metal-organic compounds
Poly[tetraaqua-μ3-pyridine-3,5-dicarboxylato-strontium(II)]
aDepartment of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran, bDepartment of Chemistry, University of Kurdistan, Sanandaj, Iran, and cIslamic Azad University, North Tehran Branch, Tehran, Iran
*Correspondence e-mail: haghabozorg@yahoo.com
The reaction of strontium(II) nitrate with the proton-transfer compound (pdaH2)(py-3,5-dc)·H2O (where pda = propane-1,3-diamine and py-3,5-dcH2 = pyridine-3,5-dicarboxylic acid) leads to the formation of the title polymeric compound, [Sr(C7H3NO4)(H2O)4]n. The propane-1,3-diaminium cation is not incorporated in this The SrII atom lies on an inversion centre and is eight-coordinated by four O atoms from three py-3,5-dc ligands and four O atoms from four coordinated water molecules. The of the SrII atom is a distorted dodecahedron. These binuclear units are connected via the carboxylate O atoms to build a one-dimensional polymeric chain. In the non-covalant interactions consisting of hydrogen bonds (X—H⋯O, with X = O and C) and π–π stacking interactions [3.4604 (19) Å] connect the various components to form a supramolecular structure.
Related literature
For related literature, see: Aghabozorg et al. (2006, 2007, 2008); Starosta et al. (2002a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808001335/su2030sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808001335/su2030Isup2.hkl
Compound (I) was prepared by the reaction of (pdaH2)(py-3,5-dc).H2O (241.0 mg, 1.0 mmol) [Aghabozorg et al., 2006], in water (20 ml) with Sr(NO3)2 (105.8 mg, 0.5 mmol) in water (20 ml), in a 2:1 molar ratio. Colorless crystals were obtained by slow evaporation of the solvent at room temperature.
All hydrogen atoms were located in difference Fourier maps. The water H-atoms were treated as riding atoms with Uiso(H) = 1.2 Ueq(O); O—H = 0.7018–0.9275 Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of compound (I), with displacement ellipsoids drawn at the 50% probability level [H-atoms have been omitted for clarity; symmetry codes: A = -x, 1 - y, 1 - z and B = 1 - x, 1 - y, 1 - z]. | |
Fig. 2. A view of the distorted dodecahedral environment around the SrII atom. | |
Fig. 3. A view along the a axis of the crystal packing of compound (I). Hydrogen bonds are shown as dashed lines. | |
Fig. 4. π–π stacking interactions (Cg1–Cg1i) in compound (I) [Cg1: N1/C1–C5; symmetry code: (i) = -x, 1 - y, 2 - z]. |
[Sr(C7H3NO4)(H2O)4] | Z = 2 |
Mr = 324.79 | F(000) = 324 |
Triclinic, P1 | Dx = 2.012 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.066 (2) Å | Cell parameters from 2708 reflections |
b = 8.308 (3) Å | θ = 2.6–30.0° |
c = 10.368 (3) Å | µ = 5.06 mm−1 |
α = 69.405 (6)° | T = 100 K |
β = 72.144 (6)° | Prism, colourless |
γ = 75.944 (6)° | 0.30 × 0.22 × 0.18 mm |
V = 536.0 (3) Å3 |
Bruker APEXII CCD area-detector diffractometer | 2540 independent reflections |
Radiation source: fine-focus sealed tube | 2277 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ω scans | θmax = 28.0°, θmin = 2.2° |
Absorption correction: multi-scan (APEX2; Bruker, 2005) | h = −8→9 |
Tmin = 0.257, Tmax = 0.402 | k = −10→10 |
4533 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0193P)2] where P = (Fo2 + 2Fc2)/3 |
2540 reflections | (Δ/σ)max = 0.001 |
154 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −0.66 e Å−3 |
[Sr(C7H3NO4)(H2O)4] | γ = 75.944 (6)° |
Mr = 324.79 | V = 536.0 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.066 (2) Å | Mo Kα radiation |
b = 8.308 (3) Å | µ = 5.06 mm−1 |
c = 10.368 (3) Å | T = 100 K |
α = 69.405 (6)° | 0.30 × 0.22 × 0.18 mm |
β = 72.144 (6)° |
Bruker APEXII CCD area-detector diffractometer | 2540 independent reflections |
Absorption correction: multi-scan (APEX2; Bruker, 2005) | 2277 reflections with I > 2σ(I) |
Tmin = 0.257, Tmax = 0.402 | Rint = 0.038 |
4533 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.65 e Å−3 |
2540 reflections | Δρmin = −0.66 e Å−3 |
154 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.27281 (3) | 0.61146 (3) | 0.39986 (2) | 0.00977 (8) | |
O1 | 0.0595 (3) | 0.4107 (2) | 0.64828 (18) | 0.0145 (4) | |
O2 | 0.3414 (3) | 0.4771 (2) | 0.65401 (17) | 0.0134 (4) | |
O3 | −0.3603 (3) | 0.0688 (3) | 1.10676 (18) | 0.0171 (4) | |
O4 | −0.2944 (3) | 0.0464 (3) | 1.30871 (19) | 0.0208 (4) | |
N1 | 0.1904 (3) | 0.3128 (3) | 1.0958 (2) | 0.0117 (4) | |
C1 | 0.2362 (4) | 0.3684 (3) | 0.9544 (3) | 0.0106 (5) | |
H1A | 0.3469 | 0.4306 | 0.9064 | 0.013* | |
C2 | 0.1298 (4) | 0.3398 (3) | 0.8736 (2) | 0.0098 (5) | |
C3 | −0.0306 (4) | 0.2479 (3) | 0.9450 (2) | 0.0110 (5) | |
H3A | −0.1061 | 0.2257 | 0.8931 | 0.013* | |
C4 | −0.0808 (4) | 0.1885 (3) | 1.0922 (3) | 0.0106 (5) | |
C5 | 0.0352 (4) | 0.2248 (3) | 1.1627 (3) | 0.0120 (5) | |
H5A | 0.0023 | 0.1849 | 1.2635 | 0.014* | |
C6 | 0.1813 (4) | 0.4129 (3) | 0.7142 (2) | 0.0103 (5) | |
C7 | −0.2567 (4) | 0.0930 (3) | 1.1741 (3) | 0.0115 (5) | |
O1W | 0.3572 (3) | 0.8563 (2) | 0.17360 (18) | 0.0157 (4) | |
H1WA | 0.3591 | 0.8811 | 0.0888 | 0.019* | |
H1WB | 0.4416 | 0.9316 | 0.1631 | 0.019* | |
O2W | 0.4291 (3) | 0.8227 (3) | 0.4569 (2) | 0.0253 (5) | |
H2WA | 0.5046 | 0.8998 | 0.4043 | 0.030* | |
H2WB | 0.3802 | 0.8404 | 0.5389 | 0.030* | |
O3W | −0.0230 (3) | 0.8411 (3) | 0.4823 (2) | 0.0223 (4) | |
H3WA | −0.1078 | 0.8936 | 0.4213 | 0.027* | |
H3WB | −0.1145 | 0.7842 | 0.5417 | 0.027* | |
O4W | 0.3526 (3) | 0.3705 (3) | 0.2812 (3) | 0.0372 (6) | |
H4WA | 0.3192 | 0.3499 | 0.2194 | 0.045* | |
H4WB | 0.4424 | 0.2960 | 0.3008 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.00856 (13) | 0.01397 (13) | 0.00712 (11) | −0.00508 (8) | −0.00166 (8) | −0.00157 (8) |
O1 | 0.0111 (9) | 0.0211 (11) | 0.0115 (8) | −0.0067 (7) | −0.0042 (7) | −0.0012 (7) |
O2 | 0.0096 (9) | 0.0179 (10) | 0.0100 (8) | −0.0065 (7) | −0.0011 (7) | 0.0008 (7) |
O3 | 0.0166 (10) | 0.0243 (11) | 0.0120 (8) | −0.0116 (8) | −0.0025 (7) | −0.0026 (8) |
O4 | 0.0223 (11) | 0.0316 (13) | 0.0097 (8) | −0.0172 (9) | 0.0009 (8) | −0.0028 (8) |
N1 | 0.0117 (11) | 0.0117 (11) | 0.0117 (10) | −0.0014 (8) | −0.0038 (8) | −0.0028 (8) |
C1 | 0.0089 (12) | 0.0102 (13) | 0.0122 (11) | −0.0021 (9) | −0.0020 (9) | −0.0029 (10) |
C2 | 0.0083 (12) | 0.0095 (13) | 0.0095 (11) | 0.0004 (9) | −0.0023 (9) | −0.0013 (9) |
C3 | 0.0105 (12) | 0.0109 (13) | 0.0111 (11) | −0.0005 (10) | −0.0040 (9) | −0.0021 (9) |
C4 | 0.0100 (12) | 0.0089 (13) | 0.0110 (11) | −0.0026 (9) | −0.0010 (9) | −0.0011 (9) |
C5 | 0.0138 (13) | 0.0108 (13) | 0.0096 (11) | −0.0019 (10) | −0.0016 (9) | −0.0020 (9) |
C6 | 0.0107 (12) | 0.0085 (13) | 0.0104 (11) | −0.0011 (9) | −0.0021 (9) | −0.0018 (9) |
C7 | 0.0112 (13) | 0.0112 (13) | 0.0112 (11) | −0.0022 (10) | −0.0008 (9) | −0.0034 (10) |
O1W | 0.0186 (10) | 0.0179 (10) | 0.0109 (8) | −0.0100 (8) | −0.0046 (7) | 0.0010 (7) |
O2W | 0.0307 (12) | 0.0316 (13) | 0.0181 (10) | −0.0236 (10) | 0.0068 (9) | −0.0110 (9) |
O3W | 0.0261 (11) | 0.0217 (12) | 0.0211 (10) | −0.0013 (9) | −0.0091 (8) | −0.0077 (9) |
O4W | 0.0324 (13) | 0.0473 (16) | 0.0527 (15) | 0.0211 (11) | −0.0306 (11) | −0.0405 (13) |
Sr1—O1W | 2.5240 (19) | C1—C2 | 1.392 (3) |
Sr1—O4W | 2.568 (2) | C1—H1A | 0.9500 |
Sr1—O2i | 2.5816 (19) | C2—C3 | 1.387 (3) |
Sr1—O2W | 2.592 (2) | C2—C6 | 1.505 (3) |
Sr1—O1ii | 2.6063 (19) | C3—C4 | 1.386 (3) |
Sr1—O3W | 2.618 (2) | C3—H3A | 0.9500 |
Sr1—O2 | 2.6223 (19) | C4—C5 | 1.393 (3) |
Sr1—O1 | 2.7395 (18) | C4—C7 | 1.501 (3) |
Sr1—C6 | 3.034 (3) | C5—H5A | 0.9500 |
Sr1—Sr1i | 4.0677 (11) | O1W—H1WA | 0.8258 |
Sr1—Sr1ii | 4.2965 (12) | O1W—H1WB | 0.9233 |
O1—C6 | 1.259 (3) | O2W—H2WA | 0.8569 |
O1—Sr1ii | 2.6063 (19) | O2W—H2WB | 0.8650 |
O2—C6 | 1.257 (3) | O3W—H3WA | 0.9275 |
O2—Sr1i | 2.5816 (19) | O3W—H3WB | 0.8485 |
O3—C7 | 1.244 (3) | O4W—H4WA | 0.8287 |
O4—C7 | 1.269 (3) | O4W—H4WB | 0.7918 |
N1—C1 | 1.332 (3) | Cg1—Cg1(N1/C1-C5)iii | 3.4604 (19) |
N1—C5 | 1.335 (3) | ||
O1W—Sr1—O4W | 96.37 (8) | O1ii—Sr1—Sr1ii | 37.58 (4) |
O1W—Sr1—O2i | 82.73 (6) | O3W—Sr1—Sr1ii | 69.44 (5) |
O4W—Sr1—O2i | 73.73 (6) | O2—Sr1—Sr1ii | 84.10 (4) |
O1W—Sr1—O2W | 72.85 (7) | O1—Sr1—Sr1ii | 35.47 (4) |
O4W—Sr1—O2W | 144.24 (7) | C6—Sr1—Sr1ii | 59.79 (5) |
O2i—Sr1—O2W | 71.15 (7) | Sr1i—Sr1—Sr1ii | 115.28 (2) |
O1W—Sr1—O1ii | 93.47 (6) | C6—O1—Sr1ii | 160.12 (16) |
O4W—Sr1—O1ii | 72.57 (6) | C6—O1—Sr1 | 90.96 (15) |
O2i—Sr1—O1ii | 145.42 (6) | Sr1ii—O1—Sr1 | 106.95 (6) |
O2W—Sr1—O1ii | 140.38 (7) | C6—O2—Sr1i | 141.33 (16) |
O1W—Sr1—O3W | 85.06 (7) | C6—O2—Sr1 | 96.51 (14) |
O4W—Sr1—O3W | 141.51 (7) | Sr1i—O2—Sr1 | 102.83 (6) |
O2i—Sr1—O3W | 143.96 (6) | C1—N1—C5 | 118.1 (2) |
O2W—Sr1—O3W | 72.86 (7) | N1—C1—C2 | 123.1 (2) |
O1ii—Sr1—O3W | 68.96 (6) | N1—C1—H1A | 118.4 |
O1W—Sr1—O2 | 141.03 (6) | C2—C1—H1A | 118.4 |
O4W—Sr1—O2 | 109.25 (7) | C3—C2—C1 | 117.8 (2) |
O2i—Sr1—O2 | 77.17 (6) | C3—C2—C6 | 121.0 (2) |
O2W—Sr1—O2 | 69.18 (6) | C1—C2—C6 | 121.1 (2) |
O1ii—Sr1—O2 | 121.59 (5) | C4—C3—C2 | 120.0 (2) |
O3W—Sr1—O2 | 91.91 (6) | C4—C3—H3A | 120.0 |
O1W—Sr1—O1 | 161.19 (6) | C2—C3—H3A | 120.0 |
O4W—Sr1—O1 | 92.07 (8) | C3—C4—C5 | 117.5 (2) |
O2i—Sr1—O1 | 115.84 (6) | C3—C4—C7 | 121.9 (2) |
O2W—Sr1—O1 | 109.03 (6) | C5—C4—C7 | 120.6 (2) |
O1ii—Sr1—O1 | 73.05 (6) | N1—C5—C4 | 123.4 (2) |
O3W—Sr1—O1 | 77.93 (6) | N1—C5—H5A | 118.3 |
O2—Sr1—O1 | 48.73 (5) | C4—C5—H5A | 118.3 |
O1W—Sr1—C6 | 159.89 (7) | O2—C6—O1 | 123.3 (2) |
O4W—Sr1—C6 | 103.03 (8) | O2—C6—C2 | 118.2 (2) |
O2i—Sr1—C6 | 97.56 (6) | O1—C6—C2 | 118.4 (2) |
O2W—Sr1—C6 | 88.14 (7) | O2—C6—Sr1 | 59.18 (12) |
O1ii—Sr1—C6 | 97.29 (6) | O1—C6—Sr1 | 64.53 (13) |
O3W—Sr1—C6 | 83.05 (7) | C2—C6—Sr1 | 171.70 (17) |
O2—Sr1—C6 | 24.31 (6) | O3—C7—O4 | 123.8 (2) |
O1—Sr1—C6 | 24.51 (6) | O3—C7—C4 | 118.4 (2) |
O1W—Sr1—Sr1i | 114.89 (5) | O4—C7—C4 | 117.7 (2) |
O4W—Sr1—Sr1i | 91.99 (5) | Sr1—O1W—H1WA | 138.3 |
O2i—Sr1—Sr1i | 38.94 (4) | Sr1—O1W—H1WB | 121.7 |
O2W—Sr1—Sr1i | 64.27 (5) | H1WA—O1W—H1WB | 97.4 |
O1ii—Sr1—Sr1i | 149.34 (4) | Sr1—O2W—H2WA | 132.5 |
O3W—Sr1—Sr1i | 122.32 (5) | Sr1—O2W—H2WB | 118.0 |
O2—Sr1—Sr1i | 38.23 (4) | H2WA—O2W—H2WB | 107.9 |
O1—Sr1—Sr1i | 81.46 (4) | Sr1—O3W—H3WA | 114.3 |
C6—Sr1—Sr1i | 59.74 (5) | Sr1—O3W—H3WB | 106.3 |
O1W—Sr1—Sr1ii | 129.81 (4) | H3WA—O3W—H3WB | 89.7 |
O4W—Sr1—Sr1ii | 80.87 (6) | Sr1—O4W—H4WA | 138.5 |
O2i—Sr1—Sr1ii | 141.02 (4) | Sr1—O4W—H4WB | 115.5 |
O2W—Sr1—Sr1ii | 132.47 (5) | H4WA—O4W—H4WB | 105.6 |
O1W—Sr1—O1—C6 | −125.5 (2) | C2—C3—C4—C5 | 0.0 (4) |
O4W—Sr1—O1—C6 | 117.69 (15) | C2—C3—C4—C7 | 178.2 (2) |
O2i—Sr1—O1—C6 | 44.79 (16) | C1—N1—C5—C4 | 0.0 (4) |
O2W—Sr1—O1—C6 | −32.93 (16) | C3—C4—C5—N1 | −0.1 (4) |
O1ii—Sr1—O1—C6 | −171.24 (19) | C7—C4—C5—N1 | −178.3 (2) |
O3W—Sr1—O1—C6 | −99.82 (16) | Sr1i—O2—C6—O1 | −112.8 (3) |
O2—Sr1—O1—C6 | 3.66 (14) | Sr1—O2—C6—O1 | 7.2 (3) |
Sr1i—Sr1—O1—C6 | 25.99 (14) | Sr1i—O2—C6—C2 | 69.0 (3) |
Sr1ii—Sr1—O1—C6 | −171.24 (19) | Sr1—O2—C6—C2 | −170.94 (19) |
O1W—Sr1—O1—Sr1ii | 45.7 (2) | Sr1i—O2—C6—Sr1 | −120.0 (2) |
O4W—Sr1—O1—Sr1ii | −71.07 (7) | Sr1ii—O1—C6—O2 | −161.5 (4) |
O2i—Sr1—O1—Sr1ii | −143.98 (6) | Sr1—O1—C6—O2 | −6.9 (3) |
O2W—Sr1—O1—Sr1ii | 138.31 (7) | Sr1ii—O1—C6—C2 | 16.7 (7) |
O1ii—Sr1—O1—Sr1ii | 0.0 | Sr1—O1—C6—C2 | 171.3 (2) |
O3W—Sr1—O1—Sr1ii | 71.42 (7) | Sr1ii—O1—C6—Sr1 | −154.6 (5) |
O2—Sr1—O1—Sr1ii | 174.89 (11) | C3—C2—C6—O2 | −171.8 (2) |
C6—Sr1—O1—Sr1ii | 171.24 (19) | C1—C2—C6—O2 | 10.9 (4) |
Sr1i—Sr1—O1—Sr1ii | −162.78 (6) | C3—C2—C6—O1 | 9.9 (4) |
O1W—Sr1—O2—C6 | 152.90 (14) | C1—C2—C6—O1 | −167.3 (2) |
O4W—Sr1—O2—C6 | −78.87 (16) | O1W—Sr1—C6—O2 | −56.4 (2) |
O2i—Sr1—O2—C6 | −146.30 (18) | O4W—Sr1—C6—O2 | 108.05 (15) |
O2W—Sr1—O2—C6 | 139.24 (16) | O2i—Sr1—C6—O2 | 33.08 (18) |
O1ii—Sr1—O2—C6 | 2.05 (17) | O2W—Sr1—C6—O2 | −37.63 (15) |
O3W—Sr1—O2—C6 | 68.40 (15) | O1ii—Sr1—C6—O2 | −178.24 (15) |
O1—Sr1—O2—C6 | −3.68 (14) | O3W—Sr1—C6—O2 | −110.59 (15) |
Sr1i—Sr1—O2—C6 | −146.30 (18) | O1—Sr1—C6—O2 | 173.3 (2) |
Sr1ii—Sr1—O2—C6 | −0.71 (14) | Sr1i—Sr1—C6—O2 | 23.42 (13) |
O1W—Sr1—O2—Sr1i | −60.80 (11) | Sr1ii—Sr1—C6—O2 | 179.19 (16) |
O4W—Sr1—O2—Sr1i | 67.43 (8) | O1W—Sr1—C6—O1 | 130.25 (19) |
O2i—Sr1—O2—Sr1i | 0.0 | O4W—Sr1—C6—O1 | −65.27 (16) |
O2W—Sr1—O2—Sr1i | −74.46 (7) | O2i—Sr1—C6—O1 | −140.24 (15) |
O1ii—Sr1—O2—Sr1i | 148.35 (6) | O2W—Sr1—C6—O1 | 149.06 (15) |
O3W—Sr1—O2—Sr1i | −145.30 (7) | O1ii—Sr1—C6—O1 | 8.45 (18) |
O1—Sr1—O2—Sr1i | 142.62 (10) | O3W—Sr1—C6—O1 | 76.10 (15) |
C6—Sr1—O2—Sr1i | 146.30 (18) | O2—Sr1—C6—O1 | −173.3 (2) |
Sr1ii—Sr1—O2—Sr1i | 145.59 (6) | Sr1i—Sr1—C6—O1 | −149.89 (16) |
C5—N1—C1—C2 | 0.3 (4) | Sr1ii—Sr1—C6—O1 | 5.87 (12) |
N1—C1—C2—C3 | −0.4 (4) | C3—C4—C7—O3 | −0.7 (4) |
N1—C1—C2—C6 | 177.0 (2) | C5—C4—C7—O3 | 177.5 (2) |
C1—C2—C3—C4 | 0.2 (4) | C3—C4—C7—O4 | −178.6 (2) |
C6—C2—C3—C4 | −177.1 (2) | C5—C4—C7—O4 | −0.4 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O3ii | 0.83 | 1.92 | 2.744 (3) | 178 |
O1W—H1WB···O3iv | 0.92 | 1.85 | 2.754 (3) | 168 |
O2W—H2WA···O4iv | 0.86 | 1.90 | 2.747 (3) | 169 |
O2W—H2WB···O4iii | 0.86 | 1.98 | 2.816 (3) | 162 |
O3W—H3WA···O4v | 0.93 | 1.95 | 2.863 (3) | 168 |
O3W—H3WB···O4Wii | 0.85 | 2.31 | 3.159 (4) | 175 |
O4W—H4WA···N1vi | 0.83 | 1.92 | 2.739 (4) | 169 |
O4W—H4WB···O4vii | 0.79 | 2.42 | 3.192 (4) | 164 |
C3—H3A···O1Wii | 0.95 | 2.40 | 3.324 (4) | 164 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z+2; (iv) x+1, y+1, z−1; (v) x, y+1, z−1; (vi) x, y, z−1; (vii) x+1, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Sr(C7H3NO4)(H2O)4] |
Mr | 324.79 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.066 (2), 8.308 (3), 10.368 (3) |
α, β, γ (°) | 69.405 (6), 72.144 (6), 75.944 (6) |
V (Å3) | 536.0 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 5.06 |
Crystal size (mm) | 0.30 × 0.22 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (APEX2; Bruker, 2005) |
Tmin, Tmax | 0.257, 0.402 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4533, 2540, 2277 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.065, 0.99 |
No. of reflections | 2540 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.66 |
Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O3ii | 0.83 | 1.92 | 2.744 (3) | 178 |
O1W—H1WB···O3iii | 0.92 | 1.85 | 2.754 (3) | 168 |
O2W—H2WA···O4iii | 0.86 | 1.90 | 2.747 (3) | 169 |
O2W—H2WB···O4i | 0.86 | 1.98 | 2.816 (3) | 162 |
O3W—H3WA···O4iv | 0.93 | 1.95 | 2.863 (3) | 168 |
O3W—H3WB···O4Wii | 0.85 | 2.31 | 3.159 (4) | 175 |
O4W—H4WA···N1v | 0.83 | 1.92 | 2.739 (4) | 169 |
O4W—H4WB···O4vi | 0.79 | 2.42 | 3.192 (4) | 164 |
C3—H3A···O1Wii | 0.95 | 2.40 | 3.324 (4) | 164 |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x, −y+1, −z+1; (iii) x+1, y+1, z−1; (iv) x, y+1, z−1; (v) x, y, z−1; (vi) x+1, y, z−1. |
References
Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710–m1711. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Ghadermazi, M. & Nemati, A. (2006). Anal. Sci. 22, x233–x234. CAS Google Scholar
Aghabozorg, H., Nemati, A., Derikvand, Z., Ghadermazi, M. & Daneshvar, S. (2008). Acta Cryst. E64, m375. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W., Ptasiewicz-Bak, H. & Leciejewicz, J. (2002a). J. Coord. Chem. 55, 1–9. Web of Science CSD CrossRef CAS Google Scholar
Starosta, W., Ptasiewicz-Bak, H. & Leciejewicz, J. (2002b). J. Coord. Chem. 55, 985–990. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We have previously reported a proton transfer system, prepared using pyridine-3,5-dicarboxylic acid and propane-1,3-diamine (pdaH2)(py-3,5-dc).H2O (Aghabozorg et al. 2006; Aghabozorg et al., 2007). Pyridine-3,5-dicarboxylic acid is an interesting ligand because it is highly symmetrical, potentially multidentate and it can participate in hydrogen bonding interactions with N and O acceptors. It may also exhibit π–π interactions (Starosta et al., 2002a,b) and some polymeric Cd(II) complexes of this ligand have been published. Here we report on the crystal structure of the title polymeric compound, (I).
The compound (I) is a centrosymmetric polymer (Fig. 1). The Sr—O distances are in the range of 2.5240 (19)–2.7395 (18) Å, and the summation of the bond angles around of SrII atom is equal to 359.24°, indicating that the SrII atom is located in the center of the plane (O2i,O4W,O1ii,O3W,O2W). This shows that it has a distorted dodecahedral geometry (Fig. 2).
The carboxylate groups from the py-3,5-dc ligands link two SrII centers by two O1 atoms or two O2 atoms alternatively to form binuclear units and this results in the formation of a one-dimensional polymer chain. Each of the atoms, O1 and O2, from the py-3,5-dc ligands are connected to two SrII atoms, but only atoms O3, O4 and N1 from these ligands build hydrogen bonds with the coordinated water molecules. There are a large number of O—H···O, N—H···O and C—H···O hydrogen bonds with distances ranging from 2.739 (4) to 3.324 (4) Å (Table 2 and Fig. 3).
In the crystal structure of (I), noncovalant interactions consisting of hydrogen bonds, π–π stacking interactions of 3.4604 (19) Å between Cg1 and Cg1i (Fig. 4 and Table 1) [Cg1 is centroid of ring N1/C1–C5; symmetry code: (i) = -x, 1 - y, 2 - z)] connect the various components to form the supramolecular structure.