1—N1177.24 (9)
C13—C18—C17120.4 (2)C20—O2—Ni1116.03 (16)
C13—C18—H18A119.8C29—O4—H4W108.0 (13)
C17—C18—H18A119.8
N1—C1—C2—C341.8 (2)C2—C1—N1—C21166.68 (19)
C1—C2—C3—C422.6 (2)C2—C1—N1—Ni168.8 (2)
C2—C3—C4—C5122.5 (2)C5—C4—N1—C1150.08 (18)
C2—C3—C4—N13.8 (2)C3—C4—N1—C129.5 (2)
N1—C4—C5—O1165.5 (2)C5—C4—N1—C2190.5 (2)
C3—C4—C5—O178.0 (3)C3—C4—N1—C21148.95 (19)
N1—C4—C5—N217.5 (2)C5—C4—N1—Ni132.61 (19)
C3—C4—C5—N299.0 (2)C3—C4—N1—Ni187.93 (17)
N2—C6—C7—C8175.3 (2)C22—C21—N1—C1175.5 (2)
C11—C6—C7—C80.5 (4)C22—C21—N1—C460.1 (3)
C6—C7—C8—C91.0 (4)C22—C21—N1—Ni160.0 (2)
C7—C8—C9—C101.0 (4)O1—C5—N2—C617.3 (4)
C8—C9—C10—C110.5 (5)C4—C5—N2—C6166.07 (19)
C9—C10—C11—C61.9 (4)O1—C5—N2—Ni1168.8 (2)
C9—C10—C11—C12178.2 (3)C4—C5—N2—Ni17.9 (2)
N2—C6—C11—C10176.8 (2)C7—C6—N2—C522.5 (3)
C7—C6—C11—C101.9 (3)C11—C6—N2—C5162.7 (2)
N2—C6—C11—C123.3 (3)C7—C6—N2—Ni1151.03 (18)
C7—C6—C11—C12178.2 (2)C11—C6—N2—Ni123.8 (3)
C10—C11—C12—N3164.5 (2)C11—C12—N3—C19177.90 (19)
C6—C11—C12—N315.6 (3)C13—C12—N3—C193.3 (3)
C10—C11—C12—C1314.3 (3)C11—C12—N3—Ni11.0 (3)
C6—C11—C12—C13165.6 (2)C13—C12—N3—Ni1177.85 (16)
N3—C12—C13—C14107.6 (3)C20—C19—N3—C12153.7 (2)
C11—C12—C13—C1473.5 (3)C28—C19—N3—C1285.9 (3)
N3—C12—C13—C1876.1 (3)C20—C19—N3—Ni127.2 (2)
C11—C12—C13—C18102.7 (3)C28—C19—N3—Ni193.10 (19)
C18—C13—C14—C150.2 (4)C5—N2—Ni1—O276 (3)
C12—C13—C14—C15176.5 (2)C6—N2—Ni1—O298 (3)
C13—C14—C15—C160.8 (4)C5—N2—Ni1—N3154.96 (16)
C14—C15—C16—C170.8 (4)C6—N2—Ni1—N331.13 (17)
C15—C16—C17—C180.2 (4)C5—N2—Ni1—N122.57 (16)
C14—C13—C18—C170.4 (4)C6—N2—Ni1—N1151.35 (17)
C12—C13—C18—C17175.9 (2)C12—N3—Ni1—N220.3 (2)
C16—C17—C18—C130.3 (4)C19—N3—Ni1—N2158.62 (15)
N3—C19—C20—O3163.7 (2)C12—N3—Ni1—O2158.3 (2)
C28—C19—C20—O377.2 (3)C19—N3—Ni1—O222.72 (15)
N3—C19—C20—O218.5 (3)C12—N3—Ni1—N1136.9 (18)
C28—C19—C20—O2100.6 (2)C19—N3—Ni1—N142.1 (19)
N1—C21—C22—C2381.3 (3)C1—N1—Ni1—N2142.28 (16)
N1—C21—C22—C27100.4 (3)C4—N1—Ni1—N230.41 (14)
C27—C22—C23—C242.4 (4)C21—N1—Ni1—N294.03 (16)
C21—C22—C23—C24179.4 (2)C1—N1—Ni1—O239.10 (16)
C22—C23—C24—C251.6 (4)C4—N1—Ni1—O2150.97 (14)
C23—C24—C25—C260.6 (5)C21—N1—Ni1—O284.59 (16)
C24—C25—C26—C272.0 (5)C1—N1—Ni1—N325.5 (19)
C25—C26—C27—C221.2 (5)C4—N1—Ni1—N386.4 (18)
C23—C22—C27—C261.0 (4)C21—N1—Ni1—N3149.2 (18)
C21—C22—C27—C26179.3 (3)O3—C20—O2—Ni1179.3 (2)
N3—C19—C28—C29179.2 (2)C19—C20—O2—Ni11.6 (3)
C20—C19—C28—C2962.7 (3)N2—Ni1—O2—C20141 (3)
C19—C28—C29—O473.6 (3)N3—Ni1—O2—C2012.10 (17)
C2—C1—N1—C444.8 (2)N1—Ni1—O2—C20165.41 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4W···O30.95 (1)1.84 (1)2.726 (3)154 (1)
C7—H7A···O10.952.262.837 (3)118
C1—H1B···O20.992.312.879 (3)115

Experimental details

Crystal data
Chemical formula[Ni(C29H29N3O4)]
Mr542.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.743 (1), 10.222 (1), 26.016 (1)
V3)2591.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.25 × 0.19 × 0.16
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.840, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
62972, 5273, 4968
Rint0.038
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.08
No. of reflections5273
No. of parameters337
No. of restraints112
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.29
Absolute structure(Flack, 1983), 2260 Friedel pairs
Absolute structure parameter0.04 (1)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4W···O30.950 (7)1.840 (8)2.726 (3)154.0 (9)
C7—H7A···O10.952.262.837 (3)118.1
C1—H1B···O20.992.312.879 (3)115.3
 

Acknowledgements

The authors thank the Grant Agency of the Slovak Republic (grant No. 1/2449/05), the Ministry of Education, Youth and Sports of the Czech Republic (grant MSM0021627501), as well as the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBelokon, Y. N. (1992). Pure Appl. Chem. 64, 1917–1924.  CrossRef CAS Web of Science Google Scholar
First citationBelokon, Y. N., Bulychev, A. G., Pavlov, V. A., Fedorova, E. B., Tsyryapkin, V. A., Bakhmutov, V. I. & Belikov, V. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 2075–2083.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationCarducci, M. D., Gu, X., Cole, J. R. & Hruby, V. J. (2006). Acta Cryst. E62, m1219–m1220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChung, H.-H., Benson, D. R. & Schultz, P. G. (1993). Science, 259, 806–809.  CrossRef CAS PubMed Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGu, X. Y., Ndungu, J. A., Qiu, W., Ying, J. F., Carducci, M. D., Wooden, H. & Hruby, V. J. (2004). Tetrahedron, 60, 8233–8243.  Web of Science CSD CrossRef CAS Google Scholar
First citationJirman, J., Nádvorník, M., Sopkova, J. & Popkov, A. (1998). Magn. Reson. Chem. 36, 351–355.  CrossRef CAS Google Scholar
First citationJirman, J. & Popkov, A. (1995). Collect. Czech. Chem. Commun. 60, 990–998.  CrossRef Web of Science Google Scholar
First citationKožíšek, J., Fronc, M., Skubák, P., Popkov, A., Breza, M., Fuess, H. & Paulmann, C. (2004). Acta Cryst. A60, 510–516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLanger, V., Popkov, A., Nádvorník, M. & Lyčka, A. (2007). Polyhedron, 26, 911–917.  Web of Science CSD CrossRef CAS Google Scholar
First citationNádvorník, M. & Popkov, A. (2002). Green Chem. 4, 71–72.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPopkov, A., Císařová, I., Sopková, J., Jirman, J., Lyčka, A. & Kochetkov, K. A. (2005). Collect. Czech. Chem. Commun. 70, 1397–1410 .  Web of Science CSD CrossRef CAS Google Scholar
First citationPopkov, A., Langer, V., Manorik, P. A. & Weidlich, T. (2003). Transition Met. Chem. 28, 475–481.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m364-m365
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds