metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m430-m431

Bis(acetato-κO)[N,N,N′,N′-tetra­methyl­ethane-1,2-di­amine-κ2N,N′]copper(II)

aLaboratorium für Organische Chemie, Eidgenössische Technische Hochschule (ETH) Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
*Correspondence e-mail: chen@org.chem.ethz.ch

(Received 17 January 2008; accepted 23 January 2008; online 30 January 2008)

In the title compound, [Cu(C2H3O2)2(C6H16N2)], the CuII atom is coordinated by two N atoms from the chelating N,N,N′,N′-tetra­methyl­ethane-1,2-diamine ligand and two O atoms from two acetate anions in a distorted square-planar geometry. In addition, there are longer contacts between Cu and the second O atom of each acetate ligand, which could be considered to complete a distorted octa­hedral geometry. The mol­ecules in the crystal structure are connected via inter­molecular C—H⋯O hydrogen-bonding contacts.

Related literature

For general background, see: Slootweg & Chen (2006[Slootweg, J. C. & Chen, P. (2006). Organometallics, 25, 5863-5869.]); Gerdes & Chen (2004[Gerdes, G. & Chen, P. (2004). Organometallics, 23, 3031-3036.]); Gerdes (2004[Gerdes, G. (2004). PhD thesis, ETH Zürich, Switzerland.]). For related structures, see: Dalai et al. (2002[Dalai, S., Sarathi Mukherjee, P., Rogez, G., Mallah, T., Drew, M. G. B. & Ray Chaudhuri, N. (2002). Eur. J. Inorg. Chem. pp. 3292-3297.]); Margraf et al. (2005[Margraf, G., Bats, J. W., Wagner, M. & Lerner, H.-W. (2005). Inorg. Chim. Acta, 358, 1193-1203.]); Devereux et al. (2007[Devereux, M., O'Shea, D., O'Connor, M., Grehan, H., Connor, G., McCann, M., Rosair, G., Lyng, F., Kellett, A., Walsh, M., Egan, D. & Thati, B. (2007). Polyhedron, 26, 4073-4084.]); Brown et al. (2002[Brown, D. A., Errington, W., Fitzpatrick, N. J., Glass, W. K., Kemp, T. J., Nimir, H. & Ryan, Á. T. (2002). Chem. Commun. pp. 1210-1211.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3O2)2(C6H16N2)]

  • Mr = 297.84

  • Monoclinic, P 21 /n

  • a = 8.0201 (5) Å

  • b = 15.9153 (10) Å

  • c = 10.8536 (7) Å

  • β = 90.910 (3)°

  • V = 1385.20 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 220 (2) K

  • 0.21 × 0.19 × 0.15 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 4704 measured reflections

  • 2711 independent reflections

  • 2321 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.05

  • 2711 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O14 1.9797 (19)
Cu1—O10 1.9813 (19)
Cu1⋯O12 2.509 (2)
Cu1⋯O16 2.531 (2)
Cu1—N2 2.037 (2)
Cu1—N5 2.047 (2)
O14—Cu1—O10 92.08 (9)
O14—Cu1—N2 164.30 (9)
O10—Cu1—N2 93.12 (9)
O14—Cu1—N5 92.40 (9)
O10—Cu1—N5 165.18 (9)
N2—Cu1—N5 86.30 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O12i 0.98 2.34 3.281 (4) 160
C4—H4A⋯O16ii 0.98 2.50 3.475 (4) 176
C13—H13C⋯O16iii 0.97 2.54 3.507 (4) 173
C17—H17C⋯O12iv 0.97 2.58 3.542 (4) 170
Symmetry codes: (i) [x-{1\over2}, -y+{1\over2}, z+{1\over2}]; (ii) [x-{1\over2}, -y+{1\over2}, z-{1\over2}]; (iii) [x+{1\over2}, -y+{1\over2}, z-{1\over2}]; (iv) [x+{1\over2}, -y+{1\over2}, z+{1\over2}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The aspiration of our work is to gain insight into the underlying mechanisms of the catalytic transformations of hydrocarbons by C—H bond activation (Slootweg & Chen, 2006; Gerdes & Chen, 2004) and subsequent oxidative coupling using heterobimetallic catalysis (Gerdes, 2004). Well defined platinum or palladium catalysts are suited for the C—H activation, whearas a copper-catalyzed coupling cycle is ideal for the C—X bond forming step. The intersection of the two cycles, that is transmetallation of the hydrocarbon group from platinum/palladium to copper, is poorly understood while being decisive for the outcome of the reaction. To connect two different catalyticallly active metal fragments, bridging acetate ligands are ideally suited (Gerdes, 2004) and therefore deserve our current attention. The title complex, [(TMEDA)Cu(OAc)2] (TMEDA = tetramethylethane-1,2-diamine), is a promising building block for the generation of the mixed [(TMEDA)Cu(κ1-acetate)(µ-acetate)MLn] complexes.

In the mononuclear title complex, the copper(II) atom is in a distorted, square-planar coordination geometry (Fig. 1, Table 1) and bonded to the bidentate tetramethylethane-1,2-diamine ligand [Cu—N 2.037 (2), 2.047 (2) Å] and to the two acetate anions (Dalai et al., 2002; Margraf et al., 2005). The acetato groups in [(TMEDA)Cu(OAc)2] are mono-coordinating [Cu—O 1.979 (2), 1.9810 (19) Å] (Devereux et al., 2007), but the second oxygen atom of each ligand shows an additional weak interaction with the copper atom [Cu—O 2.509 (2), 2.531 (2) Å], and could be considered to complete a distorted octahedral geometry (Dalai et al., 2002). A similar situation is observed for the zinc analogue, [(TMEDA)Zn(OAc)2], which displays more pronounced κ2-coordination of the acetates [Zn—O 2.052 (2), 2.353 (4) Å] (Brown et al., 2002).

The molecules in the crystal are connected via hydrogen bonding. There are four short intermolecular C—H···O contacts with O···H distances between 2.34 and 2.58 Å and C—H···O angles between 160 and 176° (Table 2).

Related literature top

For general background, see: Slootweg & Chen (2006); Gerdes & Chen (2004); Gerdes (2004). For related structures, see: Dalai et al. (2002); Margraf et al. (2005); Devereux et al. (2007); Brown et al. (2002).

Experimental top

General Procedures. ESI-MS measurements were performed on a Finnigan MAT TSQ Quantum triple-quad mass spectrometer equipped with electrospray sources. Elemental analyses were performed by the Microanalytical Laboratory of the Laboratorium für Organische Chemie, ETH Zürich.

The title compound was obtained as follows. To a suspension of copper(II)acetate (1.78 g, 9.78 mmol) in MeOH (40 ml) an equimolar amount of TMEDA (1.48 ml, 9.78 mmol) was added and the reaction mixture was stirred for 18 h at room temperature yielding a deep blue solution. After filtration, the solvent was removed in vacuo yielding analytically pure [(TMEDA)Cu(OAc)2] (2.64 g, 91%) as a blue powder. Crystallization from THF at room temperature yielded blue plates suitable for X-ray crystallography. M.p. 178 °C (decomp.). MS (ESI, positive ions, DCM) m/z (%): 238 (100) [M - O2CCH3]+. Elem. anal.: Found C, 40.18; H, 7.15; N, 9.41. Calcd. for C10H22N2O4Cu: C, 40.33; H, 7.44; N, 9.41.

Refinement top

The structure was refined by full-matrix least-squares analysis using an isotropic extinction correction. All non H-atoms were refined anisotropically, H-atoms isotropically, whereby H-positions are based on stereochemical considerations. For CH3 groups, C—H distances are 0.97 Å and Uiso(H) = 1.5U(eq) on the respective C-atom, while for CH2 groups, the corresponding values are 0.98 Å and 1.2U(eq), respectively.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid of [(TMEDA)Cu(OAc)2] with ellipsoids drawn at the 50% probability level. Weak interactions in the metal coordination sphere are shown as dotted lines. Hydrogen atoms are omitted for clarity.
Bis(acetato-κO)[N,N,N',N'-tetramethylethane-1,2-diamine-κ2N,N']copper(II) top
Crystal data top
[Cu(C2H3O2)2(C6H16N2)]F(000) = 628
Mr = 297.84Dx = 1.428 Mg m3
Monoclinic, P21/nMelting point: 178 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.7107 Å
a = 8.0201 (5) ÅCell parameters from 10930 reflections
b = 15.9153 (10) Åθ = 3.2–26.0°
c = 10.8536 (7) ŵ = 1.58 mm1
β = 90.910 (3)°T = 220 K
V = 1385.20 (15) Å3Cut fragment, blue
Z = 40.21 × 0.19 × 0.15 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2321 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 26.0°, θmin = 3.2°
ϕ and ω scans with κ offsetsh = 99
4704 measured reflectionsk = 1619
2711 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.7399P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.006
2711 reflectionsΔρmax = 0.53 e Å3
183 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0108 (18)
Crystal data top
[Cu(C2H3O2)2(C6H16N2)]V = 1385.20 (15) Å3
Mr = 297.84Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0201 (5) ŵ = 1.58 mm1
b = 15.9153 (10) ÅT = 220 K
c = 10.8536 (7) Å0.21 × 0.19 × 0.15 mm
β = 90.910 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2321 reflections with I > 2σ(I)
4704 measured reflectionsRint = 0.040
2711 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.06Δρmax = 0.53 e Å3
2711 reflectionsΔρmin = 0.45 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.53786 (4)0.26068 (2)0.13564 (3)0.03199 (13)
N20.3491 (3)0.18731 (15)0.1983 (2)0.0345 (5)
C30.1951 (4)0.23935 (18)0.1898 (3)0.0382 (7)
H3A0.19030.27770.26030.058 (11)*
H3B0.09640.20310.19090.051 (9)*
C40.1978 (4)0.28884 (19)0.0717 (3)0.0389 (7)
H4A0.19120.25060.00100.038 (9)*
H4B0.10160.32680.06750.055 (11)*
N50.3551 (3)0.33834 (15)0.0673 (2)0.0374 (5)
C60.3407 (4)0.4158 (2)0.1401 (4)0.0529 (9)
H6A0.24900.44940.10780.079 (12)*
H6B0.44360.44760.13510.044 (9)*
H6C0.32010.40160.22540.066 (12)*
C70.3938 (4)0.3596 (3)0.0616 (3)0.0562 (9)
H7A0.30750.39600.09520.079 (14)*
H7B0.39880.30850.11010.073 (12)*
H7C0.50050.38810.06420.059 (11)*
C80.3279 (4)0.10915 (18)0.1261 (3)0.0414 (7)
H8A0.23690.07660.15950.062 (10)*
H8B0.42990.07650.13080.048 (9)*
H8C0.30290.12310.04080.070 (13)*
C90.3865 (4)0.1654 (2)0.3283 (3)0.0448 (7)
H9A0.39810.21640.37650.053 (10)*
H9B0.48960.13360.33300.058 (10)*
H9C0.29630.13170.36050.081 (13)*
O100.7070 (2)0.17122 (13)0.15991 (18)0.0385 (5)
C110.7292 (3)0.14698 (17)0.0489 (3)0.0349 (6)
O120.6444 (3)0.17379 (14)0.03924 (19)0.0465 (5)
C130.8650 (4)0.0828 (2)0.0276 (3)0.0492 (8)
H13A0.81720.03350.01180.083 (13)*
H13B0.91560.06690.10600.104 (18)*
H13C0.94930.10680.02500.096 (15)*
O140.7116 (2)0.34802 (13)0.11797 (18)0.0405 (5)
C150.7388 (4)0.36997 (18)0.2298 (3)0.0369 (6)
O160.6567 (3)0.34218 (14)0.31695 (19)0.0449 (5)
C170.8749 (4)0.4340 (2)0.2530 (4)0.0503 (8)
H17A0.82660.48500.28580.078 (12)*
H17B0.93000.44660.17620.084 (16)*
H17C0.95570.41150.31170.091 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0299 (2)0.0361 (2)0.0299 (2)0.00122 (13)0.00067 (14)0.00086 (13)
N20.0332 (12)0.0405 (12)0.0295 (12)0.0007 (10)0.0031 (9)0.0032 (10)
C30.0315 (14)0.0484 (16)0.0346 (15)0.0014 (12)0.0018 (12)0.0055 (12)
C40.0351 (15)0.0467 (16)0.0348 (15)0.0062 (13)0.0063 (12)0.0057 (13)
N50.0379 (13)0.0390 (12)0.0352 (13)0.0029 (10)0.0005 (10)0.0015 (10)
C60.0446 (18)0.0394 (16)0.074 (3)0.0082 (14)0.0051 (17)0.0102 (16)
C70.054 (2)0.071 (2)0.0435 (19)0.0032 (18)0.0009 (16)0.0163 (18)
C80.0379 (15)0.0382 (15)0.0481 (19)0.0035 (12)0.0016 (13)0.0061 (13)
C90.0479 (18)0.0558 (18)0.0306 (15)0.0010 (15)0.0045 (13)0.0079 (14)
O100.0361 (11)0.0447 (11)0.0347 (11)0.0060 (9)0.0011 (8)0.0023 (9)
C110.0273 (13)0.0368 (14)0.0405 (16)0.0042 (11)0.0034 (11)0.0005 (12)
O120.0471 (12)0.0582 (13)0.0341 (11)0.0019 (10)0.0039 (9)0.0026 (10)
C130.0395 (17)0.0447 (17)0.064 (2)0.0024 (13)0.0077 (16)0.0079 (16)
O140.0384 (11)0.0465 (11)0.0366 (11)0.0045 (9)0.0025 (9)0.0017 (9)
C150.0315 (14)0.0392 (15)0.0399 (16)0.0031 (11)0.0014 (12)0.0018 (12)
O160.0441 (12)0.0536 (12)0.0371 (11)0.0046 (10)0.0056 (9)0.0008 (10)
C170.0405 (17)0.0480 (17)0.062 (2)0.0092 (14)0.0007 (16)0.0118 (16)
Geometric parameters (Å, º) top
Cu1—O141.9797 (19)C4—H4A0.98
Cu1—O101.9813 (19)C4—H4B0.98
Cu1—O122.509 (2)C6—H6A0.97
Cu1—O162.531 (2)C6—H6B0.97
Cu1—N22.037 (2)C6—H6C0.97
Cu1—N52.047 (2)C7—H7A0.97
N2—C81.478 (4)C7—H7B0.97
N2—C91.480 (4)C7—H7C0.97
N2—C31.489 (4)C8—H8A0.97
C3—C41.505 (4)C8—H8B0.97
C4—N51.489 (4)C8—H8C0.97
N5—C61.470 (4)C9—H9A0.97
N5—C71.477 (4)C9—H9B0.97
O10—C111.280 (4)C9—H9C0.97
C11—O121.241 (3)C13—H13A0.97
C11—C131.514 (4)C13—H13B0.97
O14—C151.278 (4)C13—H13C0.97
C15—O161.243 (4)C17—H17A0.97
C15—C171.512 (4)C17—H17B0.97
C3—H3A0.98C17—H17C0.97
C3—H3B0.98
O14—Cu1—O1092.08 (9)H4A—C4—H4B108
O14—Cu1—N2164.30 (9)N5—C6—H6A109
O10—Cu1—N293.12 (9)N5—C6—H6B109
O14—Cu1—N592.40 (9)N5—C6—H6C109
O10—Cu1—N5165.18 (9)H6A—C6—H6B109
N2—Cu1—N586.30 (9)H6A—C6—H6C109
C8—N2—C9109.1 (2)H6B—C6—H6C109
C8—N2—C3110.3 (2)N5—C7—H7A109
C9—N2—C3110.2 (2)N5—C7—H7B109
C8—N2—Cu1112.67 (18)N5—C7—H7C109
C9—N2—Cu1108.25 (18)H7A—C7—H7B109
C3—N2—Cu1106.29 (17)H7A—C7—H7C110
N2—C3—C4108.7 (2)H7B—C7—H7C109
N5—C4—C3109.1 (2)N2—C8—H8A109
C6—N5—C7109.7 (3)N2—C8—H8B109
C6—N5—C4110.7 (2)N2—C8—H8C109
C7—N5—C4110.0 (2)H8A—C8—H8B109
C6—N5—Cu1111.94 (19)H8A—C8—H8C109
C7—N5—Cu1108.74 (19)H8B—C8—H8C110
C4—N5—Cu1105.74 (17)N2—C9—H9A109
C11—O10—Cu1101.36 (17)N2—C9—H9B109
O12—C11—O10122.6 (3)N2—C9—H9C109
O12—C11—C13120.1 (3)H9A—C9—H9B110
O10—C11—C13117.3 (3)H9A—C9—H9C110
C15—O14—Cu1102.12 (18)H9B—C9—H9C109
O16—C15—O14122.7 (3)C11—C13—H13A109
O16—C15—C17120.2 (3)C11—C13—H13B110
O14—C15—C17117.0 (3)C11—C13—H13C110
N2—C3—H3A110H13A—C13—H13B109
N2—C3—H3B110H13A—C13—H13C109
C4—C3—H3A110H13B—C13—H13C109
C4—C3—H3B110C15—C17—H17A110
H3A—C3—H3B108C15—C17—H17B109
N5—C4—H4A110C15—C17—H17C109
N5—C4—H4B110H17A—C17—H17B109
C3—C4—H4A110H17A—C17—H17C110
C3—C4—H4B110H17B—C17—H17C109
O14—Cu1—N2—C8167.6 (3)N2—Cu1—N5—C6106.3 (2)
O10—Cu1—N2—C858.42 (19)O14—Cu1—N5—C763.3 (2)
N5—Cu1—N2—C8106.75 (19)O10—Cu1—N5—C744.1 (5)
O14—Cu1—N2—C946.9 (4)N2—Cu1—N5—C7132.3 (2)
O10—Cu1—N2—C962.3 (2)O14—Cu1—N5—C4178.58 (17)
N5—Cu1—N2—C9132.6 (2)O10—Cu1—N5—C474.0 (4)
O14—Cu1—N2—C371.5 (4)N2—Cu1—N5—C414.25 (17)
O10—Cu1—N2—C3179.34 (17)O14—Cu1—O10—C1190.25 (17)
N5—Cu1—N2—C314.18 (18)N2—Cu1—O10—C11104.56 (18)
C8—N2—C3—C482.3 (3)N5—Cu1—O10—C1117.2 (4)
C9—N2—C3—C4157.2 (2)Cu1—O10—C11—O125.8 (3)
Cu1—N2—C3—C440.1 (3)Cu1—O10—C11—C13174.5 (2)
N2—C3—C4—N555.2 (3)O10—Cu1—O14—C1587.43 (18)
C3—C4—N5—C681.1 (3)N2—Cu1—O14—C1521.9 (4)
C3—C4—N5—C7157.5 (3)N5—Cu1—O14—C15106.71 (19)
C3—C4—N5—Cu140.3 (3)Cu1—O14—C15—O164.8 (3)
O14—Cu1—N5—C658.0 (2)Cu1—O14—C15—C17176.6 (2)
O10—Cu1—N5—C6165.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O12i0.982.343.281 (4)160
C4—H4A···O16ii0.982.503.475 (4)176
C13—H13C···O16iii0.972.543.507 (4)173
C17—H17C···O12iv0.972.583.542 (4)170
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C2H3O2)2(C6H16N2)]
Mr297.84
Crystal system, space groupMonoclinic, P21/n
Temperature (K)220
a, b, c (Å)8.0201 (5), 15.9153 (10), 10.8536 (7)
β (°) 90.910 (3)
V3)1385.20 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.21 × 0.19 × 0.15
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4704, 2711, 2321
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.06
No. of reflections2711
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.45

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Cu1—O141.9797 (19)Cu1—N52.047 (2)
Cu1—O101.9813 (19)O10—C111.280 (4)
Cu1—O122.509 (2)C11—O121.241 (3)
Cu1—O162.531 (2)O14—C151.278 (4)
Cu1—N22.037 (2)C15—O161.243 (4)
O14—Cu1—O1092.08 (9)O14—Cu1—N592.40 (9)
O14—Cu1—N2164.30 (9)O10—Cu1—N5165.18 (9)
O10—Cu1—N293.12 (9)N2—Cu1—N586.30 (9)
O14—Cu1—N2—C371.5 (4)N5—Cu1—N2—C314.18 (18)
O10—Cu1—N2—C3179.34 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O12i0.982.343.281 (4)160
C4—H4A···O16ii0.982.503.475 (4)176
C13—H13C···O16iii0.972.543.507 (4)173
C17—H17C···O12iv0.972.583.542 (4)170
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+1/2.
 

Footnotes

Present address: Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.

Acknowledgements

A TALENT stipend (JCS) of the Netherlands Organization for Scientific Research (NWO) is gratefully acknowledged. We thank Mr P. Seiler for the single-crystal structure determination.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrown, D. A., Errington, W., Fitzpatrick, N. J., Glass, W. K., Kemp, T. J., Nimir, H. & Ryan, Á. T. (2002). Chem. Commun. pp. 1210–1211.  CrossRef Google Scholar
First citationDalai, S., Sarathi Mukherjee, P., Rogez, G., Mallah, T., Drew, M. G. B. & Ray Chaudhuri, N. (2002). Eur. J. Inorg. Chem. pp. 3292–3297.  CrossRef Google Scholar
First citationDevereux, M., O'Shea, D., O'Connor, M., Grehan, H., Connor, G., McCann, M., Rosair, G., Lyng, F., Kellett, A., Walsh, M., Egan, D. & Thati, B. (2007). Polyhedron, 26, 4073–4084.  Web of Science CSD CrossRef CAS Google Scholar
First citationGerdes, G. (2004). PhD thesis, ETH Zürich, Switzerland.  Google Scholar
First citationGerdes, G. & Chen, P. (2004). Organometallics, 23, 3031–3036.  Web of Science CrossRef CAS Google Scholar
First citationMargraf, G., Bats, J. W., Wagner, M. & Lerner, H.-W. (2005). Inorg. Chim. Acta, 358, 1193–1203.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlootweg, J. C. & Chen, P. (2006). Organometallics, 25, 5863–5869.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m430-m431
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds