organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-Di­methyl-1,1′-(butane-1,4-di­yl)dipyrrolidinium dibromide methanol disolvate

aDepartment of Applied Chemistry, Harbin Institute of Technology, Harbin 150001, People's Republic of China, and bCollege of Materials Science and Engineering, Harbin University of Science & Technology, Harbin 150040, People's Republic of China
*Correspondence e-mail: yangyulin2000@163.com

(Received 18 December 2007; accepted 3 January 2008; online 11 January 2008)

In the title compound, C14H30N22+·2Br·2CH3OH, two terminal C atoms of the butane chain are connected to two N atoms of the 1-methyl­pyrollidines, forming a linear diquaternary ammonium cation. The cation lies across a centre of inversion located between the two central C atoms of the butane chain. The asymmetric unit therefore comprises one half-cation, a bromide anion and a methanol solvent mol­ecule. In the crystal structure, the bromide anions are linked to the methanol solvent mol­ecules by O—H⋯Br hydrogen bonds.

Related literature

For information on the use of organic amines in zeolite synthesis, see: Gramm et al. (2006[Gramm, F., Baerlocher, C., McCusker, L. B., Warrender, S. J., Wright, P. A., Han, B., Hong, S. B., Liu, Z., Ohsuna, T. & Terasaki, O. (2006). Nature (London), 444, 79-81.]); Hong et al. (2007[Hong, S. B., Min, H. K., Shin, C. H., Cox, P. A., Warrender, S. J. & Wright, P. A. (2007). J. Am. Chem. Soc. 129, 10870-10885.]). For a previous synthesis of the title compound, see: Hong et al. (2004[Hong, S. B., Lear, E. G., Wright, P. A., Zhou, W. Z., Cox, P. A., Shin, C. H., Park, J. H. & Nam, I. S. (2004). J. Am. Chem. Soc. 126, 5817-5826.]).

[Scheme 1]

Experimental

Crystal data
  • C14H30N22+·2Br·2CH4O

  • Mr = 450.30

  • Monoclinic, P 21 /n

  • a = 6.4919 (7) Å

  • b = 12.4861 (13) Å

  • c = 12.9683 (13) Å

  • β = 90.748 (2)°

  • V = 1051.10 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.87 mm−1

  • T = 193 (2) K

  • 0.30 × 0.25 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.625) and SAINT (Version 6.01) and SADABS (Version?). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.390, Tmax = 0.457 (expected range = 0.337–0.396)

  • 5618 measured reflections

  • 2013 independent reflections

  • 1681 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.067

  • S = 1.09

  • 2013 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Br1 0.82 2.43 3.2453 (18) 172

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.625) and SAINT (Version 6.01) and SADABS (Version?). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.625) and SAINT (Version 6.01) and SADABS (Version?). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The use of zeolites as catalysts or catalyst supports is now widely applied in petrochemical and fine chemical processes. The synthesis of zeolites involves the addition of organic amines and it is proposed that in most cases, the amine acts as a structure-directing agent, helping to shape the framework of the structure. TNU-9 is a complex zeolite (Gramm et al., 2006) and the title compound, (I), is used as structure-directing agent in the synthesis of the TNU-9 zeolite (Hong et al., 2007). In this paper, we report a modified synthesis and the crystal structure of (I), Fig 1.

The structure of (I) consists of a linear diquaternary ammonium cation, two bromide anions and two methanol solvate molecules. The cation lies about an inversion centre at the centroid of the C6—C6A bond in the butane chain. The terminal carbon atoms of the butane are connected to the N atoms of the 1-methylpyrolidines, forming a linear diquaternary ammonium cation. In the crystal structure Br- anions are linked to methanol molecules by O1—H1···Br1 hydrogen bonds that stabilize the structure (Fig 2, Table 1).

Related literature top

For information on the use of organic amines in zeolite synthesis, see: Gramm et al. (2006); Hong et al. (2007). For a previous synthesis of the title compound, see: Hong et al. (2004).

Experimental top

(I) was prepared by refluxing 1,4-dibromobutane (1 mmol, 99%, Arcos) with an excess of 1-methylpyrrolidine (3 mmol, 97%, Arcos) 24 h in acetone (150 ml, 99%, Arcos), in a modification of the previously reported procedure (Hong et al., 2004). The excess amine was removed by extraction with acetone, and recrystallizations were performed in a methanol-diethylether mixtures (2:1).

Refinement top

H atoms were positioned geometrically with O—H = 0.82 and C—H = 0.96–0.97 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C) for CH2 groups, and 1.5 Ueq(C,O) for the –OH and –CH3 groups.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Labelled atoms are related to unlabelled atoms by the symmetry operation-x + 1,-y,-z + 2.
[Figure 2] Fig. 2. The molecular packing of (I) with hydrogen bonds drawn as dashed lines.
1,1'-Dimethyl-1,1'-(Butane-1,4-diyl)dipyrrolidinium bromide methanol disolvate top
Crystal data top
C14H30N22+·2Br·2CH4OF(000) = 468
Mr = 450.30Dx = 1.423 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5618 reflections
a = 6.4919 (7) Åθ = 2.3–26.0°
b = 12.4861 (13) ŵ = 3.87 mm1
c = 12.9683 (13) ÅT = 193 K
β = 90.748 (2)°Block, colorless
V = 1051.10 (19) Å30.30 × 0.25 × 0.24 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2013 independent reflections
Radiation source: fine-focus sealed tube1681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 58
Tmin = 0.390, Tmax = 0.457k = 1415
5618 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.1193P]
where P = (Fo2 + 2Fc2)/3
2013 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H30N22+·2Br·2CH4OV = 1051.10 (19) Å3
Mr = 450.30Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.4919 (7) ŵ = 3.87 mm1
b = 12.4861 (13) ÅT = 193 K
c = 12.9683 (13) Å0.30 × 0.25 × 0.24 mm
β = 90.748 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2013 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1681 reflections with I > 2σ(I)
Tmin = 0.390, Tmax = 0.457Rint = 0.022
5618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.09Δρmax = 0.42 e Å3
2013 reflectionsΔρmin = 0.21 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.22798 (4)0.222545 (19)0.645609 (19)0.03899 (11)
N10.6827 (3)0.01906 (14)0.77454 (14)0.0279 (4)
C10.8754 (4)0.04680 (19)0.79320 (18)0.0380 (6)
H1A0.84110.11710.81980.046*
H1B0.96710.01130.84200.046*
C20.9755 (4)0.0559 (2)0.68752 (18)0.0443 (7)
H2A1.02860.12760.67720.053*
H2B1.08840.00540.68200.053*
C30.8074 (4)0.0306 (2)0.60735 (19)0.0467 (7)
H3A0.83860.03510.57080.056*
H3B0.79390.08840.55770.056*
C40.6110 (4)0.0184 (2)0.66926 (17)0.0385 (6)
H4A0.51970.03390.63750.046*
H4B0.53900.08620.67410.046*
C50.5187 (3)0.00229 (18)0.85296 (17)0.0316 (5)
H5A0.47680.07670.84750.038*
H5B0.39940.04150.83640.038*
C60.5842 (3)0.01998 (18)0.96372 (16)0.0319 (5)
H6A0.60520.09620.97340.038*
H6B0.71290.01640.97920.038*
C70.7340 (4)0.13607 (17)0.77065 (18)0.0344 (5)
H7A0.78000.15950.83760.052*
H7B0.61370.17590.75030.052*
H7C0.84120.14770.72160.052*
O10.5324 (3)0.32947 (15)0.47786 (14)0.0510 (5)
H10.44560.30570.51710.076*
C80.6858 (4)0.2517 (2)0.4620 (2)0.0478 (7)
H8A0.79520.26150.51160.072*
H8B0.73920.25900.39370.072*
H8C0.62750.18160.47000.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03054 (16)0.03698 (16)0.04954 (18)0.00222 (11)0.00417 (11)0.00310 (11)
N10.0241 (10)0.0302 (9)0.0296 (10)0.0005 (8)0.0036 (8)0.0010 (8)
C10.0336 (13)0.0414 (14)0.0390 (14)0.0110 (11)0.0052 (11)0.0050 (11)
C20.0438 (16)0.0413 (14)0.0482 (16)0.0130 (12)0.0163 (13)0.0038 (12)
C30.0487 (16)0.0560 (17)0.0359 (14)0.0039 (14)0.0113 (13)0.0063 (12)
C40.0396 (14)0.0453 (14)0.0307 (12)0.0027 (12)0.0011 (11)0.0059 (11)
C50.0243 (12)0.0349 (12)0.0359 (13)0.0060 (10)0.0079 (10)0.0032 (10)
C60.0265 (12)0.0337 (12)0.0356 (13)0.0031 (10)0.0072 (10)0.0019 (10)
C70.0318 (13)0.0308 (12)0.0406 (14)0.0050 (10)0.0041 (11)0.0040 (10)
O10.0450 (12)0.0590 (12)0.0492 (12)0.0083 (10)0.0092 (9)0.0080 (9)
C80.0447 (17)0.0497 (15)0.0492 (17)0.0009 (13)0.0048 (14)0.0040 (12)
Geometric parameters (Å, º) top
N1—C71.500 (3)C5—C61.518 (3)
N1—C51.506 (3)C5—H5A0.9700
N1—C41.511 (3)C5—H5B0.9700
N1—C11.514 (3)C6—C6i1.535 (4)
C1—C21.528 (3)C6—H6A0.9700
C1—H1A0.9700C6—H6B0.9700
C1—H1B0.9700C7—H7A0.9600
C2—C31.530 (4)C7—H7B0.9600
C2—H2A0.9700C7—H7C0.9600
C2—H2B0.9700O1—C81.408 (3)
C3—C41.523 (3)O1—H10.8200
C3—H3A0.9700C8—H8A0.9600
C3—H3B0.9700C8—H8B0.9600
C4—H4A0.9700C8—H8C0.9600
C4—H4B0.9700
C7—N1—C5110.76 (17)C3—C4—H4B110.8
C7—N1—C4109.70 (18)H4A—C4—H4B108.8
C5—N1—C4110.08 (17)N1—C5—C6114.51 (17)
C7—N1—C1110.55 (18)N1—C5—H5A108.6
C5—N1—C1112.72 (17)C6—C5—H5A108.6
C4—N1—C1102.75 (17)N1—C5—H5B108.6
N1—C1—C2104.89 (18)C6—C5—H5B108.6
N1—C1—H1A110.8H5A—C5—H5B107.6
C2—C1—H1A110.8C5—C6—C6i109.1 (2)
N1—C1—H1B110.8C5—C6—H6A109.9
C2—C1—H1B110.8C6i—C6—H6A109.9
H1A—C1—H1B108.8C5—C6—H6B109.9
C1—C2—C3106.6 (2)C6i—C6—H6B109.9
C1—C2—H2A110.4H6A—C6—H6B108.3
C3—C2—H2A110.4N1—C7—H7A109.5
C1—C2—H2B110.4N1—C7—H7B109.5
C3—C2—H2B110.4H7A—C7—H7B109.5
H2A—C2—H2B108.6N1—C7—H7C109.5
C4—C3—C2104.9 (2)H7A—C7—H7C109.5
C4—C3—H3A110.8H7B—C7—H7C109.5
C2—C3—H3A110.8C8—O1—H1109.5
C4—C3—H3B110.8O1—C8—H8A109.5
C2—C3—H3B110.8O1—C8—H8B109.5
H3A—C3—H3B108.8H8A—C8—H8B109.5
N1—C4—C3104.9 (2)O1—C8—H8C109.5
N1—C4—H4A110.8H8A—C8—H8C109.5
C3—C4—H4A110.8H8B—C8—H8C109.5
N1—C4—H4B110.8
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Br10.822.433.2453 (18)172

Experimental details

Crystal data
Chemical formulaC14H30N22+·2Br·2CH4O
Mr450.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)6.4919 (7), 12.4861 (13), 12.9683 (13)
β (°) 90.748 (2)
V3)1051.10 (19)
Z2
Radiation typeMo Kα
µ (mm1)3.87
Crystal size (mm)0.30 × 0.25 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.390, 0.457
No. of measured, independent and
observed [I > 2σ(I)] reflections
5618, 2013, 1681
Rint0.022
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.09
No. of reflections2013
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Br10.822.433.2453 (18)172.1
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20671025 and 20771030), the Development Program for Outstanding Young Teachers in Harbin Institute of Technology (HITQNJS.2006.029), the Science Innovation Special Foundation of Harbin City in China (2005AFXXJ034), the Young Foundation of Heilongjiang Province in China (QC06C029), and the Heilongjiang Natural Science Foundation (B200603).

References

First citationBruker (2000). SMART (Version 5.625) and SAINT (Version 6.01) and SADABS (Version?). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGramm, F., Baerlocher, C., McCusker, L. B., Warrender, S. J., Wright, P. A., Han, B., Hong, S. B., Liu, Z., Ohsuna, T. & Terasaki, O. (2006). Nature (London), 444, 79–81.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHong, S. B., Lear, E. G., Wright, P. A., Zhou, W. Z., Cox, P. A., Shin, C. H., Park, J. H. & Nam, I. S. (2004). J. Am. Chem. Soc. 126, 5817–5826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHong, S. B., Min, H. K., Shin, C. H., Cox, P. A., Warrender, S. J. & Wright, P. A. (2007). J. Am. Chem. Soc. 129, 10870–10885.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds