organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Bromo­phen­yl)-2-(4-tert-butyl­phen­yl)-1-phenyl­ethene

aSchool of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 156-756, South Korea, and bDepartment of Bionanochemistry, Wonkwang University, Iksan, Chonbuk 570-749, South Korea
*Correspondence e-mail: kypark@cau.ac.kr

(Received 11 December 2007; accepted 10 January 2008; online 16 January 2008)

In the structure of the title compound, C24H23Br, the configuration about the double bond is E. The dihedral angles between the tert-butyl-substituted benzene ring and the unsubstituted and Br-substituted rings are 57.1 (2) and 78.2 (2)°, respectively. The methyl groups are disordered over two positions; the site occupancy factors are ca 0.8 and 0.2.

Related literature

For background, see: Mooney et al. (1984[Mooney, W. F. III, Brown, P. E., Russell, J. C., Costa, S. B., Pedersen, L. G. & Whitten, D. G. (1984). J. Am. Chem. Soc. 106, 5659-5667.]), Kraft et al. (1998[Kraft, A., Grimsdale, A. C. & Holmes, A. B. (1998). Angew. Chem. Int. Ed. 37, 402-428.]), and Martin & Diederich (1999[Martin, R. E. & Diederich, F. (1999). Angew. Chem. Int. Ed. 38, 1350-1377.]). For related structures, see: Gao et al. (2006[Gao, L., Peng, H. & He, H.-W. (2006). Acta Cryst. E62, o5032-o5033.]), De Borger et al. (2005[De Borger, R., Vande Velde, C. M. L. & Blockhuys, F. (2005). Acta Cryst. E61, o819-o821.]), Ogawa et al. (1992[Ogawa, K., Sabo, T., Yoshimura, S., Takeuchi, Y. & Toriumi, K. (1992). J. Am. Chem. Soc. 114, 1041-1051.]); Barnes & Chudek (2002[Barnes, J. C. & Chudek, J. A. (2002). Acta Cryst. E58, o703-o705.]); SethuSankar et al. (2003[SethuSankar, K., Saravanan, S., Velmurugan, D. & Parvez, M. (2003). Acta Cryst. C59, o156-o158.]).

[Scheme 1]

Experimental

Crystal data
  • C24H23Br

  • Mr = 391.33

  • Triclinic, [P \overline 1]

  • a = 8.2950 (4) Å

  • b = 10.8173 (5) Å

  • c = 13.0447 (6) Å

  • α = 112.415 (3)°

  • β = 94.570 (3)°

  • γ = 105.402 (3)°

  • V = 1021.47 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 296 (2) K

  • 0.45 × 0.40 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.413, Tmax = 0.923

  • 17917 measured reflections

  • 4046 independent reflections

  • 2070 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.177

  • S = 1.03

  • 4046 reflections

  • 261 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Stilbene derivatives are attracting much attention due to their photoluminescent properties (Mooney et al., 1984). Stilbenes, short sub-units of PPV compounds that are important as the emissive layer of organic light-emitting diodes (Kraft et al., 1998), have also been of wide interest in research to gain an understanding of the light emission mechanisms and to predict the influence of substitution on the emitted light (Martin & Diederich, 1999). The title compound (I) was prepared as an important intermediate for such studies by the reaction of 4-bromobenzophenone and diethyl 4-methylbenzylphosphonate using potassium tert-butoxide as the base. The reaction produced a 60:40 mixture of (Z)- and (E)- stereoisomers (Scheme 1). The initial recrystallization process from 2-propanol solution allowed the selective crystallization of the (Z)-isomer (II). The title isomer (I) was obtained by consecutive recrystallizations of the remaining mixture from 2-propanol.

The molecular structure of compound (I), Fig. 1, shows that a non-planar conformation is adopted. The torsion angles C7–C8–C9–C10, C8–C7–C4–C5, and C8–C7–C19–C24 are 147.6 (4), 143.4 (4), and 123.5 (5)°, respectively. The dihedral angles between ring a and ring c, and ring b and ring c are 78.2 (2) and 57.1 (2)°, respectively. Steric hindrance between ring b and ring c creates a significant distortion around the ethylene group to widen the angle C7–C8–C9 to 129.2 (3)°. The bond length of C7=C8 is 1.347 (5) Å, which is at the longer end of such bonds reported in trans-stilbenes (Gao et al., 2006; De Borger et al., 2005; Ogawa et al., 1992) and in cis-stillbenes (Barnes & Chudek, 2002; SethuSankar et al., 2003).

Related literature top

For background, see: Mooney et al. (1984), Kraft et al. (1998), and Martin & Diederich (1999). For related structures, see: Gao et al. (2006), De Borger et al. (2005), Ogawa et al. (1992); Barnes & Chudek (2002); SethuSankar et al. (2003).

Experimental top

To the mixture of 4-tert-butylbenzyl phosphonate (35.1 mmol, 9.98 g) and potassium tert-butoxide (54.0 mmol, 6.06 g) in THF (54 ml) was added a solution of 4-bromobenzophenone (27.0 mmol, 5.00 g) in THF (200 ml) at room temperature under an Ar atmosphere. The mixture was stired at refluxing temperature for 3 h. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (300 ml), washed with 1% aqueous HCl (200 ml), water (300 ml) and brine, dried over MgSO4, and concentrated in vacuo. The crude product, which was a 60:40 mixture of (Z)- and (E)-stereoisomers by GC analysis, was initially recrystallized from 2-propanol solution to generate the (Z)-isomer (II) as pure crystals. The title isomer (I) was obtained by the consecutive recrystallization of the remaining mixture from 2-propanol solution.

Refinement top

The H atoms were included in their idealized positions and refined riding on the corresponding C atoms with C—H = 0.93 to 0.96 Å, and with Uiso = 1.2Ueq(C) or 1.5Ueq(C) for methyl-H. The methyl groups of the tert-butyl residue were found to be disordered over two positions and from refinement, the major component had a site occupancy factor = 0.791 (17).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. For reasons of clarity, the H atoms have been omitted and only the major component of the disordered tert-butyl residue is shown.
[Figure 2] Fig. 2. Reaction scheme.
(E)-1-(4-Bromophenyl)-2-(4-tert-butylphenyl)-1-phenylethene top
Crystal data top
C24H23BrZ = 2
Mr = 391.33F(000) = 404
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2950 (4) ÅCell parameters from 17917 reflections
b = 10.8173 (5) Åθ = 1.7–26.2°
c = 13.0447 (6) ŵ = 2.02 mm1
α = 112.415 (3)°T = 296 K
β = 94.570 (3)°Plate, colourless
γ = 105.402 (3)°0.45 × 0.40 × 0.04 mm
V = 1021.47 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4046 independent reflections
Radiation source: fine-focus sealed tube2070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 26.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.413, Tmax = 0.923k = 1313
17917 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0939P)2 + 0.1263P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.019
4046 reflectionsΔρmax = 0.47 e Å3
261 parametersΔρmin = 0.40 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (6)
Crystal data top
C24H23Brγ = 105.402 (3)°
Mr = 391.33V = 1021.47 (8) Å3
Triclinic, P1Z = 2
a = 8.2950 (4) ÅMo Kα radiation
b = 10.8173 (5) ŵ = 2.02 mm1
c = 13.0447 (6) ÅT = 296 K
α = 112.415 (3)°0.45 × 0.40 × 0.04 mm
β = 94.570 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4046 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2070 reflections with I > 2σ(I)
Tmin = 0.413, Tmax = 0.923Rint = 0.052
17917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0519 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.03Δρmax = 0.47 e Å3
4046 reflectionsΔρmin = 0.40 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.32899 (6)0.30686 (6)0.89730 (5)0.1269 (4)
C10.1190 (5)0.2364 (4)0.8586 (4)0.0756 (11)
C20.0276 (6)0.1682 (5)0.9382 (4)0.0869 (12)
H20.02600.15461.01290.104*
C30.1792 (5)0.1190 (4)0.9077 (3)0.0774 (11)
H30.27940.07240.96260.093*
C40.1849 (4)0.1378 (3)0.7971 (3)0.0602 (9)
C50.0313 (5)0.2095 (4)0.7184 (3)0.0714 (10)
H50.03110.22540.64310.086*
C60.1190 (5)0.2572 (4)0.7485 (4)0.0769 (11)
H60.22030.30330.69460.092*
C70.3451 (4)0.0855 (4)0.7616 (3)0.0605 (9)
C80.4655 (4)0.0381 (4)0.8294 (3)0.0653 (9)
H80.43990.08740.89850.078*
C90.6311 (4)0.1058 (4)0.8099 (3)0.0609 (9)
C100.6965 (5)0.2522 (4)0.8553 (3)0.0676 (10)
H100.63580.30550.89940.081*
C110.8495 (5)0.3203 (4)0.8364 (3)0.0719 (10)
H110.88780.41840.86710.086*
C120.9472 (5)0.2481 (4)0.7737 (3)0.0684 (10)
C130.8849 (5)0.1029 (4)0.7326 (4)0.0791 (11)
H130.94930.05030.69210.095*
C140.7309 (5)0.0323 (4)0.7489 (4)0.0743 (10)
H140.69370.06580.71860.089*
C151.1138 (5)0.3218 (5)0.7477 (4)0.0879 (13)
C161.0931 (12)0.2913 (18)0.6235 (8)0.153 (6)0.791 (17)
H16A0.98730.30130.59830.230*0.791 (17)
H16B1.09260.19660.58080.230*0.791 (17)
H16C1.18630.35650.61240.230*0.791 (17)
C171.2556 (9)0.2679 (14)0.7758 (13)0.161 (6)0.791 (17)
H17A1.22670.16910.72800.242*0.791 (17)
H17B1.26890.28220.85370.242*0.791 (17)
H17C1.36060.31860.76340.242*0.791 (17)
C181.1673 (13)0.4847 (8)0.8113 (11)0.134 (4)0.791 (17)
H18A1.27150.52670.79260.201*0.791 (17)
H18B1.18450.51120.89140.201*0.791 (17)
H18C1.07910.51710.78910.201*0.791 (17)
C16A1.189 (6)0.217 (4)0.670 (4)0.163 (17)0.209 (17)
H16D1.24950.25670.62450.245*0.209 (17)
H16E1.09850.13170.62190.245*0.209 (17)
H16F1.26590.19570.71480.245*0.209 (17)
C17A1.236 (4)0.408 (6)0.862 (2)0.21 (4)0.209 (17)
H17D1.34470.39280.85620.308*0.209 (17)
H17E1.19020.37830.91750.308*0.209 (17)
H17F1.25050.50610.88490.308*0.209 (17)
C18A1.071 (4)0.400 (5)0.684 (5)0.17 (2)0.209 (17)
H18D1.17070.43930.65940.257*0.209 (17)
H18E1.03350.47460.73170.257*0.209 (17)
H18F0.98200.33670.61900.257*0.209 (17)
C190.3588 (4)0.1758 (4)0.6450 (3)0.0607 (9)
C200.3716 (5)0.1263 (4)0.5612 (3)0.0713 (10)
H200.37560.03380.57820.086*
C210.3785 (6)0.2125 (5)0.4531 (4)0.0878 (13)
H210.38840.17770.39790.105*
C220.3709 (7)0.3473 (6)0.4275 (4)0.1020 (16)
H220.37530.40570.35450.122*
C230.3567 (8)0.3979 (5)0.5079 (5)0.1124 (17)
H230.35140.49100.48970.135*
C240.3503 (6)0.3132 (4)0.6159 (4)0.0904 (13)
H240.33990.34970.67000.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0816 (4)0.1320 (6)0.1210 (5)0.0039 (3)0.0475 (3)0.0255 (4)
C10.059 (2)0.070 (2)0.082 (3)0.0080 (19)0.020 (2)0.024 (2)
C20.081 (3)0.097 (3)0.070 (2)0.007 (2)0.023 (2)0.034 (2)
C30.063 (2)0.091 (3)0.065 (2)0.006 (2)0.0081 (18)0.032 (2)
C40.060 (2)0.061 (2)0.056 (2)0.0114 (17)0.0101 (17)0.0268 (17)
C50.066 (2)0.073 (2)0.061 (2)0.0054 (19)0.0054 (18)0.0265 (19)
C60.057 (2)0.073 (2)0.081 (3)0.0045 (18)0.0010 (19)0.026 (2)
C70.057 (2)0.063 (2)0.064 (2)0.0144 (17)0.0118 (17)0.0323 (18)
C80.059 (2)0.068 (2)0.063 (2)0.0140 (18)0.0144 (17)0.0253 (18)
C90.0543 (19)0.066 (2)0.058 (2)0.0129 (17)0.0073 (16)0.0268 (17)
C100.058 (2)0.066 (2)0.063 (2)0.0114 (17)0.0095 (17)0.0165 (18)
C110.062 (2)0.063 (2)0.079 (2)0.0093 (18)0.0089 (19)0.0255 (19)
C120.0526 (19)0.080 (3)0.075 (2)0.0156 (19)0.0096 (18)0.039 (2)
C130.062 (2)0.082 (3)0.099 (3)0.029 (2)0.023 (2)0.038 (2)
C140.065 (2)0.066 (2)0.094 (3)0.0215 (19)0.017 (2)0.035 (2)
C150.057 (2)0.104 (3)0.109 (4)0.013 (2)0.017 (2)0.060 (3)
C160.095 (6)0.243 (14)0.105 (6)0.001 (7)0.034 (4)0.089 (8)
C170.068 (4)0.245 (13)0.267 (17)0.064 (6)0.062 (7)0.193 (13)
C180.096 (6)0.115 (6)0.161 (10)0.018 (5)0.037 (6)0.059 (6)
C16A0.160 (19)0.162 (18)0.173 (19)0.043 (10)0.041 (11)0.080 (11)
C17A0.060 (18)0.26 (7)0.11 (2)0.07 (3)0.030 (17)0.02 (3)
C18A0.13 (3)0.17 (4)0.24 (6)0.01 (3)0.12 (4)0.12 (5)
C190.062 (2)0.057 (2)0.057 (2)0.0087 (16)0.0112 (16)0.0257 (17)
C200.076 (2)0.064 (2)0.070 (3)0.0104 (18)0.0132 (19)0.033 (2)
C210.096 (3)0.091 (3)0.065 (3)0.007 (2)0.020 (2)0.036 (2)
C220.119 (4)0.086 (4)0.076 (3)0.015 (3)0.036 (3)0.016 (3)
C230.165 (5)0.072 (3)0.095 (4)0.038 (3)0.044 (3)0.027 (3)
C240.126 (4)0.067 (3)0.080 (3)0.024 (2)0.027 (3)0.036 (2)
Geometric parameters (Å, º) top
Br1—C11.897 (4)C15—C17A1.52 (3)
C1—C21.356 (6)C15—C181.550 (10)
C1—C61.366 (6)C16—H16A0.9600
C2—C31.381 (5)C16—H16B0.9600
C2—H20.9300C16—H16C0.9600
C3—C41.385 (5)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.392 (5)C17—H17C0.9600
C4—C71.483 (5)C18—H18A0.9600
C5—C61.366 (5)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C6—H60.9300C16A—H16D0.9600
C7—C81.347 (5)C16A—H16E0.9600
C7—C191.494 (5)C16A—H16F0.9600
C8—C91.467 (5)C17A—H17D0.9600
C8—H80.9300C17A—H17E0.9600
C9—C141.387 (5)C17A—H17F0.9600
C9—C101.389 (5)C18A—H18D0.9600
C10—C111.381 (5)C18A—H18E0.9600
C10—H100.9300C18A—H18F0.9600
C11—C121.375 (6)C19—C241.366 (5)
C11—H110.9300C19—C201.389 (5)
C12—C131.380 (5)C20—C211.378 (6)
C12—C151.535 (6)C20—H200.9300
C13—C141.382 (5)C21—C221.349 (6)
C13—H130.9300C21—H210.9300
C14—H140.9300C22—C231.356 (7)
C15—C18A1.48 (4)C22—H220.9300
C15—C161.510 (9)C23—C241.372 (6)
C15—C16A1.52 (3)C23—H230.9300
C15—C171.522 (8)C24—H240.9300
C2—C1—C6120.9 (4)C16A—C15—C12112.0 (15)
C2—C1—Br1120.7 (3)C17—C15—C12110.2 (4)
C6—C1—Br1118.4 (3)C17A—C15—C12105.1 (12)
C1—C2—C3119.6 (4)C18A—C15—C1863 (2)
C1—C2—H2120.2C16—C15—C18105.4 (7)
C3—C2—H2120.2C16A—C15—C18135.9 (16)
C2—C3—C4121.3 (4)C17—C15—C18110.7 (6)
C2—C3—H3119.4C17A—C15—C1856 (2)
C4—C3—H3119.4C12—C15—C18112.1 (5)
C3—C4—C5116.9 (3)C15—C16—H16A109.5
C3—C4—C7122.8 (3)C15—C16—H16B109.5
C5—C4—C7120.4 (3)C15—C16—H16C109.5
C6—C5—C4121.9 (4)C15—C17—H17A109.5
C6—C5—H5119.0C15—C17—H17B109.5
C4—C5—H5119.0C15—C17—H17C109.5
C1—C6—C5119.3 (3)C15—C18—H18A109.5
C1—C6—H6120.3C15—C18—H18B109.5
C5—C6—H6120.3C15—C18—H18C109.5
C8—C7—C4121.3 (3)C15—C16A—H16D109.5
C8—C7—C19123.2 (3)C15—C16A—H16E109.5
C4—C7—C19115.4 (3)H16D—C16A—H16E109.5
C7—C8—C9129.2 (3)C15—C16A—H16F109.5
C7—C8—H8115.4H16D—C16A—H16F109.5
C9—C8—H8115.4H16E—C16A—H16F109.5
C14—C9—C10116.5 (3)C15—C17A—H17D109.4
C14—C9—C8123.9 (3)C15—C17A—H17E109.5
C10—C9—C8119.6 (3)H17D—C17A—H17E109.5
C11—C10—C9121.5 (4)C15—C17A—H17F109.5
C11—C10—H10119.2H17D—C17A—H17F109.5
C9—C10—H10119.2H17E—C17A—H17F109.5
C12—C11—C10122.3 (4)C15—C18A—H18D109.5
C12—C11—H11118.8C15—C18A—H18E109.4
C10—C11—H11118.8H18D—C18A—H18E109.5
C11—C12—C13115.9 (3)C15—C18A—H18F109.5
C11—C12—C15123.0 (4)H18D—C18A—H18F109.5
C13—C12—C15121.1 (4)H18E—C18A—H18F109.5
C12—C13—C14122.8 (4)C24—C19—C20117.7 (4)
C12—C13—H13118.6C24—C19—C7120.6 (3)
C14—C13—H13118.6C20—C19—C7121.6 (3)
C13—C14—C9120.9 (4)C21—C20—C19120.9 (4)
C13—C14—H14119.5C21—C20—H20119.5
C9—C14—H14119.5C19—C20—H20119.5
C18A—C15—C1648 (2)C22—C21—C20119.9 (4)
C18A—C15—C16A106 (2)C22—C21—H21120.1
C16—C15—C16A59.9 (18)C20—C21—H21120.1
C18A—C15—C17141.0 (12)C21—C22—C23120.1 (4)
C16—C15—C17107.3 (7)C21—C22—H22120.0
C16A—C15—C1750.0 (19)C23—C22—H22120.0
C18A—C15—C17A117 (2)C22—C23—C24120.7 (5)
C16—C15—C17A143.7 (14)C22—C23—H23119.7
C16A—C15—C17A109 (2)C24—C23—H23119.7
C17—C15—C17A62 (2)C19—C24—C23120.8 (4)
C18A—C15—C12107.4 (11)C19—C24—H24119.6
C16—C15—C12111.0 (4)C23—C24—H24119.6

Experimental details

Crystal data
Chemical formulaC24H23Br
Mr391.33
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2950 (4), 10.8173 (5), 13.0447 (6)
α, β, γ (°)112.415 (3), 94.570 (3), 105.402 (3)
V3)1021.47 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.45 × 0.40 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.413, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
17917, 4046, 2070
Rint0.052
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.177, 1.03
No. of reflections4046
No. of parameters261
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank CMDS and Dr Junseong Lee of KAIST for use of the X-ray single-crystal diffractometer.

References

First citationBarnes, J. C. & Chudek, J. A. (2002). Acta Cryst. E58, o703–o705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Borger, R., Vande Velde, C. M. L. & Blockhuys, F. (2005). Acta Cryst. E61, o819–o821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGao, L., Peng, H. & He, H.-W. (2006). Acta Cryst. E62, o5032–o5033.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKraft, A., Grimsdale, A. C. & Holmes, A. B. (1998). Angew. Chem. Int. Ed. 37, 402–428.  CrossRef Google Scholar
First citationMartin, R. E. & Diederich, F. (1999). Angew. Chem. Int. Ed. 38, 1350–1377.  CrossRef Google Scholar
First citationMooney, W. F. III, Brown, P. E., Russell, J. C., Costa, S. B., Pedersen, L. G. & Whitten, D. G. (1984). J. Am. Chem. Soc. 106, 5659–5667.  CrossRef CAS Web of Science Google Scholar
First citationOgawa, K., Sabo, T., Yoshimura, S., Takeuchi, Y. & Toriumi, K. (1992). J. Am. Chem. Soc. 114, 1041–1051.  CSD CrossRef CAS Web of Science Google Scholar
First citationSethuSankar, K., Saravanan, S., Velmurugan, D. & Parvez, M. (2003). Acta Cryst. C59, o156–o158.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds