metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m282-m283

Aqua­(4-methyl­quinoline-κN)[N-(2-oxido­benzyl­­idene)glycinato-κ3O,N,O′]copper(II) hemihydrate

aDepartment of Inorganic Chemistry, Faculty of Science, Palacký University, Křížkovského 10, CZ-771 47 Olomouc, Czech Republic, bLaboratory of Functional Genomics and Proteomics, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic, cDepartment of Chemical Drugs, Faculty of Pharmacy, Palackého 1/3, CZ-612 42 Brno, Czech Republic, and dDepartment of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, SK-832 32 Bratislava, Slovak Republic
*Correspondence e-mail: zdenek.travnicek@upol.cz

(Received 15 December 2007; accepted 20 December 2007; online 4 January 2008)

The title complex, [Cu(C9H7NO3)(C10H9N)(H2O)]·0.5H2O, crystallizes with two independent formula units in the asymmetric unit; the solvent mol­ecule is located on a twofold axis of symmetry. The CuII atom is coordinated by one tridentate N-salicylideneglycinate Schiff base ligand, one 4-methyl­quinoline ligand and one water mol­ecule, leading to a slightly distorted square-pyramidal N2O3 geometry. In the crystal structure, the mol­ecules are linked by O—H⋯O hydrogen bonds into linear chains in the [100] direction. The structure is further stabilized by inter­molecular C—H⋯O inter­actions and C⋯C contacts with C⋯C = 3.3058 (2), 3.3636 (2) and 3.3946 (2) Å.

Related literature

For synthesis, see: Kishita et al. (1964[Kishita, M., Nakahara, A. & Kubo, M. (1964). Aust. J. Chem. 17, 810-816.]). For related literature, see: Katsuki (2003[Katsuki, T. (2003). Synlett, pp. 281-297.]); Vančo et al. (2004[Vančo, J., Švajlenová, O., Račanská, E., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155-161.], 2008[Vančo, J., Marek, J., Trávníček, Z., Račanská, E., Muselík, J. & Švajlenová, O. (2008). J. Inorg. Biochem. In the press. doi:10.1016/j.jinorgbio.2007.10.003.]); Bauerová et al. (2005[Bauerová, K., Valentová, J., Poništ, S., Navarová, J., Komendová, D. & Mihalová, D. (2005). Biologia, 60, 65-68.]). For related structures, see: Valent et al. (2002[Valent, A., Melník, M., Hudecová, D., Dudová, B., Kivekäs, R. & Sundberg, M. R. (2002). Inorg. Chim. Acta, 340, 15-20.]); Warda (1998a[Warda, S. A. (1998a). Acta Cryst. C54, 187-189.],b[Warda, S. A. (1998b). Acta Cryst. C54, 768-770.],c[Warda, S. A. (1998c). Acta Cryst. C54, 1236-1238.],d[Warda, S. A. (1998d). Acta Cryst. C54, 1754-1755.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H7NO3)(C10H9N)(H2O)]·0.5H2O

  • Mr = 410.9

  • Monoclinic, P 2/c

  • a = 10.0966 (7) Å

  • b = 12.3483 (6) Å

  • c = 28.8133 (17) Å

  • β = 97.730 (6)°

  • V = 3559.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 120 (2) K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Kuma KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.7. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.690, Tmax = 0.729

  • 19645 measured reflections

  • 6242 independent reflections

  • 4225 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.113

  • S = 1.09

  • 6242 reflections

  • 499 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4V⋯O102i 0.879 (19) 1.88 (2) 2.756 (4) 174 (4)
O4—H4W⋯O2ii 0.87 (4) 2.01 (3) 2.825 (4) 155 (4)
O5—H5V⋯O101iii 0.890 (19) 1.99 (2) 2.865 (4) 169 (4)
O6—H6V⋯O1 0.876 (19) 2.01 (2) 2.867 (4) 165 (4)
O104—H4Y⋯O2 0.879 (19) 1.90 (2) 2.751 (4) 162 (4)
O104—H4Z⋯O102iii 0.87 (4) 1.98 (2) 2.823 (4) 162 (4)
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.7. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.7. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Release 3.1e. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases, as condensation products of carbonyls and amines, and their coordination compounds find their utilization in different branches of chemical technology (Katsuki, 2003) and participate in some biochemical pathways, e.g. transamination processes, catalyzed by metalloenzymes.

In connection with our recent studies on copper and zinc salicylidene-derived Schiff base complexes, we report now the structure of (I). The Schiff base (Salgly) ligand represents a condensation product of salicylaldehyde and glycine. The title complex, in the form of an anhydrous compound, showed significant microbistatic and fungistatic effects (Valent et al., 2002). Moreover, similar compounds derived from different N-salicylideneamino acids have been intensively studied and showed some remarkable biological features, from which the antioxidant (Vančo et al., 2008), antiflogistic, antirheumatic (Bauerová et al., 2005), or antidiabetic activities (Vančo et al., 2004) could be considered as the most interesting.

To date, only four X-ray structures of monomeric copper(II) complexes involving the aqua-(N-salicylideneglycinato-κO,N,O')copper(II) moiety in combination with another N-donor ligand, i.e. an alkylated pyridine derivative, have been reported (Warda, 1998a-d). While the present structure is the first one with two-ring one-N-donor aromatic ligand, i.e. 4-methylquinoline (Mqui), there are similarities in the interatomic parameters defining the coordination of the central atom in these complexes.

Two independent formula units of Cu(Salgly)(Mqui)(H2O).1/2(H2O) comprise the asymmetric unit of (I), see Fig. 1; each of the solvent water molecules lies on a 2-fold axis. Each CuII atom is chelated by two N atoms and a O atom, derived from the Salgly ligand, one N atom from the Mqui ligand. The resultant penta-coordinated geometry is completed by a water molecule. The O atom of the latter ligand occupies an apical position in a slightly distorted square-pyramidal coordination geometry [τ = 0.102 (for Cu1) and 0.091 (for Cu2)]. The bond distances of Cu—Nazomethine [1.927 (3) and 1.926 (3) Å], Cu—Nimine [1.993 (3) and 1.982 (3) Å], Cu—Ocarboxy [1.986 (3) and 1.982 (3) Å], Cu—Ophenoxy [1.910 (3) and 1.909 (3) Å] and Cu—Owater [2.371 (3) and 2.367 (3) Å] as well as Ocarboxy—Cu—Ophenoxy [166.61 (12) and 166.81 (12) °] and Nazomethine—Cu—Nimine [172.74 (14) and 172.24 (14) °] bond angles are quite similar in the independent complex molecules.

The primary intermolecular contacts in the crystal structure are of the type O—H···O (Fig. 2 & Table 1) and involve both coordinated and free water molecules, and both O atoms of carboxy groups, joining them into linear chains in the [100] direction. Moreover, the secondary structure is stabilized by intermolecular C—H···O interactions and C···C contacts (Fig. 3).

Related literature top

For synthesis, see: Kishita et al. (1964). For related literature, see: Katsuki (2003); Vančo et al. (2004, 2008); Bauerová et al. (2005). For related structures, see: Valent et al. (2002); Warda (1998a,b,c,d).

Experimental top

The title complex, (I), was prepared by the reaction of an ethanol/water solution (2:1, v/v) of aqua-(N-salicylideneglycinato)copper(II) hemihydrate (Kishita et al., 1964) with an ethanolic solution of 4-methylquinoline in the molar ratio of 1:4. The reaction mixture was stirred at 60 °C for 30 minutes. After cooling overnight, well developed single crystals of (I) suitable for X-ray analysis were isolated.

Refinement top

C-bound H-atoms were included in the riding model approximation with C–H distances of 0.95 Å (Caromatic), 0.98 Å (CH3) and 0.99 Å (CH2), and with Uiso(H) values of 1.2Ueq(CH2, Caromatic) or 1.5Ueq(Cmethyl). The O-bound H atoms were refined, with the O—H distances restrained to 0.90 (2) Å and with Uiso(H) values of 1.5Ueq(Owater); distances are given in Table 1.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structures of the independent complex and water molecules in (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of O—H···O hydrogen bonds as dashed lines [Symmetry codes: (ii) -x + 1, y, -z + 1/2; (iii) -x, y, -z + 1/2].
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of intermolecular C—H···O interactions (dashed lines) and C···C contacts (dashed lines) with C102···O3i = 3.6974 (2), C2···C106 = 3.5391 (2), C4···C107 = 3.3636 (2), C4···C108 = 3.3058 (2), C104···C7i = 3.3946 (2), and C102···C6i = 3.5122 (2) Å [Symmetry code: (i) x + 1, y, z]. Water molecules of crystallization and H-atoms not involved in hydrogen bonding are omitted for clarity.
Aqua(4-methylquinoline-κN)[N-(2-oxidobenzylidene)glycinato- κ3O,N,O']copper(II) hemihydrate top
Crystal data top
[Cu(C9H7NO3)(C10H9N)(H2O)]·0.5H2OF(000) = 1696
Mr = 410.9Dx = 1.533 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 3906 reflections
a = 10.0966 (7) Åθ = 2.6–26.5°
b = 12.3483 (6) ŵ = 1.26 mm1
c = 28.8133 (17) ÅT = 120 K
β = 97.730 (6)°Prism, blue
V = 3559.7 (4) Å30.30 × 0.25 × 0.25 mm
Z = 8
Data collection top
Kuma KM-4-CCD
diffractometer
6242 independent reflections
Radiation source: fine-focus sealed tube4225 reflections with I > 2σ(I)
Enhance (Oxford Diffraction) monochromatorRint = 0.049
Detector resolution: 8.3611 pixels mm-1θmax = 25.0°, θmin = 3.2°
rotation method ω scansh = 1211
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1413
Tmin = 0.690, Tmax = 0.729l = 3434
19645 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.04P)2 + 2.5P]
where P = (Fo2 + 2Fc2)/3
6242 reflections(Δ/σ)max = 0.001
499 parametersΔρmax = 0.66 e Å3
6 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Cu(C9H7NO3)(C10H9N)(H2O)]·0.5H2OV = 3559.7 (4) Å3
Mr = 410.9Z = 8
Monoclinic, P2/cMo Kα radiation
a = 10.0966 (7) ŵ = 1.26 mm1
b = 12.3483 (6) ÅT = 120 K
c = 28.8133 (17) Å0.30 × 0.25 × 0.25 mm
β = 97.730 (6)°
Data collection top
Kuma KM-4-CCD
diffractometer
6242 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
4225 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.729Rint = 0.049
19645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0476 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.66 e Å3
6242 reflectionsΔρmin = 0.54 e Å3
499 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.64949 (5)0.89277 (4)0.146484 (18)0.01660 (15)
Cu20.14540 (5)0.52717 (4)0.145347 (17)0.01668 (15)
O10.4892 (3)0.8873 (2)0.17954 (9)0.0175 (7)
O20.3605 (3)0.7712 (2)0.21210 (9)0.0198 (7)
O30.7735 (3)0.8959 (2)0.10193 (10)0.0212 (7)
O40.7828 (3)0.8607 (2)0.21941 (10)0.0199 (7)
H4V0.802 (4)0.7916 (18)0.2171 (15)0.030*
H4W0.733 (4)0.854 (4)0.2415 (12)0.030*
O1010.0123 (3)0.5325 (2)0.17948 (9)0.0179 (7)
O1020.1400 (3)0.6477 (2)0.21334 (9)0.0208 (7)
O1030.2671 (3)0.5247 (2)0.10008 (10)0.0221 (7)
O1040.2815 (3)0.5589 (2)0.21757 (10)0.0195 (7)
H4Y0.323 (4)0.621 (2)0.2148 (15)0.029*
H4Z0.231 (4)0.572 (4)0.2391 (12)0.029*
C10.4519 (4)0.7919 (3)0.18899 (13)0.0168 (9)
C20.5282 (4)0.6981 (3)0.17115 (14)0.0170 (9)
H2A0.58030.66020.19790.020*
H2B0.46460.64580.15430.020*
N30.6186 (3)0.7393 (3)0.13948 (11)0.0142 (8)
C40.6656 (4)0.6760 (3)0.11074 (14)0.0195 (10)
H40.63880.60220.11060.023*
C50.7556 (4)0.7073 (3)0.07865 (13)0.0179 (9)
C60.8021 (4)0.8155 (4)0.07522 (14)0.0214 (10)
C70.8874 (4)0.8365 (4)0.04121 (15)0.0248 (10)
H70.91840.90820.03750.030*
C80.9263 (5)0.7556 (4)0.01340 (16)0.0308 (12)
H80.98390.77250.00910.037*
C90.8833 (5)0.6487 (4)0.01734 (15)0.0306 (12)
H90.91210.59290.00170.037*
C100.7983 (4)0.6271 (4)0.04955 (15)0.0264 (11)
H100.76720.55500.05220.032*
N110.6567 (3)1.0531 (3)0.15411 (11)0.0175 (8)
C120.7484 (4)1.0987 (3)0.18422 (14)0.0184 (10)
H120.81341.05330.20140.022*
C130.7568 (4)1.2106 (4)0.19281 (15)0.0237 (10)
H130.82641.23900.21500.028*
C140.6646 (4)1.2783 (3)0.16915 (15)0.0225 (10)
C150.5640 (4)1.2326 (3)0.13509 (14)0.0200 (10)
C160.5637 (4)1.1192 (3)0.12792 (13)0.0179 (9)
C170.4669 (4)1.0718 (4)0.09435 (15)0.0258 (11)
H170.46730.99580.08920.031*
C180.3730 (5)1.1347 (4)0.06929 (16)0.0321 (12)
H180.30761.10230.04680.039*
C190.3712 (5)1.2475 (4)0.07621 (17)0.0336 (12)
H190.30541.29070.05820.040*
C200.4634 (4)1.2946 (4)0.10850 (16)0.0272 (11)
H200.46031.37060.11330.033*
C210.6709 (5)1.3984 (3)0.17792 (18)0.0366 (13)
H21A0.74181.41420.20370.055*
H21B0.58501.42350.18620.055*
H21C0.69001.43590.14960.055*
C1010.0500 (4)0.6277 (3)0.18915 (14)0.0173 (9)
C1020.0258 (4)0.7220 (3)0.17074 (13)0.0175 (9)
H10A0.03820.77510.15470.021*
H10B0.08060.75910.19710.021*
N1030.1120 (3)0.6801 (3)0.13791 (11)0.0159 (8)
C1040.1625 (4)0.7452 (3)0.11094 (13)0.0174 (9)
H1040.13740.81930.11170.021*
C1050.2556 (4)0.7147 (3)0.07917 (14)0.0192 (10)
C1060.3004 (4)0.6060 (3)0.07514 (14)0.0184 (10)
C1070.3904 (4)0.5879 (4)0.04231 (14)0.0225 (10)
H1070.41980.51620.03750.027*
C1080.4363 (4)0.6710 (4)0.01733 (15)0.0258 (11)
H1080.49820.65550.00390.031*
C1090.3949 (4)0.7773 (4)0.02211 (15)0.0260 (11)
H1090.42820.83430.00480.031*
C1100.3047 (4)0.7971 (4)0.05253 (14)0.0233 (10)
H1100.27430.86920.05580.028*
N1110.1532 (3)0.3675 (3)0.15199 (11)0.0135 (7)
C1120.2498 (4)0.3203 (3)0.18149 (14)0.0186 (10)
H1120.31610.36530.19820.022*
C1130.2587 (4)0.2090 (3)0.18907 (14)0.0212 (10)
H1130.33030.18050.21030.025*
C1140.1658 (5)0.1406 (4)0.16633 (15)0.0227 (10)
C1150.0611 (4)0.1873 (3)0.13443 (14)0.0201 (10)
C1160.0567 (4)0.3009 (3)0.12845 (14)0.0184 (10)
C1170.0458 (4)0.3493 (4)0.09754 (14)0.0204 (10)
H1170.04680.42560.09320.024*
C1180.1436 (4)0.2872 (4)0.07372 (15)0.0275 (11)
H1180.21330.32050.05320.033*
C1190.1422 (5)0.1741 (4)0.07931 (15)0.0272 (11)
H1190.21110.13130.06270.033*
C1200.0422 (4)0.1257 (4)0.10848 (15)0.0250 (11)
H1200.04150.04910.11150.030*
C1210.1741 (5)0.0218 (4)0.17441 (18)0.0360 (13)
H12A0.24790.00590.19920.054*
H12B0.18970.01470.14540.054*
H12C0.09000.00400.18400.054*
O50.00000.3678 (4)0.25000.0289 (11)
H5V0.005 (5)0.412 (3)0.2745 (11)0.043*
O60.50001.0521 (4)0.25000.0267 (10)
H6V0.486 (5)1.010 (3)0.2254 (11)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0187 (3)0.0130 (3)0.0189 (3)0.0010 (2)0.0059 (2)0.0003 (2)
Cu20.0200 (3)0.0126 (3)0.0184 (3)0.0014 (2)0.0060 (2)0.0005 (2)
O10.0172 (16)0.0111 (15)0.0255 (17)0.0003 (12)0.0073 (13)0.0005 (13)
O20.0188 (17)0.0211 (16)0.0210 (16)0.0043 (13)0.0081 (13)0.0015 (13)
O30.0272 (18)0.0169 (16)0.0217 (16)0.0041 (13)0.0112 (13)0.0035 (13)
O40.0220 (17)0.0182 (16)0.0200 (16)0.0005 (14)0.0051 (13)0.0009 (14)
O1010.0201 (16)0.0128 (16)0.0217 (16)0.0004 (12)0.0062 (13)0.0003 (12)
O1020.0224 (17)0.0204 (16)0.0214 (16)0.0026 (13)0.0099 (13)0.0018 (13)
O1030.0284 (18)0.0158 (16)0.0248 (17)0.0030 (13)0.0136 (14)0.0027 (13)
O1040.0240 (18)0.0180 (16)0.0177 (16)0.0030 (14)0.0067 (13)0.0027 (14)
C10.013 (2)0.021 (2)0.014 (2)0.0017 (19)0.0035 (17)0.0011 (18)
C20.016 (2)0.018 (2)0.017 (2)0.0066 (18)0.0032 (17)0.0014 (18)
N30.018 (2)0.0127 (17)0.0128 (18)0.0022 (15)0.0054 (14)0.0002 (15)
C40.019 (2)0.021 (2)0.017 (2)0.0015 (19)0.0022 (18)0.0001 (19)
C50.017 (2)0.022 (2)0.014 (2)0.0056 (19)0.0014 (17)0.0001 (19)
C60.019 (2)0.027 (3)0.018 (2)0.004 (2)0.0001 (18)0.000 (2)
C70.018 (2)0.031 (3)0.027 (3)0.002 (2)0.006 (2)0.002 (2)
C80.025 (3)0.046 (3)0.022 (3)0.003 (2)0.007 (2)0.002 (2)
C90.031 (3)0.040 (3)0.021 (2)0.011 (2)0.005 (2)0.008 (2)
C100.025 (3)0.027 (3)0.025 (2)0.005 (2)0.003 (2)0.002 (2)
N110.017 (2)0.0182 (19)0.019 (2)0.0015 (16)0.0072 (16)0.0020 (16)
C120.021 (2)0.020 (2)0.016 (2)0.0028 (19)0.0087 (18)0.0025 (19)
C130.025 (3)0.023 (3)0.024 (2)0.009 (2)0.007 (2)0.001 (2)
C140.029 (3)0.019 (2)0.022 (2)0.002 (2)0.014 (2)0.000 (2)
C150.021 (2)0.021 (2)0.020 (2)0.007 (2)0.0108 (19)0.0043 (19)
C160.022 (2)0.022 (2)0.011 (2)0.0025 (19)0.0076 (18)0.0057 (18)
C170.024 (3)0.028 (3)0.026 (3)0.004 (2)0.004 (2)0.004 (2)
C180.029 (3)0.043 (3)0.023 (3)0.004 (2)0.000 (2)0.009 (2)
C190.027 (3)0.043 (3)0.032 (3)0.008 (2)0.008 (2)0.019 (3)
C200.027 (3)0.024 (3)0.034 (3)0.006 (2)0.016 (2)0.009 (2)
C210.042 (3)0.015 (3)0.054 (4)0.001 (2)0.011 (3)0.004 (2)
C1010.020 (2)0.016 (2)0.014 (2)0.0024 (19)0.0038 (18)0.0014 (18)
C1020.025 (2)0.014 (2)0.013 (2)0.0009 (19)0.0046 (18)0.0011 (18)
N1030.0133 (19)0.0157 (19)0.0182 (19)0.0009 (15)0.0001 (15)0.0004 (16)
C1040.021 (2)0.012 (2)0.018 (2)0.0010 (18)0.0033 (18)0.0013 (18)
C1050.017 (2)0.022 (2)0.017 (2)0.0003 (19)0.0017 (18)0.0009 (19)
C1060.019 (2)0.023 (2)0.013 (2)0.0007 (19)0.0009 (18)0.0006 (19)
C1070.023 (3)0.027 (3)0.018 (2)0.003 (2)0.0040 (19)0.004 (2)
C1080.023 (3)0.036 (3)0.020 (2)0.004 (2)0.0061 (19)0.001 (2)
C1090.028 (3)0.030 (3)0.021 (2)0.009 (2)0.004 (2)0.007 (2)
C1100.030 (3)0.019 (2)0.021 (2)0.003 (2)0.002 (2)0.0013 (19)
N1110.0168 (19)0.0130 (17)0.0121 (17)0.0010 (15)0.0074 (14)0.0007 (15)
C1120.015 (2)0.020 (2)0.022 (2)0.0020 (19)0.0039 (18)0.0002 (19)
C1130.030 (3)0.022 (2)0.012 (2)0.005 (2)0.0030 (18)0.0027 (19)
C1140.031 (3)0.017 (2)0.021 (2)0.002 (2)0.010 (2)0.002 (2)
C1150.028 (3)0.015 (2)0.020 (2)0.0014 (19)0.0118 (19)0.0003 (19)
C1160.018 (2)0.017 (2)0.022 (2)0.0004 (19)0.0114 (18)0.0010 (19)
C1170.024 (3)0.021 (2)0.017 (2)0.002 (2)0.0061 (19)0.0029 (19)
C1180.020 (3)0.039 (3)0.024 (3)0.002 (2)0.002 (2)0.001 (2)
C1190.026 (3)0.033 (3)0.026 (3)0.011 (2)0.013 (2)0.012 (2)
C1200.032 (3)0.019 (2)0.027 (3)0.008 (2)0.011 (2)0.007 (2)
C1210.049 (3)0.021 (3)0.038 (3)0.001 (2)0.006 (3)0.002 (2)
O50.043 (3)0.022 (2)0.023 (3)0.0000.008 (2)0.000
O60.040 (3)0.024 (3)0.017 (2)0.0000.005 (2)0.000
Geometric parameters (Å, º) top
Cu1—O31.910 (3)C17—H170.9500
Cu1—N31.927 (3)C18—C191.408 (7)
Cu1—O11.986 (3)C18—H180.9500
Cu1—N111.993 (3)C19—C201.355 (7)
Cu1—O42.371 (3)C19—H190.9500
Cu2—O1031.909 (3)C20—H200.9500
Cu2—N1031.926 (3)C21—H21A0.9800
Cu2—N1111.982 (3)C21—H21B0.9800
Cu2—O1011.982 (3)C21—H21C0.9800
Cu2—O1042.367 (3)C101—C1021.527 (5)
O1—C11.276 (5)C102—N1031.463 (5)
O2—C11.235 (5)C102—H10A0.9900
O3—C61.312 (5)C102—H10B0.9900
O4—H4V0.879 (19)N103—C1041.272 (5)
O4—H4W0.87 (4)C104—C1051.447 (6)
O101—C1011.278 (5)C104—H1040.9500
O102—C1011.242 (5)C105—C1101.405 (6)
O103—C1061.305 (5)C105—C1061.426 (6)
O104—H4Y0.879 (19)C106—C1071.415 (6)
O104—H4Z0.87 (4)C107—C1081.369 (6)
C1—C21.518 (6)C107—H1070.9500
C2—N31.465 (5)C108—C1091.390 (6)
C2—H2A0.9900C108—H1080.9500
C2—H2B0.9900C109—C1101.368 (6)
N3—C41.276 (5)C109—H1090.9500
C4—C51.434 (5)C110—H1100.9500
C4—H40.9500N111—C1121.338 (5)
C5—C101.403 (6)N111—C1161.381 (5)
C5—C61.424 (6)C112—C1131.392 (6)
C6—C71.413 (6)C112—H1120.9500
C7—C81.371 (6)C113—C1141.363 (6)
C7—H70.9500C113—H1130.9500
C8—C91.398 (6)C114—C1151.426 (6)
C8—H80.9500C114—C1211.486 (6)
C9—C101.373 (6)C115—C1161.414 (6)
C9—H90.9500C115—C1201.419 (6)
C10—H100.9500C116—C1171.404 (6)
N11—C121.308 (5)C117—C1181.361 (6)
N11—C161.388 (5)C117—H1170.9500
C12—C131.404 (6)C118—C1191.406 (6)
C12—H120.9500C118—H1180.9500
C13—C141.364 (6)C119—C1201.362 (6)
C13—H130.9500C119—H1190.9500
C14—C151.430 (6)C120—H1200.9500
C14—C211.505 (6)C121—H12A0.9800
C15—C201.413 (6)C121—H12B0.9800
C15—C161.416 (6)C121—H12C0.9800
C16—C171.407 (6)O5—H5V0.890 (19)
C17—C181.357 (6)O6—H6V0.876 (19)
O3—Cu1—N393.49 (12)C17—C18—C19120.8 (4)
O3—Cu1—O1166.61 (12)C17—C18—H18119.6
N3—Cu1—O183.42 (12)C19—C18—H18119.6
O3—Cu1—N1192.10 (12)C20—C19—C18120.1 (4)
N3—Cu1—N11172.74 (14)C20—C19—H19120.0
O1—Cu1—N1190.08 (12)C18—C19—H19120.0
O3—Cu1—O4104.68 (11)C19—C20—C15121.2 (4)
N3—Cu1—O489.61 (12)C19—C20—H20119.4
O1—Cu1—O488.37 (11)C15—C20—H20119.4
N11—Cu1—O493.45 (12)C14—C21—H21A109.5
O103—Cu2—N10393.38 (13)C14—C21—H21B109.5
O103—Cu2—N11191.68 (12)H21A—C21—H21B109.5
N103—Cu2—N111172.24 (14)C14—C21—H21C109.5
O103—Cu2—O101166.81 (12)H21A—C21—H21C109.5
N103—Cu2—O10183.24 (12)H21B—C21—H21C109.5
N111—Cu2—O10190.51 (12)O102—C101—O101124.6 (4)
O103—Cu2—O104104.63 (11)O102—C101—C102118.8 (4)
N103—Cu2—O10490.45 (12)O101—C101—C102116.6 (4)
N111—Cu2—O10493.96 (12)N103—C102—C101108.9 (3)
O101—Cu2—O10488.19 (11)N103—C102—H10A109.9
C1—O1—Cu1114.6 (3)C101—C102—H10A109.9
C6—O3—Cu1126.5 (3)N103—C102—H10B109.9
Cu1—O4—H4V101 (3)C101—C102—H10B109.9
Cu1—O4—H4W110 (3)H10A—C102—H10B108.3
H4V—O4—H4W96 (4)C104—N103—C102119.6 (3)
C101—O101—Cu2114.9 (3)C104—N103—Cu2127.5 (3)
C106—O103—Cu2126.9 (3)C102—N103—Cu2112.7 (2)
Cu2—O104—H4Y107 (3)N103—C104—C105124.8 (4)
Cu2—O104—H4Z110 (3)N103—C104—H104117.6
H4Y—O104—H4Z103 (4)C105—C104—H104117.6
O2—C1—O1124.7 (4)C110—C105—C106119.9 (4)
O2—C1—C2118.3 (4)C110—C105—C104117.7 (4)
O1—C1—C2117.0 (3)C106—C105—C104122.4 (4)
N3—C2—C1109.4 (3)O103—C106—C107118.8 (4)
N3—C2—H2A109.8O103—C106—C105124.9 (4)
C1—C2—H2A109.8C107—C106—C105116.3 (4)
N3—C2—H2B109.8C108—C107—C106121.7 (4)
C1—C2—H2B109.8C108—C107—H107119.1
H2A—C2—H2B108.2C106—C107—H107119.1
C4—N3—C2120.6 (3)C107—C108—C109121.9 (4)
C4—N3—Cu1126.9 (3)C107—C108—H108119.1
C2—N3—Cu1112.4 (2)C109—C108—H108119.1
N3—C4—C5125.2 (4)C110—C109—C108117.9 (4)
N3—C4—H4117.4C110—C109—H109121.1
C5—C4—H4117.4C108—C109—H109121.1
C10—C5—C6119.4 (4)C109—C110—C105122.3 (4)
C10—C5—C4117.9 (4)C109—C110—H110118.8
C6—C5—C4122.8 (4)C105—C110—H110118.8
O3—C6—C7118.1 (4)C112—N111—C116117.3 (3)
O3—C6—C5124.6 (4)C112—N111—Cu2120.7 (3)
C7—C6—C5117.3 (4)C116—N111—Cu2121.9 (3)
C8—C7—C6121.4 (4)N111—C112—C113123.7 (4)
C8—C7—H7119.3N111—C112—H112118.1
C6—C7—H7119.3C113—C112—H112118.1
C7—C8—C9121.6 (4)C114—C113—C112120.7 (4)
C7—C8—H8119.2C114—C113—H113119.6
C9—C8—H8119.2C112—C113—H113119.6
C10—C9—C8117.9 (4)C113—C114—C115117.5 (4)
C10—C9—H9121.1C113—C114—C121121.1 (4)
C8—C9—H9121.1C115—C114—C121121.4 (4)
C9—C10—C5122.5 (4)C116—C115—C120117.3 (4)
C9—C10—H10118.8C116—C115—C114119.2 (4)
C5—C10—H10118.8C120—C115—C114123.5 (4)
C12—N11—C16118.3 (4)N111—C116—C117118.0 (4)
C12—N11—Cu1120.9 (3)N111—C116—C115121.5 (4)
C16—N11—Cu1120.8 (3)C117—C116—C115120.5 (4)
N11—C12—C13124.1 (4)C118—C117—C116120.2 (4)
N11—C12—H12117.9C118—C117—H117119.9
C13—C12—H12117.9C116—C117—H117119.9
C14—C13—C12119.6 (4)C117—C118—C119120.4 (4)
C14—C13—H13120.2C117—C118—H118119.8
C12—C13—H13120.2C119—C118—H118119.8
C13—C14—C15118.4 (4)C120—C119—C118120.1 (4)
C13—C14—C21120.6 (4)C120—C119—H119119.9
C15—C14—C21121.0 (4)C118—C119—H119119.9
C20—C15—C16118.0 (4)C119—C120—C115121.4 (4)
C20—C15—C14123.4 (4)C119—C120—H120119.3
C16—C15—C14118.6 (4)C115—C120—H120119.3
N11—C16—C17119.1 (4)C114—C121—H12A109.5
N11—C16—C15120.9 (4)C114—C121—H12B109.5
C17—C16—C15120.0 (4)H12A—C121—H12B109.5
C18—C17—C16119.9 (4)C114—C121—H12C109.5
C18—C17—H17120.0H12A—C121—H12C109.5
C16—C17—H17120.0H12B—C121—H12C109.5
O3—Cu1—O1—C188.7 (5)C14—C15—C16—C17179.4 (4)
N3—Cu1—O1—C111.4 (3)N11—C16—C17—C18178.3 (4)
N11—Cu1—O1—C1171.9 (3)C15—C16—C17—C180.8 (6)
O4—Cu1—O1—C178.4 (3)C16—C17—C18—C190.3 (7)
N3—Cu1—O3—C66.8 (3)C17—C18—C19—C200.6 (7)
O1—Cu1—O3—C669.4 (6)C18—C19—C20—C151.2 (7)
N11—Cu1—O3—C6168.6 (3)C16—C15—C20—C191.7 (6)
O4—Cu1—O3—C697.3 (3)C14—C15—C20—C19179.2 (4)
O103—Cu2—O101—C10187.7 (6)Cu2—O101—C101—O102174.3 (3)
N103—Cu2—O101—C10111.9 (3)Cu2—O101—C101—C1023.4 (4)
N111—Cu2—O101—C101172.8 (3)O102—C101—C102—N103171.8 (3)
O104—Cu2—O101—C10178.8 (3)O101—C101—C102—N10310.4 (5)
N103—Cu2—O103—C1061.9 (3)C101—C102—N103—C104165.2 (3)
N111—Cu2—O103—C106172.3 (3)C101—C102—N103—Cu219.5 (4)
O101—Cu2—O103—C10672.8 (6)O103—Cu2—N103—C1040.5 (4)
O104—Cu2—O103—C10693.2 (3)O101—Cu2—N103—C104167.7 (4)
Cu1—O1—C1—O2174.8 (3)O104—Cu2—N103—C104104.2 (3)
Cu1—O1—C1—C23.8 (4)O103—Cu2—N103—C102175.4 (3)
O2—C1—C2—N3172.2 (3)O101—Cu2—N103—C10217.4 (3)
O1—C1—C2—N39.0 (5)O104—Cu2—N103—C10270.7 (3)
C1—C2—N3—C4161.0 (4)C102—N103—C104—C105176.0 (4)
C1—C2—N3—Cu117.7 (4)Cu2—N103—C104—C1051.3 (6)
O3—Cu1—N3—C44.4 (4)N103—C104—C105—C110178.5 (4)
O1—Cu1—N3—C4162.6 (4)N103—C104—C105—C1060.1 (6)
O4—Cu1—N3—C4109.0 (3)Cu2—O103—C106—C107178.5 (3)
O3—Cu1—N3—C2177.0 (3)Cu2—O103—C106—C1053.4 (6)
O1—Cu1—N3—C216.0 (3)C110—C105—C106—O103175.9 (4)
O4—Cu1—N3—C272.4 (3)C104—C105—C106—O1032.4 (6)
C2—N3—C4—C5179.3 (4)C110—C105—C106—C1072.2 (6)
Cu1—N3—C4—C52.2 (6)C104—C105—C106—C107179.4 (4)
N3—C4—C5—C10179.6 (4)O103—C106—C107—C108175.5 (4)
N3—C4—C5—C60.6 (6)C105—C106—C107—C1082.7 (6)
Cu1—O3—C6—C7174.1 (3)C106—C107—C108—C1091.4 (7)
Cu1—O3—C6—C57.3 (6)C107—C108—C109—C1100.6 (7)
C10—C5—C6—O3176.9 (4)C108—C109—C110—C1051.1 (7)
C4—C5—C6—O33.3 (6)C106—C105—C110—C1090.4 (6)
C10—C5—C6—C71.6 (6)C104—C105—C110—C109178.8 (4)
C4—C5—C6—C7178.1 (4)O103—Cu2—N111—C11285.4 (3)
O3—C6—C7—C8177.2 (4)O101—Cu2—N111—C112107.6 (3)
C5—C6—C7—C81.5 (6)O104—Cu2—N111—C11219.4 (3)
C6—C7—C8—C90.1 (7)O103—Cu2—N111—C11697.9 (3)
C7—C8—C9—C101.2 (7)O101—Cu2—N111—C11669.1 (3)
C8—C9—C10—C51.0 (7)O104—Cu2—N111—C116157.4 (3)
C6—C5—C10—C90.4 (6)C116—N111—C112—C1130.8 (6)
C4—C5—C10—C9179.3 (4)Cu2—N111—C112—C113177.7 (3)
O3—Cu1—N11—C1286.6 (3)N111—C112—C113—C1140.5 (6)
O1—Cu1—N11—C12106.6 (3)C112—C113—C114—C1150.6 (6)
O4—Cu1—N11—C1218.3 (3)C112—C113—C114—C121179.6 (4)
O3—Cu1—N11—C1694.1 (3)C113—C114—C115—C1161.1 (6)
O1—Cu1—N11—C1672.7 (3)C121—C114—C115—C116179.2 (4)
O4—Cu1—N11—C16161.1 (3)C113—C114—C115—C120179.9 (4)
C16—N11—C12—C131.8 (6)C121—C114—C115—C1200.3 (7)
Cu1—N11—C12—C13177.5 (3)C112—N111—C116—C117179.7 (4)
N11—C12—C13—C140.6 (6)Cu2—N111—C116—C1172.8 (5)
C12—C13—C14—C151.9 (6)C112—N111—C116—C1151.3 (6)
C12—C13—C14—C21179.6 (4)Cu2—N111—C116—C115178.2 (3)
C13—C14—C15—C20180.0 (4)C120—C115—C116—N111179.6 (4)
C21—C14—C15—C201.5 (6)C114—C115—C116—N1111.5 (6)
C13—C14—C15—C160.8 (6)C120—C115—C116—C1170.6 (6)
C21—C14—C15—C16179.3 (4)C114—C115—C116—C117179.6 (4)
C12—N11—C16—C17178.1 (4)N111—C116—C117—C118179.6 (4)
Cu1—N11—C16—C172.6 (5)C115—C116—C117—C1181.4 (6)
C12—N11—C16—C152.9 (6)C116—C117—C118—C1190.9 (6)
Cu1—N11—C16—C15176.5 (3)C117—C118—C119—C1200.4 (6)
C20—C15—C16—N11177.6 (4)C118—C119—C120—C1151.1 (6)
C14—C15—C16—N111.6 (6)C116—C115—C120—C1190.6 (6)
C20—C15—C16—C171.4 (6)C114—C115—C120—C119178.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4V···O102i0.88 (2)1.88 (2)2.756 (4)174 (4)
O4—H4W···O2ii0.87 (4)2.01 (3)2.825 (4)155 (4)
O5—H5V···O101iii0.89 (2)1.99 (2)2.865 (4)169 (4)
O6—H6V···O10.88 (2)2.01 (2)2.867 (4)165 (4)
O104—H4Y···O20.88 (2)1.90 (2)2.751 (4)162 (4)
O104—H4Z···O102iii0.87 (4)1.98 (2)2.823 (4)162 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1/2; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C9H7NO3)(C10H9N)(H2O)]·0.5H2O
Mr410.9
Crystal system, space groupMonoclinic, P2/c
Temperature (K)120
a, b, c (Å)10.0966 (7), 12.3483 (6), 28.8133 (17)
β (°) 97.730 (6)
V3)3559.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerKuma KM-4-CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.690, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
19645, 6242, 4225
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.09
No. of reflections6242
No. of parameters499
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.54

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4V···O102i0.879 (19)1.88 (2)2.756 (4)174 (4)
O4—H4W···O2ii0.87 (4)2.01 (3)2.825 (4)155 (4)
O5—H5V···O101iii0.890 (19)1.99 (2)2.865 (4)169 (4)
O6—H6V···O10.876 (19)2.01 (2)2.867 (4)165 (4)
O104—H4Y···O20.879 (19)1.90 (2)2.751 (4)162 (4)
O104—H4Z···O102iii0.87 (4)1.98 (2)2.823 (4)162 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1/2; (iii) x, y, z+1/2.
 

Acknowledgements

Financial support of this work by the Ministry of Education, Youth and Sports of the Czech Republic (grant Nos. MSM6198959218, MSM0021622415 and MSM6215712403) and the Scientific Grant Agency of the Ministry of Education of the Slovak Republic (grant No. VEGA 1/3416/06) is gratefully acknowledged.

References

First citationBauerová, K., Valentová, J., Poništ, S., Navarová, J., Komendová, D. & Mihalová, D. (2005). Biologia, 60, 65–68.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Release 3.1e. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationKatsuki, T. (2003). Synlett, pp. 281–297.  Web of Science CrossRef Google Scholar
First citationKishita, M., Nakahara, A. & Kubo, M. (1964). Aust. J. Chem. 17, 810–816.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.7. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationValent, A., Melník, M., Hudecová, D., Dudová, B., Kivekäs, R. & Sundberg, M. R. (2002). Inorg. Chim. Acta, 340, 15–20.  Web of Science CSD CrossRef CAS Google Scholar
First citationVančo, J., Marek, J., Trávníček, Z., Račanská, E., Muselík, J. & Švajlenová, O. (2008). J. Inorg. Biochem. In the press. doi:10.1016/j.jinorgbio.2007.10.003.  Google Scholar
First citationVančo, J., Švajlenová, O., Račanská, E., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155–161.  Web of Science PubMed Google Scholar
First citationWarda, S. A. (1998a). Acta Cryst. C54, 187–189.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWarda, S. A. (1998b). Acta Cryst. C54, 768–770.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWarda, S. A. (1998c). Acta Cryst. C54, 1236–1238.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWarda, S. A. (1998d). Acta Cryst. C54, 1754–1755.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m282-m283
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds