organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

[(2-{[3′,6′-Bis(ethyl­amino)-2′,7′-di­methyl-3-oxo­spiro­[1H-iso­indole-1,9′-9H-xanthen]-2-yl}eth­yl)amino­meth­yl]phenol

aState Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012, People's Republic of China
*Correspondence e-mail: pengxj@dlut.edu.cn

(Received 19 November 2007; accepted 29 December 2007; online 9 January 2008)

The title compound, C35H38N4O3, was prepared as a spiro­lactam ring formation of rhodamine dye for comparison with a ring-opened form. The xanthene ring system is approximately planar. The dihedral angles formed by the spiro­lactam and phenol rings with the xanthene ring system are 85.7 and 109.4°, respectively. Each of the mol­ecules in the crystal structure contains one intra­molecular O—H⋯N hydrogen bond, and they form inter­molecular N—H⋯O hydrogen-bonded chains along the [100] direction. Weak inter­molecular C—H⋯O hydrogen-bonding contacts connect the infinite chains via crystallographic inversion centres to form a two-dimensional network.

Related literature

For related literature, see: Kwon et al. (2005[Kwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W. & Yoon, J. (2005). J. Am. Chem. Soc. 127, 10107-10111.]); Wu et al. (2007[Wu, J. S., Hwang, I. C., Kwang, S. K. & Jong, S. K. (2007). Org. Lett. 9, 907-910.]); De Silva et al. (1997[De Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T. & Rice, T. E. (1997). Chem. Rev. 97, 1515-1566.]).

[Scheme 1]

Experimental

Crystal data
  • C35H36N4O3

  • Mr = 560.68

  • Triclinic, [P \overline 1]

  • a = 11.6453 (5) Å

  • b = 11.8588 (3) Å

  • c = 12.9822 (3) Å

  • α = 116.3210 (10)°

  • β = 103.173 (2)°

  • γ = 98.337 (2)°

  • V = 1501.21 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 (2) K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.980

  • 9518 measured reflections

  • 5018 independent reflections

  • 3667 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.169

  • S = 1.01

  • 5018 reflections

  • 383 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N2 0.82 2.01 2.685 (3) 139
N3—H3B⋯O3i 0.86 2.32 3.144 (1) 160
C9—H9A⋯O2ii 0.93 2.59 3.468 (3) 157
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+3, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Rhodamine dyes are widely used in fluorescent labels and other present biological techniques (De Silva et al., 1997). There are a few single-crystal reports about the rhodamine derivatives bearing the lactam moiety (Kwon et al., 2005; Wu et al.,2007). Detailed information on their molecular and crystal structures is necessary to understand their photophysical and photochemical properties. As part of our own work on rhodamine dyes, the title compound (Fig. 1) was prepared by the reaction of N-(rhodamine-6 G) lactam-ethylenediamine with 2-hydroxybenzaldehyde.

In agreement with other reported models, the main skeleton of the molecule is formed from the xanthene ring and the spirolactam-ring (Kwon et al., 2005; Wu et al., 2007). The atoms of the xanthene ring or the spirolactam-ring are almost coplanar. The planes formed have r.m.s. deviations from the mean plane of only 0.0248 Å for the xanthene ring and 0.0231 Å for the spirolactam-ring, respectively. The dihedral angle between the planes of the xanthene ring and the spirolactam-ring fragment is 85.7°. The phenol part of the molecule (C30 benzene ring plus O3) is close to being planar, with an r.m.s. deviation for the fitted atoms of 0.0065 Å. The dihedral angle with the planes of the xanthene ring and the spirolactam-ring fragment is 109.4° and 107.8° respectively. Each of the molecules in the crystal structure contains one O—H···N intramolecular hydrogen bond, and they form infinite intermolecular N—H···O hydrogen bonded chains along [1 0 0]. Weak intermolecular C—H···O hydrogen bonding contacts connect the infinite chains via crystallographic inversion centres to form a two-dimensional network (Table 1).

Related literature top

For related literature, see: Kwon et al. (2005); Wu et al. (2007); De Silva et al. (1997).

Experimental top

N-(rhodamine-6 G) lactam-ethylenediamine (500 mg, 1.2 mmol) was dissolved in 20 ml of methanol, followed by addition of 2-hydroxybenzaldehyde (146 mg, 1.2 mmol). The yellow solution was mixed for 1 h at room temperature, and then added NaBH4 until the reactant disappeared on TLC. The solvent was removed by rotatory evaporation. The resulting crude product was purified by column chromatography to give 317 mg of the title compound (white solid) in 47.1% yield. Single crystals suitable for X-ray measurements were obtained from hexane/dichloromethane (1:1, v/v) solution by slow evaporation at room temperature.

Refinement top

The H atoms attached to C, N and O atoms were placed in geometrically calculated positions (C—H = 0.93–0.97 Å, N—H = 0.86 Å and O—H = 0.82 Å) and refined as riding, with Uiso(H) = 1.2Ueq (C, N) or 1.5Ueq (methyl C, O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.
[(2-{[3',6'-Bis(ethylamino)-2',7'-dimethyl-3-oxospiro[1H-isoindole-1,9'-\ 9H-xanthen]-2-yl}ethyl)aminomethyl]phenol top
Crystal data top
C35H36N4O3Z = 2
Mr = 560.68F(000) = 596
Triclinic, P1Dx = 1.240 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.6453 (5) ÅCell parameters from 2891 reflections
b = 11.8588 (3) Åθ = 2.7–27.2°
c = 12.9822 (3) ŵ = 0.08 mm1
α = 116.321 (1)°T = 273 K
β = 103.173 (2)°Block, white
γ = 98.337 (2)°0.30 × 0.30 × 0.25 mm
V = 1501.21 (8) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5018 independent reflections
Radiation source: fine-focus sealed tube3667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1312
Tmin = 0.976, Tmax = 0.980k = 1413
9518 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0943P)2 + 0.4133P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.169(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.55 e Å3
5018 reflectionsΔρmin = 0.34 e Å3
383 parameters
Crystal data top
C35H36N4O3γ = 98.337 (2)°
Mr = 560.68V = 1501.21 (8) Å3
Triclinic, P1Z = 2
a = 11.6453 (5) ÅMo Kα radiation
b = 11.8588 (3) ŵ = 0.08 mm1
c = 12.9822 (3) ÅT = 273 K
α = 116.321 (1)°0.30 × 0.30 × 0.25 mm
β = 103.173 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5018 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3667 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.980Rint = 0.020
9518 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.01Δρmax = 0.55 e Å3
5018 reflectionsΔρmin = 0.34 e Å3
383 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61529 (16)0.99784 (14)0.12430 (14)0.0552 (4)
O20.52746 (17)1.55773 (17)0.38418 (16)0.0697 (5)
O30.10319 (17)1.2888 (2)0.06993 (17)0.0752 (6)
H3A0.17321.31800.02130.113*
N10.55473 (16)1.35526 (16)0.27576 (15)0.0430 (4)
N20.34153 (17)1.29474 (18)0.01746 (17)0.0496 (5)
N30.88189 (19)1.10924 (19)0.06256 (18)0.0571 (5)
H3B0.92851.16800.06820.068*
N40.35515 (18)0.83845 (18)0.29282 (19)0.0539 (5)
H4A0.30820.85410.33690.065*
C10.6847 (2)1.0985 (2)0.11824 (19)0.0440 (5)
C20.7442 (2)1.0584 (2)0.0336 (2)0.0477 (6)
H2B0.73450.96940.01430.057*
C30.8187 (2)1.1487 (2)0.0184 (2)0.0443 (5)
C40.82894 (19)1.2838 (2)0.0902 (2)0.0439 (5)
C50.7681 (2)1.3186 (2)0.1733 (2)0.0442 (5)
H5A0.77581.40720.22050.053*
C60.69504 (19)1.2290 (2)0.19164 (19)0.0413 (5)
C70.63690 (19)1.2743 (2)0.29058 (19)0.0407 (5)
C80.56535 (19)1.1577 (2)0.29171 (19)0.0413 (5)
C90.5015 (2)1.1743 (2)0.37370 (19)0.0448 (5)
H9A0.50571.25930.42940.054*
C100.4326 (2)1.0719 (2)0.3771 (2)0.0448 (5)
C110.4261 (2)0.9423 (2)0.2921 (2)0.0441 (5)
C120.4884 (2)0.9238 (2)0.2102 (2)0.0477 (6)
H12A0.48470.83920.15400.057*
C130.5566 (2)1.0302 (2)0.21049 (19)0.0432 (5)
C140.9068 (2)1.3854 (2)0.0759 (2)0.0593 (7)
H14A0.89671.46980.12440.089*
H14B0.88181.36330.00800.089*
H14C0.99161.38790.10230.089*
C150.8734 (3)0.9726 (2)0.1390 (2)0.0617 (7)
H15A0.78990.92670.19460.074*
H15B0.89220.93280.08840.074*
C160.9601 (3)0.9574 (3)0.2109 (3)0.0731 (8)
H16A0.95490.86630.25720.110*
H16B1.04261.00500.15630.110*
H16C0.93820.99140.26510.110*
C170.3645 (2)1.0961 (2)0.4661 (2)0.0599 (7)
H17A0.37751.18870.51490.090*
H17B0.39411.06120.51770.090*
H17C0.27831.05400.42290.090*
C180.3572 (2)0.7054 (2)0.2223 (2)0.0558 (6)
H18A0.44060.69950.24490.067*
H18B0.33070.67940.13660.067*
C190.2740 (3)0.6137 (3)0.2434 (3)0.0710 (8)
H19A0.27980.52620.19870.106*
H19B0.19070.61530.21620.106*
H19C0.29860.64110.32860.106*
C200.7308 (2)1.3743 (2)0.41426 (19)0.0440 (5)
C210.8369 (2)1.3621 (2)0.4758 (2)0.0566 (6)
H21A0.85991.28520.44270.068*
C220.9085 (3)1.4675 (3)0.5882 (3)0.0679 (8)
H22A0.98071.46130.63120.081*
C230.8745 (3)1.5813 (3)0.6375 (2)0.0728 (8)
H23A0.92351.65040.71380.087*
C240.7691 (3)1.5944 (2)0.5756 (2)0.0646 (7)
H24A0.74641.67150.60870.077*
C250.6977 (2)1.4891 (2)0.4624 (2)0.0492 (6)
C260.5851 (2)1.4766 (2)0.3749 (2)0.0497 (6)
C270.4445 (2)1.3027 (2)0.1728 (2)0.0482 (6)
H27A0.37601.32170.20180.058*
H27B0.42771.20820.12720.058*
C280.4528 (2)1.3576 (2)0.0890 (2)0.0518 (6)
H28A0.46371.45140.13230.062*
H28B0.52371.34330.06290.062*
C290.3371 (2)1.3596 (2)0.0916 (2)0.0552 (6)
H29A0.39961.43000.07490.066*
C300.2200 (2)1.2987 (2)0.1972 (2)0.0526 (6)
C310.2189 (3)1.2780 (3)0.3105 (3)0.0811 (9)
H31A0.29271.29920.32300.097*
C320.1091 (5)1.2257 (4)0.4065 (3)0.1077 (13)
H32A0.10951.21200.48270.129*
C330.0009 (4)1.1948 (4)0.3886 (4)0.1007 (12)
H33A0.07241.15790.45330.121*
C340.0008 (3)1.2176 (3)0.2758 (3)0.0790 (9)
H34A0.07521.19920.26330.095*
C350.1079 (2)1.2677 (2)0.1814 (2)0.0554 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0714 (11)0.0304 (8)0.0645 (10)0.0073 (7)0.0418 (9)0.0170 (7)
O20.0791 (13)0.0448 (11)0.0760 (12)0.0301 (9)0.0223 (10)0.0201 (9)
O30.0627 (12)0.0906 (14)0.0746 (12)0.0092 (10)0.0367 (10)0.0397 (11)
N10.0433 (10)0.0308 (9)0.0472 (10)0.0084 (7)0.0125 (8)0.0147 (8)
N20.0487 (11)0.0499 (11)0.0488 (10)0.0077 (8)0.0154 (9)0.0255 (9)
N30.0664 (14)0.0418 (11)0.0643 (12)0.0082 (9)0.0374 (11)0.0220 (9)
N40.0567 (12)0.0400 (11)0.0742 (13)0.0135 (9)0.0381 (11)0.0281 (10)
C10.0464 (13)0.0336 (12)0.0499 (12)0.0046 (9)0.0183 (10)0.0197 (10)
C20.0537 (14)0.0333 (12)0.0498 (12)0.0064 (10)0.0215 (11)0.0150 (10)
C30.0421 (12)0.0404 (12)0.0481 (12)0.0070 (9)0.0154 (10)0.0212 (10)
C40.0391 (12)0.0396 (12)0.0514 (12)0.0053 (9)0.0126 (10)0.0240 (10)
C50.0444 (12)0.0312 (11)0.0534 (13)0.0080 (9)0.0160 (10)0.0189 (10)
C60.0406 (12)0.0339 (12)0.0462 (12)0.0068 (9)0.0131 (10)0.0188 (9)
C70.0417 (12)0.0310 (11)0.0478 (12)0.0101 (9)0.0164 (10)0.0174 (9)
C80.0416 (12)0.0332 (12)0.0476 (12)0.0088 (9)0.0153 (10)0.0189 (9)
C90.0490 (13)0.0335 (12)0.0476 (12)0.0126 (9)0.0182 (10)0.0151 (9)
C100.0450 (13)0.0414 (13)0.0514 (12)0.0144 (9)0.0212 (10)0.0226 (10)
C110.0429 (12)0.0383 (12)0.0551 (13)0.0113 (9)0.0207 (10)0.0242 (10)
C120.0543 (14)0.0306 (12)0.0574 (13)0.0099 (9)0.0264 (11)0.0180 (10)
C130.0467 (13)0.0343 (12)0.0500 (12)0.0108 (9)0.0225 (10)0.0190 (9)
C140.0681 (17)0.0454 (14)0.0726 (16)0.0115 (12)0.0338 (14)0.0323 (12)
C150.0718 (17)0.0482 (15)0.0566 (14)0.0065 (12)0.0287 (13)0.0185 (11)
C160.090 (2)0.0556 (17)0.0761 (18)0.0213 (14)0.0462 (16)0.0256 (14)
C170.0671 (17)0.0506 (15)0.0685 (16)0.0173 (12)0.0378 (14)0.0272 (12)
C180.0567 (15)0.0409 (14)0.0734 (16)0.0100 (11)0.0284 (13)0.0289 (12)
C190.0705 (18)0.0525 (16)0.103 (2)0.0137 (13)0.0413 (17)0.0444 (15)
C200.0461 (13)0.0355 (12)0.0484 (12)0.0045 (9)0.0173 (10)0.0203 (10)
C210.0550 (15)0.0514 (15)0.0626 (15)0.0112 (11)0.0156 (12)0.0305 (12)
C220.0561 (16)0.0651 (19)0.0697 (17)0.0000 (13)0.0007 (13)0.0373 (15)
C230.082 (2)0.0507 (17)0.0541 (15)0.0072 (14)0.0010 (15)0.0191 (13)
C240.0790 (19)0.0370 (14)0.0550 (14)0.0029 (12)0.0096 (14)0.0141 (11)
C250.0537 (14)0.0350 (12)0.0501 (13)0.0052 (10)0.0144 (11)0.0173 (10)
C260.0579 (15)0.0345 (13)0.0537 (13)0.0133 (10)0.0216 (12)0.0179 (10)
C270.0440 (13)0.0391 (12)0.0564 (13)0.0067 (9)0.0149 (11)0.0218 (10)
C280.0499 (14)0.0466 (13)0.0555 (13)0.0077 (10)0.0193 (11)0.0234 (11)
C290.0521 (14)0.0588 (15)0.0633 (15)0.0076 (11)0.0234 (12)0.0377 (12)
C300.0605 (15)0.0501 (14)0.0597 (14)0.0229 (11)0.0288 (12)0.0310 (12)
C310.096 (2)0.105 (3)0.0682 (19)0.0437 (19)0.0405 (18)0.0533 (18)
C320.139 (4)0.131 (3)0.065 (2)0.055 (3)0.026 (2)0.057 (2)
C330.099 (3)0.100 (3)0.095 (3)0.023 (2)0.004 (2)0.060 (2)
C340.0605 (18)0.074 (2)0.105 (2)0.0163 (14)0.0102 (17)0.0549 (18)
C350.0571 (16)0.0462 (14)0.0669 (16)0.0177 (11)0.0229 (13)0.0291 (12)
Geometric parameters (Å, º) top
O1—C131.382 (3)C15—H15B0.97
O1—C11.384 (2)C16—H16A0.96
O2—C261.229 (3)C16—H16B0.96
O3—C351.371 (3)C16—H16C0.96
O3—H3A0.82C17—H17A0.96
N1—C261.362 (3)C17—H17B0.96
N1—C271.439 (3)C17—H17C0.96
N1—C71.491 (3)C18—C191.509 (3)
N2—C281.461 (3)C18—H18A0.97
N2—C291.472 (3)C18—H18B0.97
N3—C31.372 (3)C19—H19A0.96
N3—C151.450 (3)C19—H19B0.96
N3—H3B0.86C19—H19C0.96
N4—C111.385 (3)C20—C211.375 (3)
N4—C181.438 (3)C20—C251.379 (3)
N4—H4A0.86C21—C221.383 (4)
C1—C21.375 (3)C21—H21A0.93
C1—C61.380 (3)C22—C231.376 (4)
C2—C31.390 (3)C22—H22A0.93
C2—H2B0.93C23—C241.376 (4)
C3—C41.421 (3)C23—H23A0.93
C4—C51.369 (3)C24—C251.387 (3)
C4—C141.506 (3)C24—H24A0.93
C5—C61.401 (3)C25—C261.466 (3)
C5—H5A0.93C27—C281.509 (3)
C6—C71.512 (3)C27—H27A0.97
C7—C81.514 (3)C27—H27B0.97
C7—C201.522 (3)C28—H28A0.97
C8—C131.379 (3)C28—H28B0.97
C8—C91.393 (3)C29—C301.498 (3)
C9—C101.378 (3)C29—H29A0.93
C9—H9A0.93C30—C311.376 (4)
C10—C111.417 (3)C30—C351.390 (3)
C10—C171.496 (3)C31—C321.390 (5)
C11—C121.377 (3)C31—H31A0.93
C12—C131.387 (3)C32—C331.360 (5)
C12—H12A0.93C32—H32A0.93
C14—H14A0.96C33—C341.372 (5)
C14—H14B0.96C33—H33A0.93
C14—H14C0.96C34—C351.374 (4)
C15—C161.501 (4)C34—H34A0.93
C15—H15A0.97
C13—O1—C1118.30 (16)C10—C17—H17A109.5
C35—O3—H3A109.5C10—C17—H17B109.5
C26—N1—C27123.37 (19)H17A—C17—H17B109.5
C26—N1—C7113.76 (17)C10—C17—H17C109.5
C27—N1—C7122.35 (16)H17A—C17—H17C109.5
C28—N2—C29112.26 (18)H17B—C17—H17C109.5
C3—N3—C15122.76 (19)N4—C18—C19110.8 (2)
C3—N3—H3B118.6N4—C18—H18A109.5
C15—N3—H3B118.6C19—C18—H18A109.5
C11—N4—C18122.31 (19)N4—C18—H18B109.5
C11—N4—H4A118.8C19—C18—H18B109.5
C18—N4—H4A118.8H18A—C18—H18B108.1
C2—C1—C6122.20 (19)C18—C19—H19A109.5
C2—C1—O1114.70 (18)C18—C19—H19B109.5
C6—C1—O1123.09 (19)H19A—C19—H19B109.5
C1—C2—C3121.2 (2)C18—C19—H19C109.5
C1—C2—H2B119.4H19A—C19—H19C109.5
C3—C2—H2B119.4H19B—C19—H19C109.5
N3—C3—C2121.2 (2)C21—C20—C25120.9 (2)
N3—C3—C4120.58 (19)C21—C20—C7128.6 (2)
C2—C3—C4118.2 (2)C25—C20—C7110.5 (2)
C5—C4—C3118.36 (19)C20—C21—C22118.2 (3)
C5—C4—C14121.3 (2)C20—C21—H21A120.9
C3—C4—C14120.3 (2)C22—C21—H21A120.9
C4—C5—C6124.1 (2)C23—C22—C21121.1 (3)
C4—C5—H5A118.0C23—C22—H22A119.5
C6—C5—H5A118.0C21—C22—H22A119.5
C1—C6—C5116.0 (2)C22—C23—C24120.9 (2)
C1—C6—C7122.45 (18)C22—C23—H23A119.5
C5—C6—C7121.51 (18)C24—C23—H23A119.5
N1—C7—C6111.72 (17)C23—C24—C25118.1 (3)
N1—C7—C8109.84 (17)C23—C24—H24A121.0
C6—C7—C8110.45 (17)C25—C24—H24A121.0
N1—C7—C2099.86 (16)C20—C25—C24120.8 (2)
C6—C7—C20111.95 (17)C20—C25—C26109.02 (19)
C8—C7—C20112.63 (17)C24—C25—C26130.1 (2)
C13—C8—C9116.30 (19)O2—C26—N1124.8 (2)
C13—C8—C7122.44 (19)O2—C26—C25128.6 (2)
C9—C8—C7121.24 (18)N1—C26—C25106.6 (2)
C10—C9—C8123.8 (2)N1—C27—C28113.04 (18)
C10—C9—H9A118.1N1—C27—H27A109.0
C8—C9—H9A118.1C28—C27—H27A109.0
C9—C10—C11118.1 (2)N1—C27—H27B109.0
C9—C10—C17121.2 (2)C28—C27—H27B109.0
C11—C10—C17120.7 (2)H27A—C27—H27B107.8
C12—C11—N4122.2 (2)N2—C28—C27110.51 (18)
C12—C11—C10119.00 (19)N2—C28—H28A109.5
N4—C11—C10118.74 (19)C27—C28—H28A109.5
C11—C12—C13120.7 (2)N2—C28—H28B109.5
C11—C12—H12A119.7C27—C28—H28B109.5
C13—C12—H12A119.7H28A—C28—H28B108.1
C8—C13—O1123.17 (18)N2—C29—C30111.97 (19)
C8—C13—C12122.1 (2)N2—C29—H29A124.0
O1—C13—C12114.72 (18)C30—C29—H29A124.0
C4—C14—H14A109.5C31—C30—C35117.9 (3)
C4—C14—H14B109.5C31—C30—C29121.6 (2)
H14A—C14—H14B109.5C35—C30—C29120.4 (2)
C4—C14—H14C109.5C30—C31—C32120.9 (3)
H14A—C14—H14C109.5C30—C31—H31A119.5
H14B—C14—H14C109.5C32—C31—H31A119.5
N3—C15—C16111.8 (2)C33—C32—C31119.8 (3)
N3—C15—H15A109.2C33—C32—H32A120.1
C16—C15—H15A109.2C31—C32—H32A120.1
N3—C15—H15B109.2C32—C33—C34120.5 (3)
C16—C15—H15B109.2C32—C33—H33A119.8
H15A—C15—H15B107.9C34—C33—H33A119.8
C15—C16—H16A109.5C33—C34—C35119.6 (3)
C15—C16—H16B109.5C33—C34—H34A120.2
H16A—C16—H16B109.5C35—C34—H34A120.2
C15—C16—H16C109.5O3—C35—C34118.3 (3)
H16A—C16—H16C109.5O3—C35—C30120.5 (2)
H16B—C16—H16C109.5C34—C35—C30121.2 (3)
C13—O1—C1—C2177.43 (19)C9—C8—C13—C120.1 (3)
C13—O1—C1—C62.0 (3)C7—C8—C13—C12178.4 (2)
C6—C1—C2—C30.3 (4)C1—O1—C13—C81.0 (3)
O1—C1—C2—C3179.1 (2)C1—O1—C13—C12179.64 (19)
C15—N3—C3—C21.6 (4)C11—C12—C13—C80.0 (4)
C15—N3—C3—C4179.2 (2)C11—C12—C13—O1179.4 (2)
C1—C2—C3—N3177.4 (2)C3—N3—C15—C16175.0 (2)
C1—C2—C3—C41.9 (3)C11—N4—C18—C19178.4 (2)
N3—C3—C4—C5177.3 (2)N1—C7—C20—C21175.0 (2)
C2—C3—C4—C51.9 (3)C6—C7—C20—C2156.6 (3)
N3—C3—C4—C141.7 (3)C8—C7—C20—C2168.6 (3)
C2—C3—C4—C14179.1 (2)N1—C7—C20—C254.0 (2)
C3—C4—C5—C60.5 (3)C6—C7—C20—C25122.4 (2)
C14—C4—C5—C6179.5 (2)C8—C7—C20—C25112.4 (2)
C2—C1—C6—C51.1 (3)C25—C20—C21—C221.1 (3)
O1—C1—C6—C5179.5 (2)C7—C20—C21—C22180.0 (2)
C2—C1—C6—C7175.8 (2)C20—C21—C22—C230.2 (4)
O1—C1—C6—C73.6 (3)C21—C22—C23—C241.0 (4)
C4—C5—C6—C11.0 (3)C22—C23—C24—C250.4 (4)
C4—C5—C6—C7175.9 (2)C21—C20—C25—C241.6 (3)
C26—N1—C7—C6123.32 (19)C7—C20—C25—C24179.3 (2)
C27—N1—C7—C664.6 (2)C21—C20—C25—C26176.9 (2)
C26—N1—C7—C8113.8 (2)C7—C20—C25—C262.2 (3)
C27—N1—C7—C858.3 (2)C23—C24—C25—C200.8 (4)
C26—N1—C7—C204.8 (2)C23—C24—C25—C26177.4 (2)
C27—N1—C7—C20176.83 (18)C27—N1—C26—O25.4 (4)
C1—C6—C7—N1124.7 (2)C7—N1—C26—O2177.4 (2)
C5—C6—C7—N158.6 (3)C27—N1—C26—C25175.75 (19)
C1—C6—C7—C82.1 (3)C7—N1—C26—C253.8 (2)
C5—C6—C7—C8178.85 (18)C20—C25—C26—O2179.7 (2)
C1—C6—C7—C20124.3 (2)C24—C25—C26—O21.4 (4)
C5—C6—C7—C2052.5 (3)C20—C25—C26—N10.9 (3)
N1—C7—C8—C13123.0 (2)C24—C25—C26—N1177.4 (2)
C6—C7—C8—C130.7 (3)C26—N1—C27—C2877.5 (3)
C20—C7—C8—C13126.7 (2)C7—N1—C27—C28111.2 (2)
N1—C7—C8—C955.2 (3)C29—N2—C28—C27170.9 (2)
C6—C7—C8—C9178.86 (19)N1—C27—C28—N2176.43 (18)
C20—C7—C8—C955.1 (3)C28—N2—C29—C30177.25 (19)
C13—C8—C9—C100.1 (3)N2—C29—C30—C31139.0 (3)
C7—C8—C9—C10178.4 (2)N2—C29—C30—C3544.5 (3)
C8—C9—C10—C110.1 (3)C35—C30—C31—C321.0 (4)
C8—C9—C10—C17179.0 (2)C29—C30—C31—C32177.6 (3)
C18—N4—C11—C1210.5 (4)C30—C31—C32—C330.2 (6)
C18—N4—C11—C10170.9 (2)C31—C32—C33—C341.5 (6)
C9—C10—C11—C120.0 (3)C32—C33—C34—C352.3 (5)
C17—C10—C11—C12178.9 (2)C33—C34—C35—O3179.7 (3)
C9—C10—C11—N4178.7 (2)C33—C34—C35—C301.4 (4)
C17—C10—C11—N40.2 (3)C31—C30—C35—O3178.7 (2)
N4—C11—C12—C13178.7 (2)C29—C30—C35—O32.0 (4)
C10—C11—C12—C130.1 (3)C31—C30—C35—C340.2 (4)
C9—C8—C13—O1179.5 (2)C29—C30—C35—C34176.9 (2)
C7—C8—C13—O12.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.822.012.685 (3)139
N3—H3B···O3i0.862.323.144 (1)160
C9—H9A···O2ii0.932.593.468 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+3, z+1.

Experimental details

Crystal data
Chemical formulaC35H36N4O3
Mr560.68
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)11.6453 (5), 11.8588 (3), 12.9822 (3)
α, β, γ (°)116.321 (1), 103.173 (2), 98.337 (2)
V3)1501.21 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.976, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
9518, 5018, 3667
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.169, 1.01
No. of reflections5018
No. of parameters383
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.34

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.822.012.685 (3)139
N3—H3B···O3i0.862.323.144 (1)160
C9—H9A···O2ii0.932.593.468 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+3, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 20376010 and 20472012) and the Natural Science Foundation of Liaoning Provence (grant No. 20062186).

References

First citationBruker (1997). SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T. & Rice, T. E. (1997). Chem. Rev. 97, 1515–1566.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W. & Yoon, J. (2005). J. Am. Chem. Soc. 127, 10107–10111.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J. S., Hwang, I. C., Kwang, S. K. & Jong, S. K. (2007). Org. Lett. 9, 907–910.  Web of Science CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds