organic compounds
Redetermination of 5-iodouracil
aChemistry Department, 'Sapienza' University of Rome, P. le A. Moro, 5, I-00185 Rome, Italy
*Correspondence e-mail: g.portalone@caspur.it
The title compound (systematic name: 2,4-dihydroxy-5-iodopyrimidine), C4H3IN2O2, which was first reported by Sternglanz, Freeman & Bugg [Acta Cryst. (1975), B31, 1393–1395], has been redetermined, providing a significant increase in the precision of the derived geometric parameters. The comprises a non-planar molecule in a slightly distorted B25 boat conformation. The molecules are associated in the to form ribbons stabilized by N—H⋯O hydrogen bonds which involve NH groups and two carbonyl O atoms.
Related literature
For the previous et al. (1975). For a general approach to the use of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supramolecular reagents, see: Portalone et al. (1999); Brunetti et al. (2000, 2002); Portalone & Colapietro (2007, and references therein). For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999). the B25 boat confromation is defined by Cremer & Pople (1975).
see: SternglanzExperimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX.
Supporting information
10.1107/S1600536807068043/tk2237sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807068043/tk2237Isup2.hkl
The title compound (0.1 mmol, Sigma Aldrich at 98% purity) was dissolved in water (6 ml) and heated under reflux for 1 h. After cooling the solution to ambient temperature, crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvent.
The H atoms were included in the riding model approximation with C—H = 0.96 Å and N—H = 0.86–0.88 Å, and with refined isotropic displacement parameters.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).C4H3IN2O2 | F(000) = 220 |
Mr = 237.98 | Dx = 2.548 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: P 2yb | Cell parameters from 29638 reflections |
a = 4.89650 (18) Å | θ = 2.9–32.4° |
b = 4.45921 (13) Å | µ = 5.08 mm−1 |
c = 14.2167 (2) Å | T = 298 K |
β = 92.341 (2)° | Tablets, colourless |
V = 310.16 (2) Å3 | 0.40 × 0.20 × 0.10 mm |
Z = 2 |
Oxford Diffraction Xcalibur S CCD diffractometer | 2127 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1803 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 16.0696 pixels mm-1 | θmax = 32.4°, θmin = 2.9° |
ω and ϕ scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm | k = −6→6 |
Tmin = 0.252, Tmax = 0.602 | l = −21→21 |
48636 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0471P)2 + 0.0442P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
2127 reflections | Δρmax = 0.38 e Å−3 |
86 parameters | Δρmin = −0.03 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 934 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (2) |
C4H3IN2O2 | V = 310.16 (2) Å3 |
Mr = 237.98 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 4.89650 (18) Å | µ = 5.08 mm−1 |
b = 4.45921 (13) Å | T = 298 K |
c = 14.2167 (2) Å | 0.40 × 0.20 × 0.10 mm |
β = 92.341 (2)° |
Oxford Diffraction Xcalibur S CCD diffractometer | 2127 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm | 1803 reflections with I > 2σ(I) |
Tmin = 0.252, Tmax = 0.602 | Rint = 0.049 |
48636 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.071 | Δρmax = 0.38 e Å−3 |
S = 1.04 | Δρmin = −0.03 e Å−3 |
2127 reflections | Absolute structure: Flack (1983), 934 Friedel pairs |
86 parameters | Absolute structure parameter: −0.01 (2) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.75060 (5) | 0.9092 | 0.595431 (10) | 0.05858 (9) | |
O1 | 0.7917 (3) | 0.3946 (8) | 0.99376 (14) | 0.0427 (4) | |
O2 | 0.4156 (4) | 1.0571 (5) | 0.78388 (17) | 0.0399 (4) | |
N1 | 0.9717 (4) | 0.4223 (8) | 0.84883 (14) | 0.0309 (3) | |
H1 | 1.097 | 0.289 | 0.8642 | 0.037 (9)* | |
C2 | 0.7939 (5) | 0.5077 (6) | 0.91511 (19) | 0.0295 (4) | |
N3 | 0.6128 (4) | 0.7269 (5) | 0.88650 (15) | 0.0291 (4) | |
H3 | 0.5025 | 0.7887 | 0.9279 | 0.058 (12)* | |
C4 | 0.5871 (4) | 0.8604 (5) | 0.79868 (16) | 0.0279 (5) | |
C5 | 0.7757 (5) | 0.7440 (6) | 0.73108 (17) | 0.0310 (4) | |
C6 | 0.9626 (5) | 0.5361 (6) | 0.75921 (19) | 0.0310 (4) | |
H6 | 1.0922 | 0.4663 | 0.7153 | 0.032 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.09427 (18) | 0.05428 (13) | 0.02713 (9) | 0.00258 (15) | 0.00173 (8) | 0.00149 (12) |
O1 | 0.0349 (8) | 0.0491 (11) | 0.0446 (9) | 0.0025 (12) | 0.0084 (6) | 0.0184 (14) |
O2 | 0.0367 (10) | 0.0376 (10) | 0.0451 (11) | 0.0138 (8) | −0.0008 (8) | 0.0023 (8) |
N1 | 0.0250 (7) | 0.0282 (8) | 0.0396 (9) | 0.0038 (11) | 0.0016 (6) | −0.0020 (13) |
C2 | 0.0226 (9) | 0.0279 (9) | 0.0381 (12) | −0.0016 (7) | 0.0017 (8) | 0.0041 (8) |
N3 | 0.0260 (9) | 0.0294 (9) | 0.0322 (10) | 0.0052 (8) | 0.0058 (7) | −0.0008 (8) |
C4 | 0.0255 (9) | 0.0272 (14) | 0.0308 (9) | 0.0021 (8) | −0.0004 (7) | −0.0011 (8) |
C5 | 0.0370 (11) | 0.0305 (12) | 0.0254 (10) | 0.0009 (9) | 0.0026 (8) | −0.0041 (8) |
C6 | 0.0295 (10) | 0.0306 (10) | 0.0333 (11) | 0.0000 (8) | 0.0042 (8) | −0.0084 (9) |
I1—C5 | 2.063 (2) | C2—N3 | 1.370 (3) |
O1—C2 | 1.227 (3) | N3—C4 | 1.384 (3) |
O2—C4 | 1.226 (3) | N3—H3 | 0.8600 |
N1—C2 | 1.363 (3) | C4—C5 | 1.456 (3) |
N1—C6 | 1.370 (4) | C5—C6 | 1.351 (4) |
N1—H1 | 0.8762 | C6—H6 | 0.9600 |
C2—N1—C6 | 122.8 (3) | O2—C4—N3 | 119.9 (2) |
C2—N1—H1 | 118.6 | O2—C4—C5 | 126.2 (2) |
C6—N1—H1 | 118.6 | N3—C4—C5 | 113.9 (2) |
O1—C2—N1 | 123.0 (3) | C6—C5—C4 | 119.3 (2) |
O1—C2—N3 | 122.3 (3) | C6—C5—I1 | 122.37 (19) |
N1—C2—N3 | 114.7 (2) | C4—C5—I1 | 118.33 (17) |
C2—N3—C4 | 127.5 (2) | C5—C6—N1 | 121.7 (2) |
C2—N3—H3 | 116.3 | C5—C6—H6 | 119.2 |
C4—N3—H3 | 116.3 | N1—C6—H6 | 119.2 |
C6—N1—C2—O1 | 175.9 (3) | N3—C4—C5—C6 | −3.4 (3) |
C6—N1—C2—N3 | −2.9 (4) | O2—C4—C5—I1 | −2.2 (3) |
O1—C2—N3—C4 | −176.7 (3) | N3—C4—C5—I1 | 177.51 (16) |
N1—C2—N3—C4 | 2.1 (4) | C4—C5—C6—N1 | 2.8 (4) |
C2—N3—C4—O2 | −179.3 (2) | I1—C5—C6—N1 | −178.1 (2) |
C2—N3—C4—C5 | 0.9 (3) | C2—N1—C6—C5 | 0.5 (4) |
O2—C4—C5—C6 | 176.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.88 | 2.22 | 2.897 (3) | 133 |
N3—H3···O1ii | 0.86 | 1.92 | 2.767 (3) | 170 |
Symmetry codes: (i) x+1, y−1, z; (ii) −x+1, y+1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C4H3IN2O2 |
Mr | 237.98 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 298 |
a, b, c (Å) | 4.89650 (18), 4.45921 (13), 14.2167 (2) |
β (°) | 92.341 (2) |
V (Å3) | 310.16 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 5.08 |
Crystal size (mm) | 0.40 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur S CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm |
Tmin, Tmax | 0.252, 0.602 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 48636, 2127, 1803 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.754 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.071, 1.04 |
No. of reflections | 2127 |
No. of parameters | 86 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.03 |
Absolute structure | Flack (1983), 934 Friedel pairs |
Absolute structure parameter | −0.01 (2) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.88 | 2.22 | 2.897 (3) | 133 |
N3—H3···O1ii | 0.86 | 1.92 | 2.767 (3) | 170 |
Symmetry codes: (i) x+1, y−1, z; (ii) −x+1, y+1/2, −z+2. |
Acknowledgements
The author thanks MIUR (Rome) for financial support in 2006 of the project `X-ray diffractometry and spectrometry'.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brunetti, B., Piacente, V. & Portalone, G. (2000). J. Chem. Eng. Data, 45, 242–246. Web of Science CrossRef CAS Google Scholar
Brunetti, B., Piacente, V. & Portalone, G. (2002). J. Chem. Eng. Data, 47, 17–19.. Web of Science CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED, including ABSPACK. Versions 1.171.32.3. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Portalone, G., Ballirano, P. & Maras, A. (2002). J. Mol. Struct. 608, 35–39. Web of Science CSD CrossRef CAS Google Scholar
Portalone, G., Bencivenni, L., Colapietro, M., Pieretti, A. & Ramondo, F. (1999). Acta Chem. Scand. 53, 57–68. Web of Science CrossRef CAS Google Scholar
Portalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o650–o654. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Sternglanz, H., Freeman, G. R. & Bugg, C. E. (1975). Acta Cryst. B31, 1393–1395. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
5-iodouracil, 5IUrac, was determined some 30 years ago (Sternglanz et al., 1975). In this study, 591 unique reflections were collected at ambient temperature on an automatic diffractometer, and the heavy-atom method was employed to solve the crystal structure. Only non-H atoms were localized and refined. The final refinement, carried out on a fairly small data set, led to R = 0.044, a data-to-parameter ratio of 7.2, S = 2.52 and standard deviations of 0.018Å in C—C bond lengths and 0.9° in bond angles, As a part of a more general study of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supramolecular reagents (Brunetti et al., 2000, 2002; Portalone et al., 1999; Portalone et al., 2002; Portalone & Colapietro, 2007), this paper reports a redetermination of the crystal structure of the title compound, (I), with greater precision and accuracy. The asymmetric unit of (I) comprises a non-planar independent molecule (Fig. 1) in a slightly distorted B25 boat conformation (Cremer & Pople, 1975). Analysis of the crystal packing of (I), (Fig. 2), shows that the structure is stabilized by two intermolecular N—H···O interactions of descriptor C11(3) (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999) (Table 1) between NH moieties and two carbonyl O atoms (O2i and O1ii) [symmetry code: (i) x + 1, y - 1, z; (ii) -x + 1, y + 1/2, -z + 2] which link the molecules into ribbons.