metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­aqua­bis­(1H-imidazole)bis­­[μ2-2-(oxalo­amino)benzoato(3−)]dicopper(II)calcium(II) hepta­hydrate

aInstitute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: meichongzhen@ncwu.edu.cn

(Received 19 November 2007; accepted 18 December 2007; online 4 January 2008)

In the title heterotrinuclear coordination compound, [CaCu2(C9H4NO5)2(C3H4N2)2(H2O)3]·7H2O, the Ca2+ cation is in a penta­gonal–bipyramidal geometry and bridges two (1H-imidazole)[2-(oxaloamino)benzoato(3−)]copper(II) units in its equatorial plane. Each CuII atom has a normal square-planar geometry. The mol­ecule has approximate local (non-crystallographic) mirror symmetry and 23 classical hydrogen bonds are found in the crystal structure.

Related literature

For related literature, see: Zang et al. (2003[Zang, S.-Q., Tao, R.-J., Wang, Q.-L., Hu, N.-H., Cheng, Y.-X., Niu, J.-Y. & Liao, D.-Z. (2003). Inorg. Chem. 42, 761-766.]).

[Scheme 1]

Experimental

Crystal data
  • [CaCu2(C9H4NO5)2(C3H4N2)2(H2O)3]·7H2O

  • Mr = 895.75

  • Monoclinic, P 21 /n

  • a = 6.8988 (9) Å

  • b = 24.011 (3) Å

  • c = 21.161 (3) Å

  • β = 93.511 (3)°

  • V = 3498.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 293 (2) K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.75, Tmax = 0.76

  • 17203 measured reflections

  • 6119 independent reflections

  • 3486 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.122

  • S = 0.99

  • 6119 reflections

  • 478 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O20—H20D⋯O2i 0.85 2.11 2.950 (7) 172
O20—H20C⋯O19 0.85 2.09 2.749 (11) 134
O19—H19D⋯O18 0.85 2.34 2.887 (12) 123
O19—H19C⋯O17ii 0.85 1.91 2.758 (11) 180
O18—H18D⋯O6 0.85 2.50 3.070 (7) 125
O18—H18D⋯O7 0.85 2.20 3.049 (7) 179
O18—H18C⋯O14iii 0.85 2.04 2.887 (10) 178
O17—H17C⋯O14iv 0.85 2.17 2.974 (12) 158
O16—H16A⋯O10 0.85 2.10 2.850 (6) 148
O15—H15D⋯O16 0.85 2.01 2.845 (7) 167
O15—H15A⋯O9 0.85 2.42 3.131 (6) 141
O15—H15A⋯O4 0.85 2.38 3.121 (7) 146
O14—H14D⋯O15 0.85 2.08 2.798 (7) 142
O14—H14C⋯O3 0.85 2.21 3.045 (7) 169
O13—H13B⋯O19v 0.85 2.15 2.963 (9) 160
O13—H13A⋯O6vi 0.85 1.95 2.780 (6) 164
O12—H12B⋯O1vii 0.85 1.86 2.706 (6) 180
O12—H12A⋯O6v 0.85 1.87 2.725 (5) 180
O11—H11C⋯O15ii 0.85 2.37 2.778 (6) 110
O11—H11A⋯O1viii 0.85 1.96 2.780 (6) 163
N6—H6A⋯O9iii 0.86 2.13 2.958 (7) 161
N6—H6A⋯O4iii 0.86 2.48 3.018 (6) 122
N4—H4A⋯O20iii 0.86 2.03 2.888 (9) 178
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z+1; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The "complex as ligand" approach, i.e. using metal cations to link reactively stable coordination compounds that contain potential bridging blocks, is particularly suitable for designing heteropolymetallic compounds.

In the title compound, CuII adopts square planar geometry, coordinating to the oxamato-N-benzoate and the imidazole ligand to afford a Cu-containing "ligand". CaII then bridges two Cu-ligands together.

The molecule has a local (non-crystallographic) mirror plane containing Ca and three aqueous ligands O11, O12 and O13. In addition, 23 classic hydrogen bonds are found in the structure (Table 1).

Related literature top

For related literature, see: Zang et al. (2003).

Experimental top

2-(Oxaloamino)benzoic acid (0.232 g, 1 mmol; Zang et al., 2003) and ? (0.12 g, 3 mmol) were dissolved in water (20 ml). To this solution, CuCl2.2H2O (0.17 g, 1 mmol) and imidazole (0.068 g, 1 mmol) were added. After stirring for an hour, CaCl2 (0.111 g, 1 mmol) was added. The solution was filtered after stirring for another hour. Evaporation of the filtrate gave green single crystals of the title compound after one week. Elemental analysis found (calculatedd) for C24H36CaCu2N6O20 (%): C 32.26 (32.18); H, 3.92 (4.05); N 9.52 (9.38); Ca 4.45 (4.47); Cu 14.14 (14.19). The analyses were performed on a Perkin–Elmer 240 C elemental analyzer. The abundance of Cu is determined by spectrophotometry while the abundance of Ca is obtained from edta titration.

Refinement top

The structure was solved by direct methods. All the H atoms were fixed geometrically and constrained with a riding model. d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms; 0.85 Å, Uiso = 1.5Ueq (O) for H2O atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound. Hydrogen atoms are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
Triaquabis(1H-imidazole)bis[µ2-2- (oxaloamino)benzoato(3-)]dicopper(II)calcium(II) heptahydrate top
Crystal data top
[CaCu2(C9H4NO5)2(C3H4N2)2(H2O)3]·7H2OF(000) = 1840
Mr = 895.75Dx = 1.701 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1959 reflections
a = 6.8988 (9) Åθ = 2.7–20.5°
b = 24.011 (3) ŵ = 1.45 mm1
c = 21.161 (3) ÅT = 293 K
β = 93.511 (3)°Block, green
V = 3498.7 (8) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6119 independent reflections
Radiation source: fine-focus sealed tube3486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.75, Tmax = 0.76k = 2828
17203 measured reflectionsl = 1525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.03P)2]
where P = (Fo2 + 2Fc2)/3
6119 reflections(Δ/σ)max = 0.018
478 parametersΔρmax = 0.59 e Å3
7 restraintsΔρmin = 0.48 e Å3
Crystal data top
[CaCu2(C9H4NO5)2(C3H4N2)2(H2O)3]·7H2OV = 3498.7 (8) Å3
Mr = 895.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8988 (9) ŵ = 1.45 mm1
b = 24.011 (3) ÅT = 293 K
c = 21.161 (3) Å0.2 × 0.2 × 0.2 mm
β = 93.511 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6119 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3486 reflections with I > 2σ(I)
Tmin = 0.75, Tmax = 0.76Rint = 0.093
17203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0637 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.00Δρmax = 0.59 e Å3
6119 reflectionsΔρmin = 0.48 e Å3
478 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.57052 (19)0.21723 (5)0.36790 (5)0.0305 (3)
Cu10.42034 (12)0.15913 (3)0.10945 (3)0.0365 (2)
Cu20.40057 (12)0.12870 (3)0.60805 (3)0.0303 (2)
N10.4528 (7)0.20197 (17)0.57516 (19)0.0223 (12)
N20.4559 (7)0.22668 (18)0.1570 (2)0.0275 (12)
C10.4976 (10)0.2460 (3)0.0207 (3)0.0400 (17)
C20.4626 (8)0.2899 (2)0.0672 (3)0.0273 (15)
C30.4444 (9)0.3438 (3)0.0446 (3)0.0405 (17)
H30.46110.35020.00190.049*
C40.4034 (10)0.3877 (3)0.0816 (3)0.0460 (19)
H40.39030.42320.06450.055*
C50.3812 (10)0.3788 (3)0.1455 (3)0.0422 (18)
H50.35320.40850.17160.051*
C60.4004 (9)0.3262 (2)0.1701 (3)0.0326 (16)
H60.38560.32060.21310.039*
C70.4416 (8)0.2810 (2)0.1321 (2)0.0260 (14)
C80.4955 (9)0.2169 (2)0.2188 (3)0.0278 (15)
C90.4692 (9)0.1558 (2)0.2362 (3)0.0294 (15)
N30.3548 (9)0.0899 (2)0.0656 (3)0.0497 (16)
C100.3866 (13)0.0390 (3)0.0854 (4)0.070 (3)
H100.45240.02990.12360.084*
N40.3135 (12)0.0024 (3)0.0442 (4)0.091 (3)
H4A0.32110.03320.04780.109*
C110.2251 (14)0.0305 (4)0.0043 (4)0.083 (3)
H110.15790.01540.03970.099*
C120.2529 (12)0.0841 (4)0.0084 (4)0.070 (2)
H120.20980.11330.01770.084*
C130.4628 (9)0.1977 (3)0.7176 (3)0.0309 (16)
C140.4633 (8)0.2491 (2)0.6780 (3)0.0268 (15)
C150.4633 (9)0.2996 (3)0.7113 (3)0.0417 (18)
H150.47380.29860.75530.050*
C160.4481 (10)0.3508 (3)0.6814 (3)0.0451 (19)
H160.44430.38360.70460.054*
C170.4390 (10)0.3517 (2)0.6165 (3)0.0422 (18)
H170.42910.38570.59540.051*
C180.4441 (9)0.3035 (2)0.5821 (3)0.0352 (17)
H180.43900.30570.53820.042*
C190.4568 (8)0.2516 (2)0.6106 (3)0.0258 (15)
C200.4908 (8)0.2006 (2)0.5142 (3)0.0247 (14)
C210.4483 (9)0.1434 (2)0.4842 (3)0.0305 (16)
N50.3638 (8)0.05199 (19)0.6339 (2)0.0339 (14)
C220.2829 (10)0.0326 (3)0.6870 (3)0.0466 (19)
H220.22440.05440.71690.056*
C230.3020 (12)0.0230 (3)0.6888 (4)0.061 (2)
H230.25970.04660.71990.074*
N60.3947 (9)0.0383 (2)0.6367 (3)0.0591 (18)
H6A0.42510.07160.62610.071*
C240.4289 (10)0.0077 (3)0.6058 (3)0.0468 (19)
H240.49190.00880.56820.056*
O10.5537 (7)0.26049 (18)0.03227 (19)0.0528 (13)
O20.4690 (7)0.19479 (18)0.03125 (17)0.0415 (12)
O30.4352 (7)0.12114 (15)0.19170 (18)0.0423 (12)
O40.4854 (7)0.14343 (15)0.29325 (19)0.0436 (13)
O50.5407 (6)0.24986 (15)0.26216 (17)0.0347 (11)
O60.5085 (6)0.20180 (16)0.77547 (17)0.0420 (12)
O70.4140 (7)0.15086 (16)0.69376 (17)0.0418 (12)
O80.5517 (6)0.23713 (15)0.47962 (17)0.0315 (10)
O90.4621 (7)0.13889 (15)0.42624 (17)0.0401 (12)
O100.4020 (6)0.10426 (15)0.51994 (17)0.0372 (12)
O110.8768 (6)0.17246 (16)0.37391 (18)0.0466 (12)
H11A0.95240.18910.40090.070*
H11C0.86660.13850.38460.070*
O120.2690 (6)0.26068 (18)0.36776 (18)0.0590 (14)
H12A0.18760.27230.33900.089*
H12B0.20110.25410.39910.089*
O130.7663 (6)0.29991 (15)0.37573 (18)0.0492 (13)
H13A0.85760.29760.35070.074*
H13B0.69650.32820.36630.074*
O140.2004 (10)0.0229 (2)0.2365 (3)0.117 (2)
H14C0.25600.05000.21920.175*
H14D0.17100.02630.27470.175*
O150.1196 (7)0.08557 (18)0.3431 (2)0.0766 (17)
H15A0.22570.10360.34670.115*
H15D0.13560.06620.37670.115*
O160.1226 (8)0.02987 (18)0.4619 (2)0.0818 (18)
H16A0.16590.05510.48710.123*
H16B0.21710.00740.45920.123*
O170.1399 (16)0.0127 (4)0.8469 (4)0.252 (5)
H17C0.06090.00570.82260.378*
H17D0.24410.01530.82760.378*
O180.6065 (16)0.0784 (2)0.7980 (4)0.265 (7)
H18C0.66150.04810.78840.397*
H18D0.55110.09870.76930.397*
O190.9605 (13)0.1133 (3)0.8665 (4)0.198 (4)
H19C1.01550.08220.86070.296*
H19D0.90210.12020.83080.296*
O200.6630 (11)0.1175 (2)0.9470 (3)0.149 (3)
H20C0.76360.13340.93430.224*
H20D0.59780.13720.97150.224*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0384 (9)0.0344 (7)0.0194 (7)0.0010 (7)0.0075 (6)0.0025 (6)
Cu10.0455 (6)0.0401 (5)0.0245 (4)0.0008 (4)0.0074 (4)0.0051 (4)
Cu20.0427 (5)0.0282 (4)0.0208 (4)0.0017 (4)0.0095 (4)0.0012 (4)
N10.028 (3)0.025 (3)0.015 (3)0.007 (2)0.004 (2)0.004 (2)
N20.035 (3)0.028 (3)0.020 (3)0.000 (3)0.007 (2)0.004 (2)
C10.035 (5)0.059 (5)0.026 (4)0.007 (4)0.003 (3)0.012 (4)
C20.021 (4)0.039 (4)0.022 (3)0.002 (3)0.003 (3)0.011 (3)
C30.038 (5)0.055 (5)0.030 (4)0.006 (4)0.009 (3)0.007 (4)
C40.050 (5)0.033 (4)0.055 (5)0.015 (4)0.001 (4)0.020 (4)
C50.053 (5)0.029 (4)0.046 (4)0.013 (4)0.009 (4)0.001 (3)
C60.033 (4)0.036 (4)0.029 (4)0.004 (3)0.006 (3)0.007 (3)
C70.025 (4)0.037 (4)0.016 (3)0.008 (3)0.005 (3)0.006 (3)
C80.026 (4)0.037 (4)0.022 (4)0.006 (3)0.008 (3)0.003 (3)
C90.030 (4)0.029 (4)0.031 (4)0.003 (3)0.009 (3)0.004 (3)
N30.074 (5)0.041 (4)0.035 (3)0.012 (4)0.010 (3)0.009 (3)
C100.101 (8)0.063 (6)0.049 (5)0.011 (6)0.022 (5)0.025 (5)
N40.126 (8)0.059 (5)0.092 (6)0.026 (5)0.052 (6)0.033 (5)
C110.088 (8)0.096 (8)0.065 (6)0.028 (6)0.015 (6)0.036 (6)
C120.067 (6)0.086 (6)0.057 (5)0.005 (5)0.001 (4)0.022 (5)
C130.015 (4)0.054 (5)0.024 (4)0.001 (3)0.003 (3)0.005 (3)
C140.025 (4)0.031 (4)0.026 (3)0.005 (3)0.009 (3)0.003 (3)
C150.039 (5)0.053 (5)0.034 (4)0.002 (4)0.013 (3)0.018 (4)
C160.048 (5)0.028 (4)0.061 (5)0.006 (4)0.018 (4)0.026 (4)
C170.052 (5)0.021 (3)0.056 (5)0.005 (3)0.023 (4)0.006 (3)
C180.049 (5)0.030 (4)0.029 (4)0.005 (3)0.022 (3)0.004 (3)
C190.019 (4)0.030 (3)0.029 (3)0.002 (3)0.008 (3)0.001 (3)
C200.020 (4)0.028 (4)0.027 (4)0.002 (3)0.005 (3)0.002 (3)
C210.032 (4)0.027 (4)0.033 (4)0.001 (3)0.003 (3)0.002 (3)
N50.047 (4)0.026 (3)0.029 (3)0.002 (3)0.010 (3)0.005 (2)
C220.063 (6)0.034 (4)0.044 (5)0.000 (4)0.023 (4)0.003 (4)
C230.069 (6)0.060 (6)0.057 (5)0.012 (5)0.015 (5)0.025 (4)
N60.075 (5)0.030 (3)0.072 (5)0.002 (3)0.000 (4)0.009 (3)
C240.070 (6)0.030 (4)0.042 (4)0.006 (4)0.012 (4)0.006 (4)
O10.059 (3)0.071 (3)0.031 (2)0.014 (2)0.025 (2)0.010 (2)
O20.056 (3)0.049 (3)0.020 (2)0.004 (3)0.014 (2)0.003 (2)
O30.073 (4)0.029 (2)0.026 (2)0.004 (2)0.008 (2)0.003 (2)
O40.075 (4)0.031 (3)0.026 (2)0.006 (2)0.004 (2)0.009 (2)
O50.054 (3)0.033 (2)0.017 (2)0.005 (2)0.004 (2)0.002 (2)
O60.042 (3)0.066 (3)0.018 (2)0.003 (2)0.001 (2)0.002 (2)
O70.066 (4)0.038 (3)0.022 (2)0.007 (3)0.007 (2)0.002 (2)
O80.043 (3)0.029 (2)0.024 (2)0.003 (2)0.012 (2)0.0015 (19)
O90.069 (4)0.034 (3)0.018 (2)0.009 (2)0.014 (2)0.0050 (19)
O100.065 (3)0.027 (2)0.022 (2)0.013 (2)0.017 (2)0.0012 (19)
O110.046 (3)0.049 (3)0.043 (3)0.000 (2)0.005 (2)0.003 (2)
O120.046 (3)0.100 (4)0.032 (3)0.019 (3)0.009 (2)0.023 (3)
O130.050 (3)0.046 (3)0.053 (3)0.003 (2)0.016 (2)0.005 (2)
O140.143 (7)0.134 (5)0.076 (4)0.021 (5)0.033 (4)0.015 (4)
O150.054 (4)0.061 (3)0.114 (5)0.002 (3)0.003 (3)0.003 (3)
O160.085 (5)0.069 (3)0.092 (4)0.007 (3)0.014 (3)0.041 (3)
O170.297 (13)0.352 (13)0.105 (6)0.155 (11)0.000 (7)0.011 (8)
O180.451 (18)0.077 (5)0.236 (10)0.052 (7)0.226 (11)0.008 (6)
O190.199 (10)0.115 (6)0.277 (12)0.027 (7)0.002 (8)0.010 (7)
O200.194 (8)0.105 (5)0.160 (7)0.032 (5)0.098 (6)0.042 (5)
Geometric parameters (Å, º) top
Ca1—O122.327 (4)C13—O61.250 (6)
Ca1—O112.367 (4)C13—O71.269 (6)
Ca1—O52.368 (4)C13—C141.492 (8)
Ca1—O92.395 (4)C14—C151.403 (7)
Ca1—O132.401 (4)C14—C191.425 (7)
Ca1—O42.422 (4)C15—C161.384 (8)
Ca1—O82.423 (4)C15—H150.93
Ca1—H11A2.7672C16—C171.372 (8)
Ca1—H11C2.7894C16—H160.93
Cu1—O21.911 (4)C17—C181.368 (7)
Cu1—N21.917 (4)C17—H170.93
Cu1—N31.943 (5)C18—C191.384 (7)
Cu1—O31.962 (4)C18—H180.93
Cu2—O71.887 (4)C20—O81.234 (6)
Cu2—N11.934 (4)C20—C211.533 (7)
Cu2—N51.943 (5)C21—O91.240 (6)
Cu2—O101.955 (4)C21—O101.260 (6)
N1—C201.332 (6)N5—C241.311 (7)
N1—C191.409 (6)N5—C221.367 (7)
N2—C81.340 (6)C22—C231.342 (8)
N2—C71.409 (6)C22—H220.93
C1—O11.257 (7)C23—N61.358 (8)
C1—O21.266 (7)C23—H230.93
C1—C21.473 (8)N6—C241.313 (7)
C2—C31.383 (7)N6—H6A0.86
C2—C71.406 (7)C24—H240.93
C3—C41.352 (8)O11—H11A0.85
C3—H30.93O11—H11C0.85
C4—C51.385 (8)O12—H12A0.85
C4—H40.93O12—H12B0.85
C5—C61.369 (7)O13—H13A0.85
C5—H50.93O13—H13B0.85
C6—C71.390 (7)O14—H14C0.85
C6—H60.93O14—H14D0.85
C8—O51.237 (6)O15—H15A0.85
C8—C91.526 (7)O15—H15D0.85
C9—O41.241 (6)O16—H16A0.85
C9—O31.268 (6)O16—H16B0.85
N3—C101.305 (8)O17—H17C0.85
N3—C121.371 (8)O17—H17D0.85
C10—N41.316 (8)O18—H18C0.85
C10—H100.93O18—H18D0.85
N4—C111.344 (10)O19—H19C0.85
N4—H4A0.86O19—H19D0.85
C11—C121.326 (10)O20—H20C0.85
C11—H110.93O20—H20D0.85
C12—H120.93
O12—Ca1—O11176.97 (14)C10—N3—C12104.7 (6)
O12—Ca1—O579.88 (14)C10—N3—Cu1128.2 (5)
O11—Ca1—O5103.11 (15)C12—N3—Cu1127.0 (6)
O12—Ca1—O992.60 (16)N3—C10—N4111.3 (8)
O11—Ca1—O985.50 (15)N3—C10—H10124.3
O5—Ca1—O9137.32 (14)N4—C10—H10124.3
O12—Ca1—O1397.38 (15)C10—N4—C11107.9 (7)
O11—Ca1—O1382.84 (14)C10—N4—H4A126.0
O5—Ca1—O1378.91 (14)C11—N4—H4A126.0
O9—Ca1—O13143.71 (14)C12—C11—N4106.2 (8)
O12—Ca1—O498.41 (16)C12—C11—H11126.9
O11—Ca1—O483.26 (14)N4—C11—H11126.9
O5—Ca1—O467.80 (13)C11—C12—N3109.8 (8)
O9—Ca1—O471.98 (13)C11—C12—H12125.1
O13—Ca1—O4139.70 (15)N3—C12—H12125.1
O12—Ca1—O879.15 (14)O6—C13—O7120.3 (6)
O11—Ca1—O897.93 (14)O6—C13—C14118.4 (6)
O5—Ca1—O8148.21 (13)O7—C13—C14121.3 (5)
O9—Ca1—O867.35 (12)C15—C14—C19117.6 (5)
O13—Ca1—O880.40 (13)C15—C14—C13115.7 (5)
O4—Ca1—O8139.05 (14)C19—C14—C13126.7 (5)
O12—Ca1—H11A161.2C16—C15—C14122.7 (6)
O11—Ca1—H11A16.8C16—C15—H15118.6
O5—Ca1—H11A110.2C14—C15—H15118.6
O9—Ca1—H11A90.1C17—C16—C15118.1 (6)
O13—Ca1—H11A70.2C17—C16—H16121.0
O4—Ca1—H11A100.1C15—C16—H16121.0
O8—Ca1—H11A84.8C18—C17—C16121.1 (6)
O12—Ca1—H11C162.1C18—C17—H17119.5
O11—Ca1—H11C16.5C16—C17—H17119.5
O5—Ca1—H11C111.4C17—C18—C19122.3 (6)
O9—Ca1—H11C69.6C17—C18—H18118.9
O13—Ca1—H11C98.5C19—C18—H18118.9
O4—Ca1—H11C74.5C18—C19—N1122.1 (5)
O8—Ca1—H11C95.3C18—C19—C14118.1 (5)
H11A—Ca1—H11C28.9N1—C19—C14119.6 (5)
O2—Cu1—N292.99 (18)O8—C20—N1130.6 (5)
O2—Cu1—N391.0 (2)O8—C20—C21117.1 (5)
N2—Cu1—N3173.2 (2)N1—C20—C21112.3 (5)
O2—Cu1—O3166.89 (19)O9—C21—O10124.5 (5)
N2—Cu1—O385.94 (17)O9—C21—C20117.6 (5)
N3—Cu1—O391.3 (2)O10—C21—C20117.9 (5)
O7—Cu2—N195.17 (17)C24—N5—C22105.5 (5)
O7—Cu2—N589.76 (18)C24—N5—Cu2125.9 (4)
N1—Cu2—N5173.9 (2)C22—N5—Cu2128.4 (4)
O7—Cu2—O10176.73 (19)C23—C22—N5108.5 (6)
N1—Cu2—O1085.29 (16)C23—C22—H22125.8
N5—Cu2—O1089.59 (18)N5—C22—H22125.8
C20—N1—C19122.6 (5)C22—C23—N6107.3 (6)
C20—N1—Cu2112.2 (4)C22—C23—H23126.4
C19—N1—Cu2125.2 (3)N6—C23—H23126.4
C8—N2—C7122.2 (5)C24—N6—C23106.6 (6)
C8—N2—Cu1112.1 (4)C24—N6—H6A126.7
C7—N2—Cu1125.7 (4)C23—N6—H6A126.7
O1—C1—O2119.1 (6)N5—C24—N6112.2 (6)
O1—C1—C2118.0 (6)N5—C24—H24123.9
O2—C1—C2122.9 (5)N6—C24—H24123.9
C3—C2—C7117.9 (6)C1—O2—Cu1128.7 (4)
C3—C2—C1117.0 (5)C9—O3—Cu1110.6 (3)
C7—C2—C1125.1 (5)C9—O4—Ca1117.6 (4)
C4—C3—C2123.1 (6)C8—O5—Ca1119.5 (3)
C4—C3—H3118.5C13—O7—Cu2128.9 (4)
C2—C3—H3118.5C20—O8—Ca1118.6 (3)
C3—C4—C5119.0 (6)C21—O9—Ca1119.1 (4)
C3—C4—H4120.5C21—O10—Cu2111.4 (3)
C5—C4—H4120.5Ca1—O11—H11A109.4
C6—C5—C4120.0 (6)Ca1—O11—H11C111.2
C6—C5—H5120.0H11A—O11—H11C109.3
C4—C5—H5120.0Ca1—O12—H12A134.4
C5—C6—C7121.1 (6)Ca1—O12—H12B116.8
C5—C6—H6119.4H12A—O12—H12B104.4
C7—C6—H6119.4Ca1—O13—H13A109.8
C6—C7—C2118.9 (5)Ca1—O13—H13B109.7
C6—C7—N2121.2 (5)H13A—O13—H13B109.7
C2—C7—N2119.8 (5)H14C—O14—H14D118.3
O5—C8—N2129.7 (5)H15A—O15—H15D97.9
O5—C8—C9117.7 (5)H16A—O16—H16B104.7
N2—C8—C9112.6 (5)H17C—O17—H17D106.1
O4—C9—O3124.6 (5)H18C—O18—H18D120.4
O4—C9—C8117.4 (5)H19C—O19—H19D103.5
O3—C9—C8118.1 (5)H20C—O20—H20D114.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O20—H20D···O2i0.852.112.950 (7)172
O20—H20C···O190.852.092.749 (11)134
O19—H19D···O180.852.342.887 (12)123
O19—H19C···O17ii0.851.912.758 (11)180
O18—H18D···O60.852.503.070 (7)125
O18—H18D···O70.852.203.049 (7)179
O18—H18C···O14iii0.852.042.887 (10)178
O17—H17C···O14iv0.852.172.974 (12)158
O16—H16A···O100.852.102.850 (6)148
O15—H15D···O160.852.012.845 (7)167
O15—H15A···O90.852.423.131 (6)141
O15—H15A···O40.852.383.121 (7)146
O14—H14D···O150.852.082.798 (7)142
O14—H14C···O30.852.213.045 (7)169
O13—H13B···O19v0.852.152.963 (9)160
O13—H13A···O6vi0.851.952.780 (6)164
O12—H12B···O1vii0.851.862.706 (6)180
O12—H12A···O6v0.851.872.725 (5)180
O11—H11C···O15ii0.852.372.778 (6)110
O11—H11A···O1viii0.851.962.780 (6)163
N6—H6A···O9iii0.862.132.958 (7)161
N6—H6A···O4iii0.862.483.018 (6)122
N4—H4A···O20iii0.862.032.888 (9)178
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y+1/2, z1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CaCu2(C9H4NO5)2(C3H4N2)2(H2O)3]·7H2O
Mr895.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.8988 (9), 24.011 (3), 21.161 (3)
β (°) 93.511 (3)
V3)3498.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.75, 0.76
No. of measured, independent and
observed [I > 2σ(I)] reflections
17203, 6119, 3486
Rint0.093
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.122, 1.00
No. of reflections6119
No. of parameters478
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.48

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O20—H20D···O2i0.852.112.950 (7)172
O20—H20C···O190.852.092.749 (11)134
O19—H19D···O180.852.342.887 (12)123
O19—H19C···O17ii0.851.912.758 (11)180
O18—H18D···O60.852.503.070 (7)125
O18—H18D···O70.852.203.049 (7)179
O18—H18C···O14iii0.852.042.887 (10)178
O17—H17C···O14iv0.852.172.974 (12)158
O16—H16A···O100.852.102.850 (6)148
O15—H15D···O160.852.012.845 (7)167
O15—H15A···O90.852.423.131 (6)141
O15—H15A···O40.852.383.121 (7)146
O14—H14D···O150.852.082.798 (7)142
O14—H14C···O30.852.213.045 (7)169
O13—H13B···O19v0.852.152.963 (9)160
O13—H13A···O6vi0.851.952.780 (6)164
O12—H12B···O1vii0.851.862.706 (6)180
O12—H12A···O6v0.851.872.725 (5)180
O11—H11C···O15ii0.852.372.778 (6)110
O11—H11A···O1viii0.851.962.780 (6)163
N6—H6A···O9iii0.862.132.958 (7)161
N6—H6A···O4iii0.862.483.018 (6)122
N4—H4A···O20iii0.862.032.888 (9)178
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y+1/2, z1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors express their thanks to the Natural Science Foundation of Henan Province for financial support.

References

First citationBruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationZang, S.-Q., Tao, R.-J., Wang, Q.-L., Hu, N.-H., Cheng, Y.-X., Niu, J.-Y. & Liao, D.-Z. (2003). Inorg. Chem. 42, 761–766.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds