metal-organic compounds
Di-μ-bromido-bis({bis[2-(2-pyridyl)ethyl]amine}copper(II)) bis(perchlorate)
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
Each Cu atom in the dinuclear centrosymmetric title complex, [Cu2Br2(C14H17N3)2](ClO4)2, is ligated in a distorted square-pyramidal geometry (τ = 0.31) by a tridentate bis[2-(2-pyridyl)ethyl]amine ligand, and by two bridging Br atoms. In addition, the dinuclear species is stabilized by two hydrogen-bonded perchlorate anions.
Related literature
For related literature, see: Chakrabarty et al. (2004); Helis et al. (1977); Marsh et al. (1983); Udugala-Ganehenege, et al. (2001); Xu et al. (2000). For the calculation of the coordination geometry, see: Addison et al. (1984).
Experimental
Crystal data
|
Refinement
|
Data collection: XSCANS (Bruker, 1997); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807068663/tk2238sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807068663/tk2238Isup2.hkl
The title complex was synthesized by reacting Cu(ClO4)2.6H2O (0.37 g, 1 mmol), bis[2-(2-pyridyl)ethyl]amine (0.227 g, 1 mmol) and potassium bromide (0.0297 g, 0.25 mmol) in acetonitrile (15 ml) for 4 h at room temperature. X-ray quality crystals were grown by slow diffusion of diethyl ether into an acetonitrile solution of the complex.
The perchlorate anion is disordered over two conformations with occupancy factors, from
of 0.543 (17) and 0.457 (17). It was constrained to adopt a tetrahedral geometry. The H atoms were idealized with N—H = 0.91 Å and C—H = 0.93 (aromatic C—H), 0.96 (CH3), and 0.97 (CH2) Å, and with Uiso(H) = 1.2Ueq(C) (1.5Ueq(C) for the CH3).Data collection: XSCANS (Bruker, 1997); cell
XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).Fig. 1. Complex (I) showing numbering scheme and displacement ellipsoids at the 20% probabilty level. | |
Fig. 2. The packing arrangement viewed down the a axis showing the intramolecular N—H···O and intermolecular C—H···O interactions (dashed bonds). |
[Cu2Br2(C14H17N3)2](ClO4)2 | Z = 1 |
Mr = 940.41 | F(000) = 470 |
Triclinic, P1 | Dx = 1.769 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8002 (13) Å | Cell parameters from 49 reflections |
b = 11.413 (2) Å | θ = 2.1–12.5° |
c = 12.668 (2) Å | µ = 3.68 mm−1 |
α = 67.212 (8)° | T = 293 K |
β = 77.019 (13)° | Thick needle, blue |
γ = 87.033 (15)° | 0.42 × 0.21 × 0.18 mm |
V = 882.6 (3) Å3 |
Bruker P4 diffractometer | 2960 reflections with I > 2σ˘I) |
Radiation source: fine-focus sealed tube | Rint = 0.018 |
Graphite monochromator | θmax = 27.5°, θmin = 2.1° |
ω scans | h = −8→0 |
Absorption correction: ψ scan (North et al., 1968) | k = −13→13 |
Tmin = 0.569, Tmax = 0.948 | l = −16→16 |
3951 measured reflections | 3 standard reflections every 97 reflections |
3936 independent reflections | intensity decay: <2 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0336P)2 + 0.6582P] where P = (Fo2 + 2Fc2)/3 |
3936 reflections | (Δ/σ)max < 0.001 |
255 parameters | Δρmax = 0.50 e Å−3 |
50 restraints | Δρmin = −0.36 e Å−3 |
[Cu2Br2(C14H17N3)2](ClO4)2 | γ = 87.033 (15)° |
Mr = 940.41 | V = 882.6 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.8002 (13) Å | Mo Kα radiation |
b = 11.413 (2) Å | µ = 3.68 mm−1 |
c = 12.668 (2) Å | T = 293 K |
α = 67.212 (8)° | 0.42 × 0.21 × 0.18 mm |
β = 77.019 (13)° |
Bruker P4 diffractometer | 2960 reflections with I > 2σ˘I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.018 |
Tmin = 0.569, Tmax = 0.948 | 3 standard reflections every 97 reflections |
3951 measured reflections | intensity decay: <2 |
3936 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | 50 restraints |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.50 e Å−3 |
3936 reflections | Δρmin = −0.36 e Å−3 |
255 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu | 0.60810 (7) | 0.98360 (4) | 0.63720 (4) | 0.03731 (14) | |
Br | 0.76316 (6) | 0.97756 (4) | 0.44483 (3) | 0.03934 (12) | |
Cl | 0.19832 (18) | 1.27274 (11) | 0.86706 (12) | 0.0588 (3) | |
O11A | 0.062 (3) | 1.3663 (19) | 0.856 (2) | 0.149 (8) | 0.543 (17) |
O12A | 0.117 (3) | 1.1516 (12) | 0.9388 (14) | 0.094 (5) | 0.543 (17) |
O13A | 0.372 (2) | 1.2975 (11) | 0.8979 (15) | 0.110 (4) | 0.543 (17) |
O14A | 0.2714 (18) | 1.2648 (13) | 0.7496 (8) | 0.101 (4) | 0.543 (17) |
O11B | 0.010 (2) | 1.332 (2) | 0.8582 (19) | 0.100 (5) | 0.457 (17) |
O12B | 0.346 (3) | 1.3175 (18) | 0.7719 (15) | 0.155 (7) | 0.457 (17) |
O13B | 0.155 (3) | 1.1399 (11) | 0.9066 (16) | 0.072 (4) | 0.457 (17) |
O14B | 0.256 (3) | 1.2875 (13) | 0.9664 (14) | 0.110 (5) | 0.457 (17) |
N | 0.4740 (5) | 0.9948 (3) | 0.7943 (3) | 0.0424 (8) | |
H0A | 0.3920 | 1.0619 | 0.7755 | 0.051* | |
N1A | 0.6270 (5) | 0.7958 (3) | 0.7201 (3) | 0.0391 (7) | |
N1B | 0.6733 (5) | 1.1709 (3) | 0.5811 (3) | 0.0380 (7) | |
C1A | 0.8000 (7) | 0.7390 (4) | 0.6945 (4) | 0.0495 (10) | |
H1AA | 0.9093 | 0.7891 | 0.6398 | 0.059* | |
C2A | 0.8210 (9) | 0.6113 (5) | 0.7456 (5) | 0.0666 (14) | |
H2AA | 0.9433 | 0.5751 | 0.7279 | 0.080* | |
C3A | 0.6575 (9) | 0.5370 (5) | 0.8238 (5) | 0.0730 (16) | |
H3AA | 0.6662 | 0.4492 | 0.8572 | 0.088* | |
C4A | 0.4811 (8) | 0.5932 (4) | 0.8524 (4) | 0.0581 (12) | |
H4AA | 0.3702 | 0.5436 | 0.9058 | 0.070* | |
C5A | 0.4694 (6) | 0.7240 (4) | 0.8012 (3) | 0.0412 (9) | |
C6A | 0.2871 (6) | 0.7913 (4) | 0.8353 (4) | 0.0487 (10) | |
H6AA | 0.1859 | 0.7293 | 0.8942 | 0.058* | |
H6AB | 0.2304 | 0.8359 | 0.7672 | 0.058* | |
C7A | 0.3377 (8) | 0.8864 (4) | 0.8842 (4) | 0.0609 (13) | |
H7AA | 0.2134 | 0.9198 | 0.9144 | 0.073* | |
H7AB | 0.4022 | 0.8424 | 0.9492 | 0.073* | |
C1B | 0.6256 (7) | 1.2605 (4) | 0.4855 (4) | 0.0488 (10) | |
H1BA | 0.5619 | 1.2350 | 0.4397 | 0.059* | |
C2B | 0.6661 (8) | 1.3874 (4) | 0.4520 (5) | 0.0609 (13) | |
H2BA | 0.6339 | 1.4470 | 0.3842 | 0.073* | |
C3B | 0.7563 (8) | 1.4244 (5) | 0.5220 (6) | 0.0681 (15) | |
H3BA | 0.7819 | 1.5103 | 0.5031 | 0.082* | |
C4B | 0.8084 (7) | 1.3342 (5) | 0.6198 (5) | 0.0623 (14) | |
H4BA | 0.8725 | 1.3584 | 0.6662 | 0.075* | |
C5B | 0.7646 (6) | 1.2071 (4) | 0.6483 (4) | 0.0435 (10) | |
C6B | 0.8117 (7) | 1.1013 (5) | 0.7541 (4) | 0.0544 (12) | |
H6BB | 0.8924 | 1.1359 | 0.7902 | 0.065* | |
H6BC | 0.8917 | 1.0401 | 0.7290 | 0.065* | |
C7B | 0.6244 (7) | 1.0334 (5) | 0.8450 (4) | 0.0546 (12) | |
H7BB | 0.6642 | 0.9582 | 0.9043 | 0.065* | |
H7BC | 0.5613 | 1.0889 | 0.8835 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0479 (3) | 0.0350 (3) | 0.0253 (2) | −0.0001 (2) | −0.0020 (2) | −0.01082 (19) |
Br | 0.0328 (2) | 0.0541 (3) | 0.0300 (2) | 0.00276 (17) | −0.00239 (15) | −0.01773 (18) |
Cl | 0.0517 (7) | 0.0459 (6) | 0.0707 (8) | 0.0054 (5) | −0.0143 (6) | −0.0138 (6) |
O11A | 0.161 (13) | 0.099 (11) | 0.191 (11) | 0.081 (10) | −0.070 (10) | −0.051 (9) |
O12A | 0.097 (8) | 0.071 (7) | 0.085 (8) | −0.005 (6) | 0.011 (6) | −0.013 (5) |
O13A | 0.106 (8) | 0.093 (6) | 0.145 (10) | −0.012 (6) | −0.050 (7) | −0.047 (7) |
O14A | 0.080 (7) | 0.125 (9) | 0.080 (6) | 0.007 (6) | 0.004 (5) | −0.035 (5) |
O11B | 0.098 (8) | 0.102 (11) | 0.128 (9) | 0.067 (8) | −0.054 (7) | −0.065 (8) |
O12B | 0.120 (10) | 0.146 (11) | 0.119 (10) | −0.020 (8) | 0.044 (9) | 0.000 (9) |
O13B | 0.066 (7) | 0.050 (5) | 0.109 (11) | 0.007 (5) | −0.025 (7) | −0.037 (6) |
O14B | 0.146 (13) | 0.105 (8) | 0.104 (10) | −0.010 (9) | −0.058 (9) | −0.048 (8) |
N | 0.049 (2) | 0.0437 (19) | 0.0311 (17) | 0.0068 (16) | −0.0029 (15) | −0.0148 (15) |
N1A | 0.047 (2) | 0.0372 (17) | 0.0296 (16) | 0.0006 (15) | −0.0069 (14) | −0.0102 (14) |
N1B | 0.0389 (18) | 0.0410 (18) | 0.0323 (17) | −0.0025 (14) | −0.0032 (14) | −0.0143 (14) |
C1A | 0.049 (3) | 0.051 (3) | 0.044 (2) | 0.007 (2) | −0.008 (2) | −0.016 (2) |
C2A | 0.074 (4) | 0.052 (3) | 0.062 (3) | 0.018 (3) | −0.007 (3) | −0.015 (3) |
C3A | 0.097 (4) | 0.037 (3) | 0.069 (3) | 0.009 (3) | −0.009 (3) | −0.010 (2) |
C4A | 0.071 (3) | 0.043 (3) | 0.045 (3) | −0.006 (2) | 0.001 (2) | −0.007 (2) |
C5A | 0.050 (2) | 0.042 (2) | 0.0287 (19) | −0.0002 (18) | −0.0094 (17) | −0.0101 (17) |
C6A | 0.044 (2) | 0.046 (2) | 0.041 (2) | −0.0035 (19) | −0.0038 (19) | −0.0031 (19) |
C7A | 0.074 (3) | 0.052 (3) | 0.042 (2) | 0.002 (2) | 0.012 (2) | −0.016 (2) |
C1B | 0.055 (3) | 0.046 (2) | 0.045 (2) | −0.002 (2) | −0.012 (2) | −0.016 (2) |
C2B | 0.059 (3) | 0.044 (3) | 0.063 (3) | −0.003 (2) | −0.004 (2) | −0.007 (2) |
C3B | 0.058 (3) | 0.043 (3) | 0.097 (4) | −0.011 (2) | 0.006 (3) | −0.032 (3) |
C4B | 0.049 (3) | 0.073 (3) | 0.079 (4) | −0.015 (2) | −0.004 (3) | −0.047 (3) |
C5B | 0.037 (2) | 0.057 (3) | 0.042 (2) | −0.0043 (19) | −0.0035 (18) | −0.026 (2) |
C6B | 0.045 (2) | 0.083 (3) | 0.045 (3) | 0.012 (2) | −0.015 (2) | −0.033 (2) |
C7B | 0.060 (3) | 0.074 (3) | 0.032 (2) | 0.011 (2) | −0.014 (2) | −0.021 (2) |
Cu—N1A | 2.000 (3) | C3A—C4A | 1.373 (7) |
Cu—N1B | 2.012 (3) | C3A—H3AA | 0.9300 |
Cu—N | 2.044 (3) | C4A—C5A | 1.385 (6) |
Cu—Br | 2.4542 (7) | C4A—H4AA | 0.9300 |
Cu—Bri | 2.8908 (8) | C5A—C6A | 1.494 (6) |
Br—Cui | 2.8908 (8) | C6A—C7A | 1.528 (7) |
Cl—O12B | 1.326 (11) | C6A—H6AA | 0.9700 |
Cl—O11A | 1.361 (11) | C6A—H6AB | 0.9700 |
Cl—O12A | 1.388 (11) | C7A—H7AA | 0.9700 |
Cl—O13A | 1.397 (9) | C7A—H7AB | 0.9700 |
Cl—O13B | 1.424 (11) | C1B—C2B | 1.366 (6) |
Cl—O11B | 1.424 (11) | C1B—H1BA | 0.9300 |
Cl—O14B | 1.469 (10) | C2B—C3B | 1.379 (8) |
Cl—O14A | 1.495 (9) | C2B—H2BA | 0.9300 |
N—C7B | 1.488 (6) | C3B—C4B | 1.375 (8) |
N—C7A | 1.496 (5) | C3B—H3BA | 0.9300 |
N—H0A | 0.9100 | C4B—C5B | 1.384 (6) |
N1A—C5A | 1.349 (5) | C4B—H4BA | 0.9300 |
N1A—C1A | 1.350 (5) | C5B—C6B | 1.502 (6) |
N1B—C1B | 1.342 (5) | C6B—C7B | 1.517 (6) |
N1B—C5B | 1.349 (5) | C6B—H6BB | 0.9700 |
C1A—C2A | 1.361 (6) | C6B—H6BC | 0.9700 |
C1A—H1AA | 0.9300 | C7B—H7BB | 0.9700 |
C2A—C3A | 1.374 (7) | C7B—H7BC | 0.9700 |
C2A—H2AA | 0.9300 | ||
N1A—Cu—N1B | 159.15 (14) | C5A—C4A—H4AA | 120.2 |
N1A—Cu—N | 89.40 (13) | N1A—C5A—C4A | 120.4 (4) |
N1B—Cu—N | 85.66 (13) | N1A—C5A—C6A | 117.6 (4) |
N1A—Cu—Br | 92.56 (9) | C4A—C5A—C6A | 122.0 (4) |
N1B—Cu—Br | 92.79 (9) | C5A—C6A—C7A | 111.7 (4) |
N—Cu—Br | 177.86 (10) | C5A—C6A—H6AA | 109.3 |
N1A—Cu—Bri | 106.74 (10) | C7A—C6A—H6AA | 109.3 |
N1B—Cu—Bri | 93.79 (10) | C5A—C6A—H6AB | 109.3 |
N—Cu—Bri | 93.61 (10) | C7A—C6A—H6AB | 109.3 |
Br—Cu—Bri | 85.00 (2) | H6AA—C6A—H6AB | 107.9 |
Cu—Br—Cui | 95.00 (2) | N—C7A—C6A | 112.9 (3) |
O11A—Cl—O13A | 113.7 (9) | N—C7A—H7AA | 109.0 |
O12A—Cl—O13A | 111.2 (9) | C6A—C7A—H7AA | 109.0 |
O12B—Cl—O11B | 115.9 (11) | N—C7A—H7AB | 109.0 |
O13B—Cl—O11B | 105.7 (9) | C6A—C7A—H7AB | 109.0 |
O12B—Cl—O14B | 110.1 (9) | H7AA—C7A—H7AB | 107.8 |
O13B—Cl—O14B | 104.4 (8) | N1B—C1B—C2B | 123.3 (4) |
O11B—Cl—O14B | 106.0 (9) | N1B—C1B—H1BA | 118.4 |
O11A—Cl—O14A | 108.1 (10) | C2B—C1B—H1BA | 118.4 |
O12A—Cl—O14A | 103.5 (7) | C1B—C2B—C3B | 117.9 (5) |
O13A—Cl—O14A | 105.2 (6) | C1B—C2B—H2BA | 121.1 |
C7B—N—C7A | 112.0 (3) | C3B—C2B—H2BA | 121.1 |
C7B—N—Cu | 110.9 (3) | C4B—C3B—C2B | 119.9 (5) |
C7A—N—Cu | 118.5 (3) | C4B—C3B—H3BA | 120.0 |
C7B—N—H0A | 104.7 | C2B—C3B—H3BA | 120.0 |
C7A—N—H0A | 104.7 | C3B—C4B—C5B | 119.3 (5) |
Cu—N—H0A | 104.7 | C3B—C4B—H4BA | 120.4 |
C5A—N1A—C1A | 119.0 (4) | C5B—C4B—H4BA | 120.4 |
C5A—N1A—Cu | 121.3 (3) | N1B—C5B—C4B | 120.9 (4) |
C1A—N1A—Cu | 119.8 (3) | N1B—C5B—C6B | 115.5 (4) |
C1B—N1B—C5B | 118.7 (4) | C4B—C5B—C6B | 123.6 (4) |
C1B—N1B—Cu | 124.8 (3) | C5B—C6B—C7B | 113.2 (4) |
C5B—N1B—Cu | 116.4 (3) | C5B—C6B—H6BB | 108.9 |
N1A—C1A—C2A | 122.7 (4) | C7B—C6B—H6BB | 108.9 |
N1A—C1A—H1AA | 118.7 | C5B—C6B—H6BC | 108.9 |
C2A—C1A—H1AA | 118.7 | C7B—C6B—H6BC | 108.9 |
C1A—C2A—C3A | 118.5 (5) | H6BB—C6B—H6BC | 107.8 |
C1A—C2A—H2AA | 120.7 | N—C7B—C6B | 113.2 (3) |
C3A—C2A—H2AA | 120.7 | N—C7B—H7BB | 108.9 |
C4A—C3A—C2A | 119.7 (5) | C6B—C7B—H7BB | 108.9 |
C4A—C3A—H3AA | 120.1 | N—C7B—H7BC | 108.9 |
C2A—C3A—H3AA | 120.1 | C6B—C7B—H7BC | 108.9 |
C3A—C4A—C5A | 119.6 (4) | H7BB—C7B—H7BC | 107.7 |
C3A—C4A—H4AA | 120.2 | ||
N1A—Cu—Br—Cui | 106.59 (10) | N1A—C1A—C2A—C3A | 1.8 (8) |
N1B—Cu—Br—Cui | −93.56 (10) | C1A—C2A—C3A—C4A | −2.8 (9) |
N—Cu—Br—Cui | −50 (3) | C2A—C3A—C4A—C5A | 0.6 (8) |
Bri—Cu—Br—Cui | 0.0 | C1A—N1A—C5A—C4A | −3.7 (6) |
N1A—Cu—N—C7B | 97.3 (3) | Cu—N1A—C5A—C4A | 176.0 (3) |
N1B—Cu—N—C7B | −62.4 (3) | C1A—N1A—C5A—C6A | 174.5 (4) |
Br—Cu—N—C7B | −106 (3) | Cu—N1A—C5A—C6A | −5.8 (5) |
Bri—Cu—N—C7B | −155.9 (3) | C3A—C4A—C5A—N1A | 2.7 (7) |
N1A—Cu—N—C7A | −34.3 (3) | C3A—C4A—C5A—C6A | −175.4 (5) |
N1B—Cu—N—C7A | 166.0 (3) | N1A—C5A—C6A—C7A | −58.6 (5) |
Br—Cu—N—C7A | 122 (3) | C4A—C5A—C6A—C7A | 119.6 (5) |
Bri—Cu—N—C7A | 72.5 (3) | C7B—N—C7A—C6A | −142.0 (4) |
N1B—Cu—N1A—C5A | 121.2 (4) | Cu—N—C7A—C6A | −10.9 (5) |
N—Cu—N1A—C5A | 45.1 (3) | C5A—C6A—C7A—N | 65.9 (5) |
Br—Cu—N1A—C5A | −134.1 (3) | C5B—N1B—C1B—C2B | 0.4 (7) |
Bri—Cu—N1A—C5A | −48.5 (3) | Cu—N1B—C1B—C2B | 177.7 (4) |
N1B—Cu—N1A—C1A | −59.1 (5) | N1B—C1B—C2B—C3B | −1.5 (7) |
N—Cu—N1A—C1A | −135.2 (3) | C1B—C2B—C3B—C4B | 2.1 (8) |
Br—Cu—N1A—C1A | 45.6 (3) | C2B—C3B—C4B—C5B | −1.7 (8) |
Bri—Cu—N1A—C1A | 131.2 (3) | C1B—N1B—C5B—C4B | 0.1 (6) |
N1A—Cu—N1B—C1B | 157.2 (4) | Cu—N1B—C5B—C4B | −177.4 (3) |
N—Cu—N1B—C1B | −126.0 (3) | C1B—N1B—C5B—C6B | 179.6 (4) |
Br—Cu—N1B—C1B | 52.5 (3) | Cu—N1B—C5B—C6B | 2.1 (4) |
Bri—Cu—N1B—C1B | −32.6 (3) | C3B—C4B—C5B—N1B | 0.6 (7) |
N1A—Cu—N1B—C5B | −25.4 (5) | C3B—C4B—C5B—C6B | −178.9 (4) |
N—Cu—N1B—C5B | 51.3 (3) | N1B—C5B—C6B—C7B | −66.2 (5) |
Br—Cu—N1B—C5B | −130.2 (3) | C4B—C5B—C6B—C7B | 113.3 (5) |
Bri—Cu—N1B—C5B | 144.7 (3) | C7A—N—C7B—C6B | 156.6 (4) |
C5A—N1A—C1A—C2A | 1.4 (7) | Cu—N—C7B—C6B | 21.7 (5) |
Cu—N1A—C1A—C2A | −178.3 (4) | C5B—C6B—C7B—N | 49.4 (5) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N—H0A···O14A | 0.91 | 2.34 | 3.205 (12) | 159 |
N—H0A···O13B | 0.91 | 2.44 | 3.089 (18) | 129 |
C6A—H6AB···Bri | 0.97 | 2.70 | 3.588 (4) | 153 |
C6B—H6BC···Brii | 0.97 | 2.89 | 3.706 (4) | 142 |
C6B—H6BB···O13Biii | 0.97 | 2.57 | 3.487 (18) | 158 |
C2A—H2AA···O11Aiv | 0.93 | 2.52 | 3.162 (14) | 126 |
C7A—H7AA···O12Av | 0.97 | 2.51 | 3.322 (16) | 141 |
C7A—H7AA···O13B | 0.97 | 2.49 | 3.179 (15) | 128 |
C3A—H3AA···O13Avi | 0.93 | 2.54 | 3.142 (12) | 122 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+2, −z+1; (iii) x+1, y, z; (iv) x+1, y−1, z; (v) −x, −y+2, −z+2; (vi) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Br2(C14H17N3)2](ClO4)2 |
Mr | 940.41 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.8002 (13), 11.413 (2), 12.668 (2) |
α, β, γ (°) | 67.212 (8), 77.019 (13), 87.033 (15) |
V (Å3) | 882.6 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 3.68 |
Crystal size (mm) | 0.42 × 0.21 × 0.18 |
Data collection | |
Diffractometer | Bruker P4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.569, 0.948 |
No. of measured, independent and observed [I > 2σ˘I)] reflections | 3951, 3936, 2960 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.095, 1.04 |
No. of reflections | 3936 |
No. of parameters | 255 |
No. of restraints | 50 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.36 |
Computer programs: XSCANS (Bruker, 1997), XSCANS (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2000).
D—H···A | D—H | H···A | D···A | D—H···A |
N—H0A···O14A | 0.91 | 2.34 | 3.205 (12) | 159 |
N—H0A···O13B | 0.91 | 2.44 | 3.089 (18) | 129 |
C6A—H6AB···Bri | 0.97 | 2.70 | 3.588 (4) | 153 |
C6B—H6BC···Brii | 0.97 | 2.89 | 3.706 (4) | 142 |
C6B—H6BB···O13Biii | 0.97 | 2.57 | 3.487 (18) | 158 |
C2A—H2AA···O11Aiv | 0.93 | 2.52 | 3.162 (14) | 126 |
C7A—H7AA···O12Av | 0.97 | 2.51 | 3.322 (16) | 141 |
C7A—H7AA···O13B | 0.97 | 2.49 | 3.179 (15) | 128 |
C3A—H3AA···O13Avi | 0.93 | 2.54 | 3.142 (12) | 122 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+2, −z+1; (iii) x+1, y, z; (iv) x+1, y−1, z; (v) −x, −y+2, −z+2; (vi) x, y−1, z. |
Acknowledgements
RJB acknowledges the DoD for funds to upgrade the diffractometer.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Bruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chakrabarty, S., Poddar, R. K., Poulsen, R. D., Thompson, A. L. & Howard, J. A. K. (2004). Acta Cryst. C60, m628–m630. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Helis, H. M., Goodman, W. H., Wilson, R. B., Morgan, J. A. & Hodgson, D. J. (1977). Inorg. Chem. 16, 2412–2416. CSD CrossRef CAS Web of Science Google Scholar
Marsh, W. E., Patel, K. C., Hatfield, W. E. & Hodgson, D. J. (1983). Inorg. Chem. 22, 511–515. CSD CrossRef CAS Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Udugala-Ganehenege, M. Y., Heeg, M. J., Hryhorczuk, L. M., Wenger, L. E. & Endicott, J. F. (2001). Inorg. Chem. 40, 1614–1625. Web of Science CSD CrossRef PubMed CAS Google Scholar
Xu, Z., White, S., Thompson, L. K., Miller, D. O., Ohba, M., Okawa, H., Wilson, C. & Howard, J. A. K. (2000). J. Chem. Soc. Dalton Trans. pp.1751–1757. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Complex (I), Fig. 1, contains two Cu(II) atoms, each within a distorted square-pyramidal geometry (τ = 0.31, Addison et al., 1984) where one amine-N atom, two pyridine-N atoms and one Br atom constitute the basal plane with Cu—Npyridine = 2.012 (3) and 2.000 (3) Å, Cu—Namine = 2.044 (3) Å and Cu—Br = 2.4542 (7) Å. The axial position is occupied by the second Br atom with Cu—Br = 2.8908 (8) Å, the longer distance being consistent with a Jahn-Teller elongation. Pairs of these square-pyramidal Cu complexes form dimers about a center of inversion, being mutually bridged by the Br atoms. In addition, the dinuclear complex is stabilized by two N—H···O hydrogen bonded ClO4- anions (Table 1) and the crystal packing is consolidated by a variety of hydrogen bonding interactions (Fig. 2 and Table 1).