metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m330-m331

(2,3,5,10,12,13,15,20-Octa­phenyl­porphinato)copper(II) 1,1,2,2-tetra­chloro­ethane solvate

aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India, and bSophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai 600 036, India
*Correspondence e-mail: pbhyrappa@hotmail.com

(Received 29 November 2007; accepted 2 January 2008; online 9 January 2008)

The title complex, [Cu(C68H44N4)]·C2H2Cl4, exhibits nearly square-planar geometry around the CuII centre and the macrocyclic ring is almost planar. The porphyrin mol­ecule has an approximate non-crystallographic inversion centre (Ci), and a non-crystallographic twofold rotation axis (C2) within the CuII–porphyrin ring plane. Further, it has non-crystallographic twofold rotation axis and mirror plane (Cs) symmetry perpendicular to the mol­ecular plane. The mol­ecular packing of the complexes and the solvent molecules shows weak inter­molecular C—H⋯π, C—H⋯Cl and C—H⋯N inter­actions, forming a clathrate-like structure.

Related literature

For related structures, see: Chan et al. (1994[Chan, K. S., Zhou, X., Lou, B.-S. & Mak, T. C. W. (1994). J. Chem. Soc. Chem. Commun. pp. 271-272.]); Fleischer et al. (1964[Fleischer, E. B., Miller, C. K. & Webb, L. E. (1964). J. Am. Chem. Soc. 86, 2342-2347.]). For porphyrin sponges, see: Byrn et al. (1993[Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480-9497.]). For the preparation of the CuTPP(Ph)4 complex, see: Bhyrappa et al. (2006[Bhyrappa, P., Sanker, M. & Varghese, B. (2006). Inorg. Chem. 45, 4136-4149.]); Adler et al. (1970[Adler, A., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443-2445.]). For hydrogen-bonding inter­actions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 215-219. IUCr Monographs on Crystallography 9. Oxford University Press.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C68H44N4)]·C2H2Cl4

  • Mr = 1148.45

  • Monoclinic, P 21 /c

  • a = 18.8891 (5) Å

  • b = 12.2800 (4) Å

  • c = 24.5323 (7) Å

  • β = 106.239 (1)°

  • V = 5463.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 173 (2) K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2003[Bruker (2003). XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.840, Tmax = 0.882

  • 33284 measured reflections

  • 9594 independent reflections

  • 6243 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 1.00

  • 9594 reflections

  • 712 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C70—H70⋯N1i 0.98 2.46 3.430 (5) 170
C58—H58⋯Cl1i 0.93 2.91 3.728 (5) 148
C66—H66⋯C18i 0.93 2.83 3.755 (4) 172
C67—H67⋯Cl4 0.93 2.93 3.424 (4) 115
C34—H34⋯C6ii 0.93 2.90 3.790 (5) 161
C35—H35⋯C11ii 0.93 2.89 3.821 (5) 175
C41—H41⋯C19ii 0.93 2.89 3.725 (5) 149
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 7.6), Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 7.6), Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2003[Bruker (2003). XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex shows a non-crystallographic centre of inversion (Ci) at the CuII centre, a rotational axis, (C2) in plane of the porphyrin ring and another C2 axis and a mirror plane (Cs) perpendicular to the molecular plane. The CuII centre has nearly square planar geometry (Fig. 1) and it is quite similar to the 5,10,15,20-tetraphenylporphinato copper(II) complex, CuTPP structure (Fleischer et al., 1964). The crystal structure of H2TPP(Ph)4 exhibited planar conformation of the porphyrin ring (Chan et al., 1994). In the title complex, shortening of the Cu—N distance (1.961 (2) Å) was observed along the β-pyrrole without substituents relative to the distance (2.060 (2) Å) towards other β-pyrroles with phenyl groups. The average Cu—N bond length was found to be 2.010 (2)Å and it is longer than that observed for the corresponding CuTPP (1.981 (7) Å) (Fleischer et al., 1964) complex. The mean plane deviation of the atoms from the 24-atom core indicates the near planar geometry of the porphyrin ring with a maximum displacement of the core atoms (0.077 (7) Å). The CuII ion deviates from the 24-atom core by 0.0167 (6) Å. The phenyl groups at the meso-positions and β-pyrrole carbons are oriented perpendicular to the mean plane of the porphyrin ring with dihedral angles of 81.1 (3)° and 80.3 (5)°, respectively. The meso-carbon-to-phenyl distance (C—C = 1.502 (4) Å) was found to be marginally longer than the β-pyrrole carbon-to-phenyl distance (C—C = 1.494 (4) Å) indicating minimal conjugation of the phenyl rings with the porphyrin π-system.

The molecular packing of a porphyrin array oriented approximately along the c axis is shown in Fig.2. The porphyrins form a slipped stack dimers and the porphyrin ring planes are separated by 4.791 Å. The dimers are held together through three symmetry related C—H···π interactions in the range 2.89 - 2.90 Å (Table 1). These long distances indicate weak C—H···π interactions (Steiner, 2002). The non-covalently bonded dimeric units are bridged by solvate mediated hydrogen bonding interactions. Each array is interconnected via interporphyrin, weak C—H···π (H66···C18 = 2.83 Å) and porphyrin-solvate hydrogen bonding (H67···Cl4 = 2.93 Å) interactions (Fig.3 and Table 1). The close contact distances are expected for the presence of hydrogen bonding (C—H···Cl and C—H···N) interactions (Desiraju & Steiner, 1999). The porphyrin ring planes in the nearest adjacent array are oriented at a skewed angle of 66.6° to each other. Each such two-dimensional network stack along the unit cell c axis by solvate mediated intermolecular interactions. Similar solvate encapsulated porphyrin sponges have been reported in the literature (Byrn et al., 1993).

Related literature top

For related structures, see: Chan et al. (1994); Fleischer et al. (1964). For porphyrin sponges, see: Byrn et al. (1993). For the preparation of the CuTPP(Ph)4 complex, see: Bhyrappa et al. (2006); Adler et al. (1970). For weak hydrogen-bonding interactions, see: Desiraju & Steiner, (1999); Steiner, (2002).

Experimental top

2,3,12,13-Tetraphenyl-5,10,15,20-tetraphenylporphyrin, H2TPP(Ph)4, was prepared using the variation of the reported procedure (Bhyrappa et al., 2006) by employing excess of super base (40 mmol) and the reaction was completed in 15 h with 92% yield of the H2TPP(Ph)4 derivative. Its CuTPP(Ph)4 complex was prepared using a literature method (Adler et al., 1970). The crystals of CuTPP(Ph)4 were grown by direct diffusion of cyclohexane into 1,1,2,2-tetrachloroethane solution of the porphyrin over a period of three days.

Refinement top

All the H atoms were placed in constrained positions (C—H = 0.93- 0.98 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5 times Ueq(C) on the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the molecular structure of CuTPP(Ph)4.TCE. Thermal ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing diagram of the CuTPP(Ph)4.TCE complex with a view along the unit cell c axis. Color scheme: C, H, gray; N, blue; Cl, green; Cu, red. The dotted red lines show the intermolecular C—H···π (H34···C6, H41···C19, H58···Cl1) and C—H···N (H70···N1) interactions.
[Figure 3] Fig. 3. View of the molecular packing of interconnecting two arrays to form a two-dimensional network of the title structure. Color scheme: C, H, gray; N, blue; Cl, green; Cu, red. The dotted red lines show the inter-array hydrogen bonding C—H···Cl (H67···Cl4) and C—H···π (H66···C18) interactions.
(2,3,5,10,12,13,15,20-Octaaphenylporphinato)copper(II) 1,1,2,2-tetrachloroethane solvate top
Crystal data top
[Cu(C68H44N4)]·C2H2Cl4F(000) = 2364
Mr = 1148.45Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6786 reflections
a = 18.8891 (5) Åθ = 2.4–26.1°
b = 12.2800 (4) ŵ = 0.65 mm1
c = 24.5323 (7) ÅT = 173 K
β = 106.239 (1)°Plate, brown
V = 5463.4 (3) Å30.28 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9594 independent reflections
Radiation source: fine-focus sealed tube6243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω and ϕ scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker 2003)
h = 2216
Tmin = 0.840, Tmax = 0.882k = 1414
33284 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0464P)2 + 5.7309P]
where P = (Fo2 + 2Fc2)/3
9594 reflections(Δ/σ)max < 0.001
712 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu(C68H44N4)]·C2H2Cl4V = 5463.4 (3) Å3
Mr = 1148.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.8891 (5) ŵ = 0.65 mm1
b = 12.2800 (4) ÅT = 173 K
c = 24.5323 (7) Å0.28 × 0.24 × 0.20 mm
β = 106.239 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9594 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2003)
6243 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.882Rint = 0.042
33284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.00Δρmax = 0.68 e Å3
9594 reflectionsΔρmin = 0.55 e Å3
712 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64459 (17)0.5928 (2)0.62180 (13)0.0231 (7)
C20.57857 (17)0.6535 (3)0.62036 (13)0.0248 (7)
C30.54667 (17)0.6822 (3)0.56593 (13)0.0239 (7)
C40.59271 (16)0.6397 (2)0.53228 (13)0.0222 (7)
C50.58044 (16)0.6525 (3)0.47372 (13)0.0236 (7)
C60.62698 (17)0.6117 (3)0.44359 (13)0.0241 (7)
C70.61224 (18)0.6229 (3)0.38328 (13)0.0304 (8)
H70.57270.65990.35930.036*
C80.66522 (18)0.5709 (3)0.36775 (14)0.0319 (8)
H80.66950.56500.33100.038*
C90.71477 (17)0.5255 (3)0.41811 (13)0.0241 (7)
C100.77607 (17)0.4639 (3)0.41720 (13)0.0238 (7)
C110.82656 (17)0.4216 (2)0.46542 (13)0.0225 (7)
C120.89196 (16)0.3591 (3)0.46627 (13)0.0240 (7)
C130.92241 (17)0.3272 (3)0.52072 (13)0.0249 (7)
C140.87621 (16)0.3701 (3)0.55416 (13)0.0228 (7)
C150.88581 (16)0.3516 (3)0.61190 (12)0.0239 (7)
C160.84064 (17)0.3967 (3)0.64239 (13)0.0246 (7)
C170.85496 (18)0.3817 (3)0.70261 (13)0.0303 (8)
H170.89320.34130.72610.036*
C180.80283 (17)0.4369 (3)0.71861 (13)0.0292 (8)
H180.79840.44190.75530.035*
C190.75556 (17)0.4864 (3)0.66928 (12)0.0247 (7)
C200.69373 (17)0.5476 (3)0.66969 (13)0.0231 (7)
C210.68139 (17)0.5585 (3)0.72752 (13)0.0288 (8)
C220.6517 (2)0.4722 (3)0.75038 (15)0.0429 (10)
H220.63510.41080.72830.052*
C230.6464 (2)0.4758 (4)0.80535 (16)0.0590 (13)
H230.62670.41730.82030.071*
C240.6702 (2)0.5662 (5)0.83754 (17)0.0659 (14)
H240.66630.56920.87450.079*
C250.6998 (2)0.6523 (4)0.81635 (17)0.0604 (13)
H250.71600.71340.83880.073*
C260.7058 (2)0.6487 (3)0.76105 (15)0.0423 (9)
H260.72630.70720.74670.051*
C270.54803 (17)0.6852 (3)0.66816 (13)0.0259 (7)
C280.5045 (2)0.6149 (3)0.68860 (15)0.0406 (9)
H280.49690.54430.67450.049*
C290.4719 (2)0.6481 (3)0.72986 (16)0.0483 (10)
H290.44250.59980.74300.058*
C300.4827 (2)0.7509 (4)0.75122 (16)0.0463 (10)
H300.46170.77250.77950.056*
C310.5249 (2)0.8226 (3)0.73069 (16)0.0476 (10)
H310.53130.89350.74440.057*
C320.55786 (19)0.7895 (3)0.68968 (14)0.0372 (9)
H320.58700.83820.67650.045*
C330.47542 (16)0.7434 (3)0.54840 (13)0.0250 (7)
C340.41086 (18)0.6902 (3)0.54866 (15)0.0368 (9)
H340.41230.61670.55800.044*
C350.34450 (19)0.7451 (3)0.53527 (16)0.0425 (10)
H350.30160.70830.53570.051*
C360.3414 (2)0.8534 (3)0.52138 (16)0.0439 (10)
H360.29660.89020.51190.053*
C370.4057 (2)0.9076 (3)0.52158 (16)0.0411 (9)
H370.40410.98110.51230.049*
C380.47228 (18)0.8533 (3)0.53543 (14)0.0320 (8)
H380.51530.89070.53610.038*
C390.51471 (17)0.7143 (3)0.43896 (12)0.0251 (7)
C400.44515 (18)0.6684 (3)0.42313 (14)0.0345 (8)
H400.43800.59850.43520.041*
C410.38612 (19)0.7259 (3)0.38938 (16)0.0449 (10)
H410.33940.69470.37910.054*
C420.3960 (2)0.8287 (3)0.37089 (15)0.0454 (10)
H420.35590.86730.34850.054*
C430.4649 (2)0.8745 (3)0.38543 (14)0.0401 (9)
H430.47190.94380.37260.048*
C440.52382 (18)0.8173 (3)0.41928 (13)0.0307 (8)
H440.57050.84860.42900.037*
C450.78249 (17)0.4373 (3)0.35884 (13)0.0274 (8)
C460.7451 (2)0.3482 (3)0.33074 (14)0.0404 (9)
H460.71810.30430.34850.048*
C470.7477 (2)0.3239 (4)0.27625 (16)0.0524 (11)
H470.72240.26360.25750.063*
C480.7869 (2)0.3877 (4)0.24988 (16)0.0536 (12)
H480.78900.37050.21340.064*
C490.8231 (2)0.4771 (4)0.27717 (16)0.0586 (13)
H490.84950.52120.25900.070*
C500.8210 (2)0.5028 (3)0.33185 (15)0.0433 (10)
H500.84550.56410.35010.052*
C510.92391 (17)0.3269 (3)0.41925 (13)0.0267 (8)
C520.90578 (19)0.2281 (3)0.39251 (14)0.0363 (9)
H520.87050.18440.40160.044*
C530.9393 (2)0.1929 (3)0.35218 (15)0.0483 (10)
H530.92660.12570.33470.058*
C540.9907 (2)0.2558 (4)0.33792 (16)0.0497 (11)
H541.01220.23270.31010.060*
C551.0106 (2)0.3541 (4)0.36498 (18)0.0538 (11)
H551.04630.39680.35590.065*
C560.9775 (2)0.3896 (3)0.40592 (16)0.0428 (10)
H560.99140.45570.42430.051*
C570.99055 (17)0.2602 (3)0.53830 (12)0.0257 (7)
C580.98709 (19)0.1484 (3)0.54570 (14)0.0337 (8)
H580.94150.11500.54060.040*
C591.0503 (2)0.0863 (3)0.56045 (15)0.0459 (10)
H591.04720.01160.56560.055*
C601.1178 (2)0.1343 (4)0.56752 (16)0.0513 (11)
H601.16040.09240.57820.062*
C611.1226 (2)0.2441 (4)0.55881 (16)0.0465 (10)
H611.16830.27640.56290.056*
C621.05912 (18)0.3068 (3)0.54386 (14)0.0349 (9)
H621.06250.38100.53750.042*
C630.94523 (17)0.2782 (3)0.64525 (13)0.0279 (8)
C640.9268 (2)0.1744 (3)0.65906 (14)0.0379 (9)
H640.87820.15060.64650.045*
C650.9809 (3)0.1058 (3)0.69174 (16)0.0529 (11)
H650.96830.03650.70120.064*
C661.0524 (3)0.1401 (4)0.70990 (16)0.0569 (12)
H661.08860.09370.73120.068*
C671.0710 (2)0.2428 (4)0.69686 (15)0.0497 (11)
H671.11970.26590.70930.060*
C681.01747 (18)0.3120 (3)0.66534 (14)0.0375 (9)
H681.03030.38230.65750.045*
N10.65247 (13)0.5851 (2)0.56727 (10)0.0215 (6)
N20.69068 (13)0.5520 (2)0.46464 (10)0.0221 (6)
N30.81909 (13)0.4296 (2)0.51955 (10)0.0214 (6)
N40.77967 (13)0.4618 (2)0.62234 (10)0.0225 (6)
Cu10.735277 (19)0.50618 (3)0.543368 (15)0.02048 (11)
C691.2045 (2)0.3335 (4)0.94084 (18)0.0544 (11)
H691.17610.26740.94220.065*
C701.2450 (2)0.3183 (4)0.89730 (19)0.0594 (12)
H701.27920.25740.90980.071*
Cl11.14390 (8)0.44408 (13)0.92542 (6)0.0953 (5)
Cl21.27110 (6)0.35061 (10)1.00777 (4)0.0613 (3)
Cl31.29698 (8)0.43045 (13)0.88925 (6)0.0882 (4)
Cl41.17999 (7)0.27836 (13)0.83291 (5)0.0837 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0263 (17)0.0209 (18)0.0243 (18)0.0048 (14)0.0110 (14)0.0054 (14)
C20.0265 (17)0.0230 (18)0.0284 (18)0.0018 (15)0.0137 (14)0.0052 (14)
C30.0261 (17)0.0186 (17)0.0294 (18)0.0026 (14)0.0116 (14)0.0026 (14)
C40.0230 (17)0.0185 (17)0.0265 (18)0.0039 (14)0.0094 (14)0.0025 (14)
C50.0241 (17)0.0211 (18)0.0263 (18)0.0002 (14)0.0083 (14)0.0007 (14)
C60.0263 (17)0.0204 (18)0.0259 (18)0.0002 (14)0.0080 (14)0.0007 (14)
C70.0329 (19)0.036 (2)0.0224 (18)0.0102 (16)0.0082 (15)0.0037 (15)
C80.037 (2)0.039 (2)0.0223 (18)0.0076 (17)0.0124 (15)0.0033 (16)
C90.0285 (18)0.0235 (19)0.0219 (17)0.0007 (14)0.0097 (14)0.0010 (14)
C100.0279 (18)0.0227 (18)0.0232 (17)0.0011 (14)0.0112 (14)0.0011 (14)
C110.0261 (17)0.0202 (18)0.0242 (17)0.0038 (14)0.0121 (14)0.0005 (14)
C120.0238 (17)0.0251 (18)0.0249 (18)0.0011 (14)0.0096 (13)0.0017 (14)
C130.0261 (17)0.0258 (19)0.0267 (18)0.0005 (14)0.0135 (14)0.0015 (15)
C140.0215 (16)0.0216 (18)0.0250 (17)0.0015 (14)0.0061 (13)0.0016 (14)
C150.0234 (17)0.0266 (19)0.0219 (17)0.0007 (14)0.0067 (13)0.0020 (14)
C160.0248 (17)0.0276 (19)0.0225 (17)0.0007 (15)0.0084 (14)0.0013 (14)
C170.0311 (19)0.039 (2)0.0205 (17)0.0071 (16)0.0070 (14)0.0022 (15)
C180.0317 (19)0.040 (2)0.0175 (17)0.0025 (16)0.0090 (14)0.0004 (15)
C190.0270 (17)0.0277 (19)0.0210 (16)0.0028 (15)0.0093 (13)0.0051 (14)
C200.0267 (18)0.0221 (18)0.0233 (17)0.0053 (14)0.0114 (14)0.0066 (14)
C210.0262 (18)0.041 (2)0.0190 (17)0.0105 (16)0.0064 (14)0.0046 (16)
C220.042 (2)0.060 (3)0.031 (2)0.006 (2)0.0174 (17)0.0002 (19)
C230.050 (3)0.102 (4)0.031 (2)0.000 (3)0.0195 (19)0.013 (2)
C240.054 (3)0.124 (5)0.022 (2)0.021 (3)0.015 (2)0.004 (3)
C250.067 (3)0.078 (4)0.030 (2)0.015 (3)0.005 (2)0.026 (2)
C260.046 (2)0.045 (2)0.033 (2)0.0071 (19)0.0071 (17)0.0125 (18)
C270.0250 (17)0.029 (2)0.0247 (17)0.0053 (15)0.0093 (14)0.0014 (15)
C280.046 (2)0.038 (2)0.045 (2)0.0014 (19)0.0259 (19)0.0092 (18)
C290.050 (2)0.055 (3)0.052 (3)0.001 (2)0.034 (2)0.001 (2)
C300.047 (2)0.062 (3)0.036 (2)0.019 (2)0.0207 (19)0.001 (2)
C310.062 (3)0.041 (2)0.045 (2)0.009 (2)0.023 (2)0.013 (2)
C320.043 (2)0.037 (2)0.036 (2)0.0014 (18)0.0178 (17)0.0053 (17)
C330.0254 (17)0.0271 (19)0.0246 (17)0.0019 (15)0.0103 (14)0.0051 (15)
C340.033 (2)0.027 (2)0.052 (2)0.0004 (17)0.0166 (17)0.0025 (17)
C350.027 (2)0.041 (2)0.061 (3)0.0019 (18)0.0156 (18)0.005 (2)
C360.030 (2)0.041 (2)0.062 (3)0.0104 (19)0.0158 (18)0.002 (2)
C370.041 (2)0.026 (2)0.058 (3)0.0073 (18)0.0156 (18)0.0039 (18)
C380.0309 (19)0.026 (2)0.042 (2)0.0018 (16)0.0156 (16)0.0013 (16)
C390.0279 (18)0.0271 (19)0.0211 (17)0.0035 (15)0.0083 (13)0.0036 (14)
C400.032 (2)0.034 (2)0.037 (2)0.0023 (17)0.0088 (16)0.0093 (17)
C410.026 (2)0.052 (3)0.050 (2)0.0013 (19)0.0010 (17)0.019 (2)
C420.038 (2)0.053 (3)0.038 (2)0.023 (2)0.0027 (17)0.006 (2)
C430.050 (2)0.035 (2)0.035 (2)0.0145 (19)0.0111 (18)0.0052 (17)
C440.0305 (19)0.033 (2)0.0285 (18)0.0026 (16)0.0085 (15)0.0001 (16)
C450.0266 (18)0.033 (2)0.0224 (17)0.0071 (16)0.0068 (14)0.0018 (15)
C460.050 (2)0.042 (2)0.031 (2)0.0024 (19)0.0141 (17)0.0029 (18)
C470.058 (3)0.059 (3)0.036 (2)0.006 (2)0.007 (2)0.017 (2)
C480.048 (2)0.090 (4)0.026 (2)0.012 (2)0.0156 (19)0.010 (2)
C490.056 (3)0.093 (4)0.034 (2)0.013 (3)0.026 (2)0.003 (2)
C500.043 (2)0.059 (3)0.032 (2)0.012 (2)0.0178 (17)0.005 (2)
C510.0292 (18)0.030 (2)0.0234 (17)0.0087 (15)0.0108 (14)0.0010 (15)
C520.040 (2)0.041 (2)0.031 (2)0.0006 (18)0.0164 (16)0.0023 (17)
C530.059 (3)0.053 (3)0.036 (2)0.008 (2)0.017 (2)0.014 (2)
C540.052 (3)0.067 (3)0.038 (2)0.021 (2)0.0258 (19)0.001 (2)
C550.052 (3)0.063 (3)0.064 (3)0.006 (2)0.043 (2)0.008 (2)
C560.050 (2)0.039 (2)0.051 (2)0.0011 (19)0.032 (2)0.0015 (19)
C570.0291 (18)0.032 (2)0.0183 (16)0.0046 (16)0.0099 (13)0.0019 (14)
C580.037 (2)0.035 (2)0.033 (2)0.0061 (17)0.0148 (16)0.0009 (16)
C590.061 (3)0.036 (2)0.042 (2)0.018 (2)0.016 (2)0.0043 (18)
C600.042 (2)0.064 (3)0.046 (2)0.030 (2)0.0095 (19)0.000 (2)
C610.027 (2)0.064 (3)0.049 (2)0.008 (2)0.0123 (17)0.007 (2)
C620.034 (2)0.038 (2)0.036 (2)0.0015 (17)0.0146 (16)0.0065 (17)
C630.0302 (19)0.034 (2)0.0225 (17)0.0088 (16)0.0118 (14)0.0005 (15)
C640.043 (2)0.038 (2)0.038 (2)0.0074 (18)0.0202 (17)0.0028 (18)
C650.080 (3)0.044 (3)0.044 (2)0.025 (2)0.033 (2)0.016 (2)
C660.063 (3)0.074 (3)0.034 (2)0.041 (3)0.014 (2)0.012 (2)
C670.039 (2)0.072 (3)0.035 (2)0.016 (2)0.0065 (18)0.002 (2)
C680.034 (2)0.048 (2)0.0300 (19)0.0074 (18)0.0084 (16)0.0007 (18)
N10.0235 (14)0.0203 (15)0.0214 (14)0.0013 (12)0.0074 (11)0.0012 (11)
N20.0251 (14)0.0216 (14)0.0221 (14)0.0019 (12)0.0105 (11)0.0003 (12)
N30.0236 (14)0.0231 (15)0.0186 (14)0.0007 (12)0.0077 (11)0.0002 (11)
N40.0249 (14)0.0227 (15)0.0212 (14)0.0010 (12)0.0087 (11)0.0028 (11)
Cu10.0220 (2)0.0212 (2)0.01977 (19)0.00008 (17)0.00838 (14)0.00128 (16)
C690.045 (2)0.050 (3)0.070 (3)0.008 (2)0.019 (2)0.009 (2)
C700.051 (3)0.050 (3)0.080 (3)0.016 (2)0.023 (2)0.009 (2)
Cl10.0875 (10)0.1020 (11)0.0990 (11)0.0603 (9)0.0303 (8)0.0086 (9)
Cl20.0466 (6)0.0845 (9)0.0481 (6)0.0065 (6)0.0054 (5)0.0052 (6)
Cl30.0867 (10)0.0987 (11)0.0909 (10)0.0276 (8)0.0437 (8)0.0083 (8)
Cl40.0745 (8)0.1147 (12)0.0581 (8)0.0044 (8)0.0122 (6)0.0277 (7)
Geometric parameters (Å, º) top
C1—N11.390 (4)C37—C381.379 (5)
C1—C201.393 (4)C37—H370.93
C1—C21.445 (4)C38—H380.93
C2—C31.349 (4)C39—C441.381 (5)
C2—C271.496 (4)C39—C401.382 (4)
C3—C41.453 (4)C40—C411.383 (5)
C3—C331.496 (4)C40—H400.93
C4—N11.385 (4)C41—C421.371 (5)
C4—C51.398 (4)C41—H410.93
C5—C61.390 (4)C42—C431.370 (5)
C5—C391.501 (4)C42—H420.93
C6—N21.380 (4)C43—C441.381 (5)
C6—C71.434 (4)C43—H430.93
C7—C81.329 (4)C44—H440.93
C7—H70.93C45—C501.372 (5)
C8—C91.438 (4)C45—C461.378 (5)
C8—H80.93C46—C471.384 (5)
C9—N21.381 (4)C46—H460.93
C9—C101.388 (4)C47—C481.359 (6)
C10—C111.395 (4)C47—H470.93
C10—C451.506 (4)C48—C491.366 (6)
C11—N31.378 (4)C48—H480.93
C11—C121.450 (4)C49—C501.390 (5)
C12—C131.356 (4)C49—H490.93
C12—C511.497 (4)C50—H500.93
C13—C141.453 (4)C51—C521.375 (5)
C13—C571.486 (4)C51—C561.382 (5)
C14—N31.381 (4)C52—C531.385 (5)
C14—C151.396 (4)C52—H520.93
C15—C161.397 (4)C53—C541.360 (6)
C15—C631.492 (4)C53—H530.93
C16—N41.375 (4)C54—C551.378 (6)
C16—C171.437 (4)C54—H540.93
C17—C181.341 (4)C55—C561.394 (5)
C17—H170.93C55—H550.93
C18—C191.424 (4)C56—H560.93
C18—H180.93C57—C621.387 (4)
C19—N41.385 (4)C57—C581.389 (5)
C19—C201.392 (4)C58—C591.377 (5)
C20—C211.507 (4)C58—H580.93
C21—C261.380 (5)C59—C601.371 (6)
C21—C221.388 (5)C59—H590.93
C22—C231.381 (5)C60—C611.372 (6)
C22—H220.93C60—H600.93
C23—C241.363 (7)C61—C621.385 (5)
C23—H230.93C61—H610.93
C24—C251.365 (7)C62—H620.93
C24—H240.93C63—C681.379 (5)
C25—C261.393 (5)C63—C641.388 (5)
C25—H250.93C64—C651.392 (5)
C26—H260.93C64—H640.93
C27—C321.378 (5)C65—C661.365 (6)
C27—C281.379 (5)C65—H650.93
C28—C291.385 (5)C66—C671.371 (6)
C28—H280.93C66—H660.93
C29—C301.361 (5)C67—C681.380 (5)
C29—H290.93C67—H670.93
C30—C311.374 (5)C68—H680.93
C30—H300.93N1—Cu12.060 (2)
C31—C321.384 (5)N2—Cu11.961 (2)
C31—H310.93N3—Cu12.061 (2)
C32—H320.93N4—Cu11.961 (2)
C33—C381.384 (4)C69—C701.488 (6)
C33—C341.385 (4)C69—Cl11.748 (4)
C34—C351.379 (5)C69—Cl21.779 (4)
C34—H340.93C69—H690.98
C35—C361.371 (5)C70—Cl31.734 (5)
C35—H350.93C70—Cl41.777 (5)
C36—C371.383 (5)C70—H700.98
C36—H360.93
N1—C1—C20124.0 (3)C39—C40—C41120.2 (4)
N1—C1—C2109.6 (3)C39—C40—H40119.9
C20—C1—C2126.4 (3)C41—C40—H40119.9
C3—C2—C1107.6 (3)C42—C41—C40120.5 (3)
C3—C2—C27123.0 (3)C42—C41—H41119.8
C1—C2—C27129.4 (3)C40—C41—H41119.8
C2—C3—C4107.2 (3)C43—C42—C41119.9 (3)
C2—C3—C33122.2 (3)C43—C42—H42120.1
C4—C3—C33130.6 (3)C41—C42—H42120.1
N1—C4—C5124.3 (3)C42—C43—C44119.7 (4)
N1—C4—C3109.6 (3)C42—C43—H43120.2
C5—C4—C3126.1 (3)C44—C43—H43120.2
C6—C5—C4123.9 (3)C43—C44—C39121.2 (3)
C6—C5—C39115.2 (3)C43—C44—H44119.4
C4—C5—C39120.9 (3)C39—C44—H44119.4
N2—C6—C5127.4 (3)C50—C45—C46119.4 (3)
N2—C6—C7109.5 (3)C50—C45—C10121.7 (3)
C5—C6—C7123.0 (3)C46—C45—C10118.8 (3)
C8—C7—C6107.8 (3)C45—C46—C47120.2 (4)
C8—C7—H7126.1C45—C46—H46119.9
C6—C7—H7126.1C47—C46—H46119.9
C7—C8—C9107.6 (3)C48—C47—C46120.4 (4)
C7—C8—H8126.2C48—C47—H47119.8
C9—C8—H8126.2C46—C47—H47119.8
N2—C9—C10127.7 (3)C47—C48—C49119.7 (4)
N2—C9—C8109.4 (3)C47—C48—H48120.2
C10—C9—C8122.9 (3)C49—C48—H48120.2
C9—C10—C11124.4 (3)C48—C49—C50120.6 (4)
C9—C10—C45115.0 (3)C48—C49—H49119.7
C11—C10—C45120.5 (3)C50—C49—H49119.7
N3—C11—C10124.1 (3)C45—C50—C49119.7 (4)
N3—C11—C12109.9 (3)C45—C50—H50120.2
C10—C11—C12125.9 (3)C49—C50—H50120.2
C13—C12—C11107.0 (3)C52—C51—C56118.7 (3)
C13—C12—C51122.1 (3)C52—C51—C12120.0 (3)
C11—C12—C51130.9 (3)C56—C51—C12121.0 (3)
C12—C13—C14107.2 (3)C51—C52—C53120.9 (3)
C12—C13—C57122.7 (3)C51—C52—H52119.6
C14—C13—C57130.2 (3)C53—C52—H52119.6
N3—C14—C15124.6 (3)C54—C53—C52120.5 (4)
N3—C14—C13109.5 (3)C54—C53—H53119.7
C15—C14—C13125.8 (3)C52—C53—H53119.7
C14—C15—C16123.6 (3)C53—C54—C55119.5 (3)
C14—C15—C63121.3 (3)C53—C54—H54120.3
C16—C15—C63115.1 (3)C55—C54—H54120.3
N4—C16—C15127.9 (3)C54—C55—C56120.3 (4)
N4—C16—C17109.9 (3)C54—C55—H55119.9
C15—C16—C17122.1 (3)C56—C55—H55119.9
C18—C17—C16107.1 (3)C51—C56—C55120.1 (4)
C18—C17—H17126.5C51—C56—H56119.9
C16—C17—H17126.5C55—C56—H56119.9
C17—C18—C19107.7 (3)C62—C57—C58118.1 (3)
C17—C18—H18126.1C62—C57—C13120.6 (3)
C19—C18—H18126.1C58—C57—C13121.1 (3)
N4—C19—C20126.6 (3)C59—C58—C57120.8 (3)
N4—C19—C18109.9 (3)C59—C58—H58119.6
C20—C19—C18123.6 (3)C57—C58—H58119.6
C19—C20—C1124.9 (3)C60—C59—C58120.1 (4)
C19—C20—C21113.9 (3)C60—C59—H59119.9
C1—C20—C21121.1 (3)C58—C59—H59119.9
C26—C21—C22118.5 (3)C59—C60—C61120.2 (4)
C26—C21—C20121.2 (3)C59—C60—H60119.9
C22—C21—C20120.0 (3)C61—C60—H60119.9
C23—C22—C21121.2 (4)C60—C61—C62119.9 (4)
C23—C22—H22119.4C60—C61—H61120.1
C21—C22—H22119.4C62—C61—H61120.1
C24—C23—C22119.3 (4)C61—C62—C57120.8 (4)
C24—C23—H23120.3C61—C62—H62119.6
C22—C23—H23120.3C57—C62—H62119.6
C23—C24—C25120.9 (4)C68—C63—C64118.7 (3)
C23—C24—H24119.5C68—C63—C15122.1 (3)
C25—C24—H24119.5C64—C63—C15119.1 (3)
C24—C25—C26120.0 (4)C63—C64—C65120.2 (4)
C24—C25—H25120.0C63—C64—H64119.9
C26—C25—H25120.0C65—C64—H64119.9
C21—C26—C25120.1 (4)C66—C65—C64120.1 (4)
C21—C26—H26120.0C66—C65—H65120.0
C25—C26—H26120.0C64—C65—H65120.0
C32—C27—C28118.2 (3)C65—C66—C67120.2 (4)
C32—C27—C2120.1 (3)C65—C66—H66119.9
C28—C27—C2121.5 (3)C67—C66—H66119.9
C27—C28—C29120.9 (4)C66—C67—C68120.2 (4)
C27—C28—H28119.5C66—C67—H67119.9
C29—C28—H28119.5C68—C67—H67119.9
C30—C29—C28120.3 (4)C63—C68—C67120.7 (4)
C30—C29—H29119.8C63—C68—H68119.6
C28—C29—H29119.8C67—C68—H68119.6
C29—C30—C31119.5 (3)C4—N1—C1106.0 (2)
C29—C30—H30120.2C4—N1—Cu1127.11 (19)
C31—C30—H30120.2C1—N1—Cu1126.9 (2)
C30—C31—C32120.2 (4)C6—N2—C9105.7 (2)
C30—C31—H31119.9C6—N2—Cu1127.60 (19)
C32—C31—H31119.9C9—N2—Cu1126.6 (2)
C27—C32—C31120.7 (3)C11—N3—C14106.4 (2)
C27—C32—H32119.6C11—N3—Cu1126.84 (19)
C31—C32—H32119.6C14—N3—Cu1126.67 (19)
C38—C33—C34118.6 (3)C16—N4—C19105.5 (2)
C38—C33—C3122.2 (3)C16—N4—Cu1126.8 (2)
C34—C33—C3119.0 (3)C19—N4—Cu1127.7 (2)
C35—C34—C33120.8 (3)N4—Cu1—N2179.44 (11)
C35—C34—H34119.6N4—Cu1—N189.91 (10)
C33—C34—H34119.6N2—Cu1—N189.67 (10)
C36—C35—C34120.4 (3)N4—Cu1—N390.18 (10)
C36—C35—H35119.8N2—Cu1—N390.23 (10)
C34—C35—H35119.8N1—Cu1—N3179.05 (10)
C35—C36—C37119.3 (3)C70—C69—Cl1112.3 (3)
C35—C36—H36120.4C70—C69—Cl2107.8 (3)
C37—C36—H36120.4Cl1—C69—Cl2111.0 (2)
C38—C37—C36120.5 (3)C70—C69—H69108.6
C38—C37—H37119.7Cl1—C69—H69108.6
C36—C37—H37119.7Cl2—C69—H69108.6
C37—C38—C33120.4 (3)C69—C70—Cl3113.8 (3)
C37—C38—H38119.8C69—C70—Cl4107.9 (3)
C33—C38—H38119.8Cl3—C70—Cl4113.0 (3)
C44—C39—C40118.5 (3)C69—C70—H70107.3
C44—C39—C5119.8 (3)Cl3—C70—H70107.3
C40—C39—C5121.6 (3)Cl4—C70—H70107.3
N1—C1—C2—C30.1 (4)C5—C39—C40—C41177.7 (3)
C20—C1—C2—C3179.7 (3)C39—C40—C41—C420.5 (5)
N1—C1—C2—C27178.4 (3)C40—C41—C42—C430.6 (5)
C20—C1—C2—C271.9 (5)C41—C42—C43—C440.9 (5)
C1—C2—C3—C40.1 (4)C42—C43—C44—C390.1 (5)
C27—C2—C3—C4178.5 (3)C40—C39—C44—C431.2 (5)
C1—C2—C3—C33178.0 (3)C5—C39—C44—C43177.5 (3)
C27—C2—C3—C333.4 (5)C9—C10—C45—C5091.7 (4)
C2—C3—C4—N10.1 (4)C11—C10—C45—C5092.5 (4)
C33—C3—C4—N1177.8 (3)C9—C10—C45—C4684.5 (4)
C2—C3—C4—C5178.9 (3)C11—C10—C45—C4691.3 (4)
C33—C3—C4—C53.1 (5)C50—C45—C46—C471.3 (5)
N1—C4—C5—C60.1 (5)C10—C45—C46—C47177.6 (3)
C3—C4—C5—C6178.8 (3)C45—C46—C47—C480.1 (6)
N1—C4—C5—C39179.1 (3)C46—C47—C48—C490.9 (6)
C3—C4—C5—C390.3 (5)C47—C48—C49—C500.7 (7)
C4—C5—C6—N21.2 (5)C46—C45—C50—C491.5 (6)
C39—C5—C6—N2179.7 (3)C10—C45—C50—C49177.7 (3)
C4—C5—C6—C7178.1 (3)C48—C49—C50—C450.5 (6)
C39—C5—C6—C72.8 (5)C13—C12—C51—C5284.5 (4)
N2—C6—C7—C80.3 (4)C11—C12—C51—C5293.1 (4)
C5—C6—C7—C8177.1 (3)C13—C12—C51—C5688.7 (4)
C6—C7—C8—C90.1 (4)C11—C12—C51—C5693.7 (4)
C7—C8—C9—N20.4 (4)C56—C51—C52—C531.3 (5)
C7—C8—C9—C10178.9 (3)C12—C51—C52—C53174.7 (3)
N2—C9—C10—C113.0 (5)C51—C52—C53—C540.4 (6)
C8—C9—C10—C11177.8 (3)C52—C53—C54—C551.6 (6)
N2—C9—C10—C45172.6 (3)C53—C54—C55—C561.1 (6)
C8—C9—C10—C456.5 (5)C52—C51—C56—C551.7 (5)
C9—C10—C11—N34.5 (5)C12—C51—C56—C55175.0 (3)
C45—C10—C11—N3170.9 (3)C54—C55—C56—C510.5 (6)
C9—C10—C11—C12178.6 (3)C12—C13—C57—C6276.4 (4)
C45—C10—C11—C126.0 (5)C14—C13—C57—C62103.9 (4)
N3—C11—C12—C131.6 (4)C12—C13—C57—C5899.0 (4)
C10—C11—C12—C13175.6 (3)C14—C13—C57—C5880.7 (4)
N3—C11—C12—C51179.5 (3)C62—C57—C58—C592.6 (5)
C10—C11—C12—C512.3 (5)C13—C57—C58—C59178.2 (3)
C11—C12—C13—C140.2 (4)C57—C58—C59—C600.6 (5)
C51—C12—C13—C14178.3 (3)C58—C59—C60—C611.3 (6)
C11—C12—C13—C57179.5 (3)C59—C60—C61—C621.2 (6)
C51—C12—C13—C571.5 (5)C60—C61—C62—C570.9 (5)
C12—C13—C14—N31.3 (4)C58—C57—C62—C612.8 (5)
C57—C13—C14—N3179.0 (3)C13—C57—C62—C61178.3 (3)
C12—C13—C14—C15176.6 (3)C14—C15—C63—C6879.8 (4)
C57—C13—C14—C153.2 (6)C16—C15—C63—C68101.7 (4)
N3—C14—C15—C163.8 (5)C14—C15—C63—C64103.5 (4)
C13—C14—C15—C16178.6 (3)C16—C15—C63—C6474.9 (4)
N3—C14—C15—C63174.5 (3)C68—C63—C64—C651.1 (5)
C13—C14—C15—C633.0 (5)C15—C63—C64—C65177.9 (3)
C14—C15—C16—N42.2 (5)C63—C64—C65—C660.6 (5)
C63—C15—C16—N4176.2 (3)C64—C65—C66—C671.1 (6)
C14—C15—C16—C17175.8 (3)C65—C66—C67—C680.0 (6)
C63—C15—C16—C175.7 (5)C64—C63—C68—C672.3 (5)
N4—C16—C17—C180.3 (4)C15—C63—C68—C67178.9 (3)
C15—C16—C17—C18178.7 (3)C66—C67—C68—C631.8 (5)
C16—C17—C18—C190.2 (4)C5—C4—N1—C1179.0 (3)
C17—C18—C19—N40.6 (4)C3—C4—N1—C10.1 (3)
C17—C18—C19—C20178.0 (3)C5—C4—N1—Cu11.9 (4)
N4—C19—C20—C11.4 (5)C3—C4—N1—Cu1179.00 (19)
C18—C19—C20—C1176.9 (3)C20—C1—N1—C4179.8 (3)
N4—C19—C20—C21179.0 (3)C2—C1—N1—C40.0 (3)
C18—C19—C20—C210.7 (5)C20—C1—N1—Cu10.7 (4)
N1—C1—C20—C192.0 (5)C2—C1—N1—Cu1179.1 (2)
C2—C1—C20—C19177.7 (3)C5—C6—N2—C9176.7 (3)
N1—C1—C20—C21179.5 (3)C7—C6—N2—C90.6 (3)
C2—C1—C20—C210.2 (5)C5—C6—N2—Cu10.0 (5)
C19—C20—C21—C2696.4 (4)C7—C6—N2—Cu1177.3 (2)
C1—C20—C21—C2685.9 (4)C10—C9—N2—C6178.6 (3)
C19—C20—C21—C2277.0 (4)C8—C9—N2—C60.6 (3)
C1—C20—C21—C22100.7 (4)C10—C9—N2—Cu11.9 (5)
C26—C21—C22—C230.1 (5)C8—C9—N2—Cu1177.4 (2)
C20—C21—C22—C23173.7 (3)C10—C11—N3—C14174.9 (3)
C21—C22—C23—C240.5 (6)C12—C11—N3—C142.4 (3)
C22—C23—C24—C250.6 (7)C10—C11—N3—Cu11.3 (4)
C23—C24—C25—C260.1 (7)C12—C11—N3—Cu1178.6 (2)
C22—C21—C26—C250.6 (5)C15—C14—N3—C11175.6 (3)
C20—C21—C26—C25174.1 (3)C13—C14—N3—C112.3 (3)
C24—C25—C26—C210.5 (6)C15—C14—N3—Cu10.5 (4)
C3—C2—C27—C3277.1 (4)C13—C14—N3—Cu1178.4 (2)
C1—C2—C27—C32101.1 (4)C15—C16—N4—C19178.9 (3)
C3—C2—C27—C2897.4 (4)C17—C16—N4—C190.6 (3)
C1—C2—C27—C2884.4 (4)C15—C16—N4—Cu12.7 (5)
C32—C27—C28—C290.4 (5)C17—C16—N4—Cu1179.0 (2)
C2—C27—C28—C29175.0 (3)C20—C19—N4—C16177.8 (3)
C27—C28—C29—C300.3 (6)C18—C19—N4—C160.7 (3)
C28—C29—C30—C311.4 (6)C20—C19—N4—Cu10.6 (5)
C29—C30—C31—C321.8 (6)C18—C19—N4—Cu1179.1 (2)
C28—C27—C32—C310.0 (5)C16—N4—Cu1—N1176.7 (3)
C2—C27—C32—C31174.7 (3)C19—N4—Cu1—N11.4 (3)
C30—C31—C32—C271.1 (6)C16—N4—Cu1—N34.2 (3)
C2—C3—C33—C38104.3 (4)C19—N4—Cu1—N3177.7 (3)
C4—C3—C33—C3878.0 (5)C6—N2—Cu1—N11.3 (3)
C2—C3—C33—C3471.4 (4)C9—N2—Cu1—N1177.3 (3)
C4—C3—C33—C34106.3 (4)C6—N2—Cu1—N3179.7 (3)
C38—C33—C34—C351.2 (5)C9—N2—Cu1—N33.6 (3)
C3—C33—C34—C35177.0 (3)C4—N1—Cu1—N4178.1 (2)
C33—C34—C35—C360.1 (6)C1—N1—Cu1—N40.8 (2)
C34—C35—C36—C370.8 (6)C4—N1—Cu1—N22.2 (2)
C35—C36—C37—C380.2 (6)C1—N1—Cu1—N2178.9 (2)
C36—C37—C38—C331.1 (5)C11—N3—Cu1—N4178.2 (2)
C34—C33—C38—C371.7 (5)C14—N3—Cu1—N42.8 (3)
C3—C33—C38—C37177.5 (3)C11—N3—Cu1—N22.2 (2)
C6—C5—C39—C4473.2 (4)C14—N3—Cu1—N2177.6 (3)
C4—C5—C39—C44106.0 (4)Cl1—C69—C70—Cl359.0 (4)
C6—C5—C39—C40103.0 (4)Cl2—C69—C70—Cl363.6 (4)
C4—C5—C39—C4077.8 (4)Cl1—C69—C70—Cl467.2 (4)
C44—C39—C40—C411.4 (5)Cl2—C69—C70—Cl4170.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C70—H70···N1i0.982.463.430 (5)170
C58—H58···Cl1i0.932.913.728 (5)148
C66—H66···C18i0.932.833.755 (4)172
C67—H67···Cl40.932.933.424 (4)115
C34—H34···C6ii0.932.903.790 (5)161
C35—H35···C11ii0.932.893.821 (5)175
C41—H41···C19ii0.932.893.725 (5)149
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C68H44N4)]·C2H2Cl4
Mr1148.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)18.8891 (5), 12.2800 (4), 24.5323 (7)
β (°) 106.239 (1)
V3)5463.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2003)
Tmin, Tmax0.840, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
33284, 9594, 6243
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 1.00
No. of reflections9594
No. of parameters712
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.55

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), XPREP (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), and Mercury (Bruno et al., 2002).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C70—H70···N1i0.982.463.430 (5)170.3
C58—H58···Cl1i0.932.913.728 (5)147.8
C66—H66···C18i0.932.833.755 (4)171.9
C67—H67···Cl40.932.933.424 (4)114.7
C34—H34···C6ii0.932.903.790 (5)161.1
C35—H35···C11ii0.932.893.821 (5)175.4
C41—H41···C19ii0.932.893.725 (5)149.3
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by funds from the DST and partly from the CSIR, Government of India, to PB. We thank Mr V. Ramkumar for the data collection and the Department of Chemistry, IIT Madras, for the X-RD facility.

References

First citationAdler, A., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443–2445.  CrossRef CAS Web of Science Google Scholar
First citationBhyrappa, P., Sanker, M. & Varghese, B. (2006). Inorg. Chem. 45, 4136–4149.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2003). XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 7.6), Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480–9497.  CSD CrossRef CAS Web of Science Google Scholar
First citationChan, K. S., Zhou, X., Lou, B.-S. & Mak, T. C. W. (1994). J. Chem. Soc. Chem. Commun. pp. 271–272.  CrossRef Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 215–219. IUCr Monographs on Crystallography 9. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFleischer, E. B., Miller, C. K. & Webb, L. E. (1964). J. Am. Chem. Soc. 86, 2342–2347.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m330-m331
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds