metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tri­aqua-μ4-pyridine-3,5-di­carboxyl­ato-barium(II)]

aFaculty of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran, bDepartment of Chemistry, University of Kurdistan, Sanandaj, Iran, and cIslamic Azad University, North Tehran Branch, Tehran, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 17 November 2007; accepted 13 January 2008; online 23 January 2008)

The reaction of the proton-transfer compound (pdaH2)(py-3,5-dc)·H2O (pda = propane-1,3-diamine and py-3,5-dcH2 = pyridine-3,5-dicarboxylic acid) with Ba(NO3)2 leads to the formation of the title polymeric compound, [Ba(C7H3NO4)(H2O)3]n. The BaII atom is nine-coordinated by six carboxyl­ate O atoms from the (py-3,5-dc)2− ligands, and three O atoms from the coordinated water mol­ecules. The coordination polyhedron around the BaII atom is best described as tricapped trigonal-prismatic. In the crystal structure, inter­molecular inter­actions, such as X—H⋯O hydrogen bonds (X = O and C) and ππ stacking [centroid–centroid distances between pyridine rings of 3.6191 (13) and 3.6192 (13) Å] play an important role in stabilizing the supramolecular structure.

Related literature

For related literature, see: Aghabozorg et al. (2006[Aghabozorg, H., Ghadermazi, M. & Nemati, A. (2006). Anal. Sci. 22, x233-x234.], 2007[Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J.(2007). Acta Cryst. E63, m1710-m1711.], 2008[Aghabozorg, H., Nemati, A., Derikvand, Z., Ghadermazi, M. & Daneshvar, S. (2008). Acta Cryst. E64, m376.]); Dorazco-Gonzalez et al. (2006[Dorazco-Gonzalez, A., Toscano, R. A., Gómez-Vidales, V. & Valdés-Martínez, J. (2006). Acta Cryst. E62, m1027-m1029.]); Starosta et al. (2002a[Starosta, W., Ptasiewicz-Bak, H. & Leciejewicz, J. (2002a). J. Coord. Chem. 55, 1-9.],b[Starosta, W., Ptasiewicz-Bak, H. & Leciejewicz, J. (2002b). J. Coord. Chem. 55, 985-990.]).

[Scheme 1]

Experimental

Crystal data
  • [Ba(C7H3NO4)(H2O)3]

  • Mr = 356.49

  • Monoclinic, P 21 /c

  • a = 7.5922 (4) Å

  • b = 18.5576 (10) Å

  • c = 7.1832 (4) Å

  • β = 90.499 (5)°

  • V = 1012.02 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.95 mm−1

  • T = 100 (2) K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.386, Tmax = 0.455

  • 10713 measured reflections

  • 2664 independent reflections

  • 2575 reflections with I > 2/s(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.00

  • 2664 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 1.18 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1i 0.84 2.13 2.924 (2) 158
O1W—H1WB⋯O1ii 0.84 1.89 2.730 (2) 176
O2W—H2WA⋯O2iii 0.81 1.96 2.761 (2) 172
O2W—H2WB⋯N1iv 0.83 2.06 2.873 (3) 165
O3W—H3WA⋯N1v 0.85 2.48 3.284 (3) 159
O3W—H3WB⋯O1Wvi 0.85 2.02 2.851 (3) 165
C3—H3⋯O2Wvii 0.93 2.47 3.362 (3) 161
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x-1, y, z+1; (v) x-1, y, z; (vi) -x, -y+1, -z+1; (vii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recent interest of our researching group has focused on the synthesis and characterization of novel metal complexes of proton transfer compounds obtained using dipicolinic acid (Aghabozorg et al., 2007). A convenient path to obtain polymeric structures is to use a multifunctional ligand to link metal ions to form an infinite arrangement (Starosta et al., 2002a,b); Dorazco-Gonzalez et al., 2006). The reaction of the proton transfer compound (pdaH2)(py-3,5-dc).H2O [pda = propane-1,3-diamine and py-3,5-dcH2 = pyridine-3,5-dicarboxylic acid (Aghabozorg et al., 2006)] with Ba(NO3)2, in aqueous solution with a 1:2 molar ratio, lead to the formation of the title polymeric compound, (I).

The monomeric units in the polymer (I) consist of one BaII atom, one (py-3,5-dc)2- dianion and three aqua (H2O) ligands. The BaII atom is nine-coordinate with six carboxylate oxygen atoms from the bridging (py-3,5-dc)2- ligands and three oxygen atoms from the coordinated water molecules (Figs. 1 and 2). The summation of bond angles O2W—Ba1—O3ii, O3ii —Ba1—O1 and O2W—Ba1—O1 is 360.94° hence, the Ba1 atom is located in the center of the plane (O1,O2,O3Wii). Atoms O2, O3W and O3i form a triangle, and atoms O1W, O4ii, O4iii form another triangle. So a prism, consisting of six O-atoms and three caps (O2W, O3iii and O1) on the faces around the Ba(II) atom is formed. The coordination polyhedron around the BaII atom is hence, best described as a tricapped trigonal prism (Fig. 3).

In the molecular structure of (I) atoms O1 and O2, from one of the carboxylate groups, have only one Ba—O bond, while atoms O3 and O4 from three neighboring carboxylate groups have two Ba—O bonds. The bond distances between barium and the oxygen atoms are in the range 2.7399 (18)–2.8669 (16) Å.

In the crystal structure of (I) there are several O—H···O hydrogen bonds [in the range 2.730 (2)–2.924 (2) Å], and the pyridine N-atoms have N—H···O hydrogen bonds with neighboring coordinated water molecules [in the range 2.873 (3)–3.284 (3) Å]. C—H···O hydrogen bonds [with D···A distance 3.362 (3) Å], are also present (Table 1). There are π-π stacking interactions between symmetry related pyridine (N1/C1—C5) rings with centroid···centroid distances of 3.6191 (13) and 3.6192 (13) Å (symmetry codes: (i) = x, -y + 3/2, z + 1/2 and x; (ii) = -y + 3/2, z - 1/2, respectively] (Fig.4).

All of these intermolecular interactions play an important role in forming the three dimensional polymeric system and stabilizing the structure.

Related literature top

For related literature, see: Aghabozorg et al. (2006, 2007); Dorazco-Gonzalez et al. (2006); Starosta et al. (2002a, 2002b).

Experimental top

The proton transfer compound (pdaH2)(py-3,5-dc), was prepared by the reaction of pyridine-3,5-dicarboxylic acid [py-3,5-dcH2], with propane-1,3-diamine [pda], (Aghabozorg et al., 2006). Compound (I) was prepared by the reaction between Ba(NO3)2 (292.5 mg, 0.5 mmol in water 25 ml) and the proton transfer compound (pdaH2 )(py-3,5-dc) (241 mg, 1.0 mmol in water 25 ml), in a 1:2 molar ratio. Crystals were obtained by slow evaporation of the solvent at room temperature.

Refinement top

The water molecules H-atoms were located in difference Fourier maps and refined with distance O—H restrained to 0.85 (2) Å and Uiso(H) = 1.2Ueq(O). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), with displacement ellipsoids drawn at the 50% probability level [A—C symmetry codes are: A = -x, 1 – y, 1 – z; B = 1 – x, -1/2 + y, 1/2 – z; C = -1 + x, 3/2 – y, 1/2 + z].
[Figure 2] Fig. 2. A view, along the c axis, of the crystal packing of compound (I).
[Figure 3] Fig. 3. A view of the distorted tricapped trigonal prism around the BaII atom [D: -1 + x, 3/2 - y, 1/2 + z; E: x, 3/2 - y, -1/2 + z; F: x, 3/2 - y, 1/2 + z].
[Figure 4] Fig. 4. π-π Stacking interactions (Cg1—Cg1i) in compound (I). [Cg1: N1/C1—C5; symmetry code: (i) = x, -y + 3/2, z + 1/2].
Poly[triaqua-µ4-pyridine-3,5-dicarboxylato-barium(II)] top
Crystal data top
[Ba(C7H3NO4)(H2O)3]F(000) = 680
Mr = 356.49Dx = 2.340 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 523 reflections
a = 7.5922 (4) Åθ = 3–30°
b = 18.5576 (10) ŵ = 3.95 mm1
c = 7.1832 (4) ÅT = 100 K
β = 90.499 (5)°Prism, colourless
V = 1012.02 (9) Å30.25 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
2664 independent reflections
Radiation source: fine-focus sealed tube2575 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.035
Detector resolution: 0 pixels mm-1θmax = 29.0°, θmin = 2.7°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
k = 2525
Tmin = 0.386, Tmax = 0.455l = 99
10713 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0132P)2 + 2.3675P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
2664 reflectionsΔρmax = 1.18 e Å3
146 parametersΔρmin = 0.66 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 1998), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0155 (5)
Crystal data top
[Ba(C7H3NO4)(H2O)3]V = 1012.02 (9) Å3
Mr = 356.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5922 (4) ŵ = 3.95 mm1
b = 18.5576 (10) ÅT = 100 K
c = 7.1832 (4) Å0.25 × 0.25 × 0.20 mm
β = 90.499 (5)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
2664 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
2575 reflections with I > 2/s(I)
Tmin = 0.386, Tmax = 0.455Rint = 0.035
10713 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.00Δρmax = 1.18 e Å3
2664 reflectionsΔρmin = 0.66 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.246077 (15)0.566051 (6)0.470978 (17)0.00707 (6)
O10.4431 (2)0.58907 (9)0.1397 (2)0.0115 (3)
O20.3179 (2)0.68921 (8)0.2430 (2)0.0125 (3)
O30.8918 (2)0.92324 (9)0.0350 (3)0.0153 (3)
O40.6006 (2)0.92670 (8)0.0586 (3)0.0120 (3)
N10.8720 (3)0.70081 (10)0.0669 (3)0.0109 (3)
C10.7279 (3)0.66597 (12)0.0073 (3)0.0106 (4)
H10.72360.61620.02060.013*
C20.5847 (3)0.70043 (12)0.0734 (3)0.0083 (4)
C30.5887 (3)0.77518 (11)0.0851 (3)0.0085 (4)
H30.49400.79990.13560.010*
C40.7341 (3)0.81285 (12)0.0214 (3)0.0098 (4)
C50.8739 (3)0.77268 (12)0.0512 (3)0.0099 (4)
H50.97350.79730.09080.012*
C60.4364 (3)0.65684 (12)0.1556 (3)0.0090 (4)
C70.7438 (3)0.89332 (12)0.0389 (3)0.0091 (4)
O1W0.2873 (2)0.50776 (9)0.8310 (2)0.0135 (3)
H1WA0.30620.53760.91670.016*
H1WB0.37360.47980.84210.016*
O2W0.1920 (2)0.67121 (9)0.7367 (2)0.0149 (3)
H2WA0.22900.71170.74940.018*
H2WB0.09480.67180.78900.018*
O3W0.0471 (3)0.56144 (11)0.1471 (3)0.0259 (4)
H3WA0.03020.60210.09540.031*
H3WB0.05400.54240.13270.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.00503 (8)0.00616 (8)0.01003 (9)0.00006 (4)0.00019 (4)0.00054 (4)
O10.0118 (8)0.0072 (7)0.0154 (8)0.0009 (6)0.0004 (6)0.0004 (6)
O20.0120 (8)0.0075 (7)0.0179 (8)0.0002 (6)0.0034 (6)0.0013 (6)
O30.0073 (8)0.0101 (7)0.0286 (10)0.0015 (6)0.0001 (7)0.0019 (7)
O40.0078 (8)0.0099 (7)0.0182 (8)0.0009 (6)0.0008 (6)0.0001 (6)
N10.0102 (9)0.0111 (8)0.0114 (8)0.0005 (7)0.0003 (7)0.0005 (7)
C10.0114 (10)0.0101 (10)0.0104 (9)0.0003 (8)0.0002 (8)0.0000 (8)
C20.0087 (9)0.0090 (9)0.0072 (9)0.0017 (7)0.0019 (7)0.0017 (7)
C30.0077 (9)0.0088 (9)0.0090 (9)0.0012 (7)0.0017 (7)0.0002 (7)
C40.0106 (10)0.0071 (9)0.0116 (10)0.0012 (7)0.0031 (8)0.0013 (7)
C50.0071 (9)0.0120 (10)0.0107 (9)0.0008 (7)0.0004 (7)0.0008 (7)
C60.0088 (9)0.0092 (9)0.0087 (9)0.0014 (7)0.0026 (7)0.0020 (7)
C70.0083 (10)0.0084 (9)0.0107 (9)0.0006 (7)0.0014 (7)0.0017 (7)
O1W0.0138 (8)0.0129 (8)0.0137 (8)0.0029 (6)0.0017 (6)0.0005 (6)
O2W0.0115 (8)0.0094 (7)0.0237 (9)0.0008 (6)0.0048 (6)0.0048 (6)
O3W0.0181 (10)0.0359 (12)0.0236 (10)0.0038 (8)0.0046 (8)0.0020 (8)
Geometric parameters (Å, º) top
Ba1—O3i2.7399 (18)N1—C11.344 (3)
Ba1—O4ii2.7621 (17)C1—C21.392 (3)
Ba1—O2W2.7631 (17)C1—H10.9300
Ba1—O3W2.764 (2)C2—C31.390 (3)
Ba1—O1W2.8184 (17)C2—C61.510 (3)
Ba1—O4iii2.8447 (16)C3—C41.388 (3)
Ba1—O3iii2.8496 (17)C3—H30.9300
Ba1—O12.8540 (17)C4—C51.402 (3)
Ba1—O22.8669 (16)C4—C71.500 (3)
Ba1—C63.181 (2)C5—H50.9300
Ba1—C7iii3.207 (2)C7—Ba1v3.207 (2)
Ba1—Ba1iv4.4914 (3)O1W—H1WA0.8399
O1—C61.264 (3)O1W—H1WB0.8385
O2—C61.255 (3)O2W—H2WA0.8061
O3—C71.254 (3)O2W—H2WB0.8314
O4—C71.260 (3)O3W—H3WA0.8500
N1—C51.338 (3)O3W—H3WB0.8508
O3i—Ba1—O4ii156.10 (5)O4ii—Ba1—Ba1iv144.61 (3)
O3i—Ba1—O2W71.39 (5)O2W—Ba1—Ba1iv101.11 (4)
O4ii—Ba1—O2W87.61 (5)O3W—Ba1—Ba1iv67.19 (4)
O3i—Ba1—O3W67.27 (6)O1W—Ba1—Ba1iv77.95 (4)
O4ii—Ba1—O3W135.86 (6)O4iii—Ba1—Ba1iv81.49 (3)
O2W—Ba1—O3W121.34 (6)O3iii—Ba1—Ba1iv35.71 (4)
O3i—Ba1—O1W88.58 (5)O1—Ba1—Ba1iv126.99 (3)
O4ii—Ba1—O1W73.10 (5)O2—Ba1—Ba1iv130.60 (3)
O2W—Ba1—O1W69.70 (5)C6—Ba1—Ba1iv137.63 (4)
O3W—Ba1—O1W144.69 (6)C7iii—Ba1—Ba1iv58.45 (4)
O3i—Ba1—O4iii118.78 (5)C6—O1—Ba192.98 (13)
O4ii—Ba1—O4iii70.29 (5)C6—O2—Ba192.58 (13)
O2W—Ba1—O4iii139.20 (5)C7—O3—Ba1vi156.50 (16)
O3W—Ba1—O4iii97.46 (6)C7—O3—Ba1v94.76 (14)
O1W—Ba1—O4iii71.18 (5)Ba1vi—O3—Ba1v106.92 (6)
O3i—Ba1—O3iii73.08 (6)C7—O4—Ba1vii146.93 (14)
O4ii—Ba1—O3iii113.94 (5)C7—O4—Ba1v94.85 (13)
O2W—Ba1—O3iii127.63 (5)Ba1vii—O4—Ba1v109.71 (5)
O3W—Ba1—O3iii76.14 (6)C5—N1—C1117.4 (2)
O1W—Ba1—O3iii72.23 (5)N1—C1—C2123.5 (2)
O4iii—Ba1—O3iii45.89 (5)N1—C1—H1118.2
O3i—Ba1—O1130.66 (5)C2—C1—H1118.2
O4ii—Ba1—O170.49 (5)C3—C2—C1117.8 (2)
O2W—Ba1—O1123.54 (5)C3—C2—C6121.8 (2)
O3W—Ba1—O165.75 (6)C1—C2—C6120.27 (19)
O1W—Ba1—O1140.15 (5)C4—C3—C2120.0 (2)
O4iii—Ba1—O181.72 (5)C4—C3—H3120.0
O3iii—Ba1—O1108.77 (5)C2—C3—H3120.0
O3i—Ba1—O2103.30 (5)C3—C4—C5117.5 (2)
O4ii—Ba1—O284.35 (5)C3—C4—C7120.8 (2)
O2W—Ba1—O282.06 (5)C5—C4—C7121.6 (2)
O3W—Ba1—O269.46 (6)N1—C5—C4123.6 (2)
O1W—Ba1—O2144.10 (5)N1—C5—H5118.2
O4iii—Ba1—O2127.01 (5)C4—C5—H5118.2
O3iii—Ba1—O2143.56 (5)O2—C6—O1123.4 (2)
O1—Ba1—O245.62 (5)O2—C6—C2118.63 (19)
O3i—Ba1—C6122.28 (5)O1—C6—C2117.9 (2)
O4ii—Ba1—C671.86 (5)O2—C6—Ba164.21 (11)
O2W—Ba1—C6100.90 (5)O1—C6—Ba163.64 (12)
O3W—Ba1—C670.44 (6)C2—C6—Ba1155.07 (14)
O1W—Ba1—C6144.04 (5)O3—C7—O4124.0 (2)
O4iii—Ba1—C6103.86 (5)O3—C7—C4118.8 (2)
O3iii—Ba1—C6130.61 (6)O4—C7—C4117.20 (19)
O1—Ba1—C623.38 (5)O3—C7—Ba1v62.31 (12)
O2—Ba1—C623.21 (5)O4—C7—Ba1v62.10 (12)
O3i—Ba1—C7iii95.74 (5)C4—C7—Ba1v173.78 (14)
O4ii—Ba1—C7iii91.73 (5)Ba1—O1W—H1WA115.9
O2W—Ba1—C7iii136.46 (5)Ba1—O1W—H1WB113.9
O3W—Ba1—C7iii87.91 (6)H1WA—O1W—H1WB102.1
O1W—Ba1—C7iii68.54 (5)Ba1—O2W—H2WA133.0
O4iii—Ba1—C7iii23.05 (5)Ba1—O2W—H2WB117.3
O3iii—Ba1—C7iii22.94 (5)H2WA—O2W—H2WB104.3
O1—Ba1—C7iii96.79 (5)Ba1—O3W—H3WA114.8
O2—Ba1—C7iii141.21 (5)Ba1—O3W—H3WB127.0
C6—Ba1—C7iii120.17 (6)H3WA—O3W—H3WB100.5
O3i—Ba1—Ba1iv37.37 (3)
O3i—Ba1—O1—C677.70 (14)O3W—Ba1—C6—O283.32 (13)
O4ii—Ba1—O1—C689.28 (13)O1W—Ba1—C6—O2106.62 (14)
O2W—Ba1—O1—C616.01 (14)O4iii—Ba1—C6—O2176.43 (12)
O3W—Ba1—O1—C696.69 (13)O3iii—Ba1—C6—O2133.56 (12)
O1W—Ba1—O1—C6114.31 (13)O1—Ba1—C6—O2157.3 (2)
O4iii—Ba1—O1—C6161.22 (13)C7iii—Ba1—C6—O2158.77 (12)
O3iii—Ba1—O1—C6161.19 (12)Ba1iv—Ba1—C6—O283.90 (13)
O2—Ba1—O1—C612.30 (12)O3i—Ba1—C6—O1118.76 (12)
C7iii—Ba1—O1—C6178.70 (13)O4ii—Ba1—C6—O182.65 (13)
Ba1iv—Ba1—O1—C6126.05 (12)O2W—Ba1—C6—O1166.46 (12)
O3i—Ba1—O2—C6147.25 (13)O3W—Ba1—C6—O173.95 (13)
O4ii—Ba1—O2—C655.73 (13)O1W—Ba1—C6—O196.11 (14)
O2W—Ba1—O2—C6144.10 (13)O4iii—Ba1—C6—O119.16 (13)
O3W—Ba1—O2—C688.09 (13)O3iii—Ba1—C6—O123.71 (15)
O1W—Ba1—O2—C6106.31 (14)O2—Ba1—C6—O1157.3 (2)
O4iii—Ba1—O2—C64.34 (15)C7iii—Ba1—C6—O11.49 (14)
O3iii—Ba1—O2—C667.82 (15)Ba1iv—Ba1—C6—O173.38 (14)
O1—Ba1—O2—C612.38 (12)O3i—Ba1—C6—C2141.4 (3)
C7iii—Ba1—O2—C629.99 (16)O4ii—Ba1—C6—C217.2 (3)
Ba1iv—Ba1—O2—C6118.05 (12)O2W—Ba1—C6—C266.6 (4)
C5—N1—C1—C21.8 (3)O3W—Ba1—C6—C2173.8 (4)
N1—C1—C2—C32.9 (3)O1W—Ba1—C6—C23.7 (4)
N1—C1—C2—C6173.38 (19)O4iii—Ba1—C6—C280.7 (3)
C1—C2—C3—C41.5 (3)O3iii—Ba1—C6—C2123.6 (3)
C6—C2—C3—C4174.74 (19)O1—Ba1—C6—C299.8 (4)
C2—C3—C4—C50.8 (3)O2—Ba1—C6—C2102.9 (4)
C2—C3—C4—C7177.84 (19)C7iii—Ba1—C6—C298.3 (3)
C1—N1—C5—C40.7 (3)Ba1iv—Ba1—C6—C2173.2 (3)
C3—C4—C5—N12.0 (3)Ba1vi—O3—C7—O4165.2 (3)
C7—C4—C5—N1179.0 (2)Ba1v—O3—C7—O47.7 (2)
Ba1—O2—C6—O124.5 (2)Ba1vi—O3—C7—C415.6 (5)
Ba1—O2—C6—C2152.08 (16)Ba1v—O3—C7—C4173.06 (17)
Ba1—O1—C6—O224.6 (2)Ba1vi—O3—C7—Ba1v157.5 (4)
Ba1—O1—C6—C2151.98 (16)Ba1vii—O4—C7—O3146.4 (2)
C3—C2—C6—O22.9 (3)Ba1v—O4—C7—O37.7 (2)
C1—C2—C6—O2173.2 (2)Ba1vii—O4—C7—C434.4 (4)
C3—C2—C6—O1179.68 (19)Ba1v—O4—C7—C4173.03 (16)
C1—C2—C6—O13.6 (3)Ba1vii—O4—C7—Ba1v138.6 (3)
C3—C2—C6—Ba192.8 (4)C3—C4—C7—O3158.3 (2)
C1—C2—C6—Ba183.3 (4)C5—C4—C7—O318.7 (3)
O3i—Ba1—C6—O238.51 (14)C3—C4—C7—O421.0 (3)
O4ii—Ba1—C6—O2120.08 (13)C5—C4—C7—O4162.1 (2)
O2W—Ba1—C6—O236.26 (13)
Symmetry codes: (i) x1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1, y+1/2, z+1/2; (vi) x+1, y+3/2, z1/2; (vii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1viii0.842.132.924 (2)158
O1W—H1WB···O1ix0.841.892.730 (2)176
O2W—H2WA···O2ii0.811.962.761 (2)172
O2W—H2WB···N1x0.832.062.873 (3)165
O3W—H3WA···N1xi0.852.483.284 (3)159
O3W—H3WB···O1Wiv0.852.022.851 (3)165
C3—H3···O2Wvii0.932.473.362 (3)161
Symmetry codes: (ii) x, y+3/2, z+1/2; (iv) x, y+1, z+1; (vii) x, y+3/2, z1/2; (viii) x, y, z+1; (ix) x+1, y+1, z+1; (x) x1, y, z+1; (xi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ba(C7H3NO4)(H2O)3]
Mr356.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.5922 (4), 18.5576 (10), 7.1832 (4)
β (°) 90.499 (5)
V3)1012.02 (9)
Z4
Radiation typeMo Kα
µ (mm1)3.95
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.386, 0.455
No. of measured, independent and
observed [I > 2/s(I)] reflections
10713, 2664, 2575
Rint0.035
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.00
No. of reflections2664
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 0.66

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.842.132.924 (2)158
O1W—H1WB···O1ii0.841.892.730 (2)176
O2W—H2WA···O2iii0.811.962.761 (2)172
O2W—H2WB···N1iv0.832.062.873 (3)165
O3W—H3WA···N1v0.852.483.284 (3)159
O3W—H3WB···O1Wvi0.852.022.851 (3)165
C3—H3···O2Wvii0.932.473.362 (3)161
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z+1/2; (iv) x1, y, z+1; (v) x1, y, z; (vi) x, y+1, z+1; (vii) x, y+3/2, z1/2.
 

References

First citationAghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J.(2007). Acta Cryst. E63, m1710–m1711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M. & Nemati, A. (2006). Anal. Sci. 22, x233–x234.  CAS Google Scholar
First citationAghabozorg, H., Nemati, A., Derikvand, Z., Ghadermazi, M. & Daneshvar, S. (2008). Acta Cryst. E64, m376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDorazco-Gonzalez, A., Toscano, R. A., Gómez-Vidales, V. & Valdés-Martínez, J. (2006). Acta Cryst. E62, m1027–m1029.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W., Ptasiewicz-Bak, H. & Leciejewicz, J. (2002a). J. Coord. Chem. 55, 1–9.  Web of Science CSD CrossRef CAS Google Scholar
First citationStarosta, W., Ptasiewicz-Bak, H. & Leciejewicz, J. (2002b). J. Coord. Chem. 55, 985–990.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds