organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-But­oxy­phen­yl)boronic acid

aWarsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: marek@ch.pw.edu.pl

(Received 27 December 2007; accepted 7 January 2008; online 16 January 2008)

The title compound, 2-(CH3CH2CH2CH2O)C6H4B(OH)2, exists as a centrosymmetric hydrogen-bonded dimer. Dimers are linked via C—H⋯π and ππ [with closest C⋯C contact of 3.540 (3) Å] inter­actions to produce a two-dimensional array.

Related literature

For related literature, see: Rettig & Trotter (1977[Rettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071-3075.]). For the structures of related ortho-alkoxy­aryl­boronic acids, see: Dabrowski et al. (2006[Dabrowski, M., Lulinski, S., Serwatowski, J. & Szczerbinska, M. (2006). Acta Cryst. C62, o702-o704.]); Serwatowski et al. (2006[Serwatowski, J., Klis, T. & Kacprzak, K. (2006). Acta Cryst. E62, o1308-o1309.]); Yang et al. (2005[Yang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907-6912.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15BO3

  • Mr = 194.03

  • Monoclinic, P 21 /c

  • a = 7.4809 (4) Å

  • b = 15.3510 (7) Å

  • c = 9.2824 (4) Å

  • β = 94.299 (4)°

  • V = 1062.98 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 102 (2) K

  • 0.74 × 0.47 × 0.32 mm

Data collection
  • Kuma KM4 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.92, Tmax = 0.97

  • 9363 measured reflections

  • 2419 independent reflections

  • 1924 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.096

  • S = 1.14

  • 2419 reflections

  • 188 parameters

  • All H-atom parameters refined

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond and C—H⋯π geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1 0.864 (16) 1.900 (16) 2.6547 (9) 145.1 (13)
O3—H3O⋯O2i 0.909 (15) 1.870 (15) 2.7776 (9) 175.8 (13)
C7—H7A⋯C1ii 0.992 (10) 2.939 (10) 3.8346 (12) 150.7 (8)
C7—H7A⋯C2ii 0.992 (10) 3.103 (10) 4.0850 (12) 170.7 (8)
C7—H7A⋯C6ii 0.992 (10) 2.965 (10) 3.6436 (13) 126.5 (7)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The boronic acid group is known to support supramolecular organization due to intermolecular hydrogen bonding. ortho-Substituents in the aryl ring may significantly influence the structural properties of arylboronic acids. There are a few structures of ortho-alkoxyarylboronic acids available in the literature, i.e. those reported by Yang et al. (2005), Serwatowski et al. (2006) and Dabrowski et al. (2006). We were interested in studying the effect of a longer alkoxy chain on the structural characteristics of the related compound, (I).

The molecular structure of (I) shows the entire molecule to be essentially planar, Fig. 1 & Table 1. The mean planes through the boronic and butoxy groups are approximately co-planar with the aromatic ring. The boronic group has an exo–endo conformation. The endo-oriented OH group forms an intramolecular O—H···O bond with the butoxy-O atom, Table 2. As a result, a nearly planar six-membered ring is formed. This motif has been observed in the structures of related ortho-alkoxyarylboronic acids. Monomeric molecules form hydrogen-bonded centrosymmetric dimers typical of boronic acids (Rettig & Trotter, 1977). The crystal packing in (I) features a parallel arrangement of hydrogen-bonded dimers (Fig. 2). It is stabilized in terms of CH-π interactions between the H7a atom of the butoxy group and the aromatic ring of the adjacent molecule: the distance of H7A from the ring centre is 2.777 (11) Å [symmetry code (ii): 1 - x, 1 - y, 1 - z]. As a result, a centrosymmetric dimeric motif can be distinguished. In addition, weak ππ interactions between a pair of aromatic rings lead to their face-to-face center-to-edge stacking with the shortest contact between two C atoms C1—C1iii = 3.540 (3) Å [symmetry code (iii): -x, 1 - y, 1 - z]. The other two ππ interactions are C1···C2iii = 3.594 (5) Å and C1···C6iii = 3.819 (3) Å. Thus, alternate CH-π and ππ interactions result in formation of a two-dimensional array. In conclusion, the hydrogen-bonded dimeric structure of (I) is typical of boronic acids whereas the unique secondary supramolecular assembly is achieved due to weaker CH-π and ππ interactions.

Related literature top

For related literature, see: Rettig & Trotter (1977). For the structures of related ortho-alkoxyarylboronic acids, see: Dabrowski et al. (2006); Serwatowski et al. (2006); Yang et al. (2005).

Experimental top

Crystals suitable for the X-ray diffraction analysis were grown by slow evaporation of a solution of the acid (0.2 g) in acetone/water (20 ml, 1:1).

Refinement top

All H atoms were located in difference syntheses and refined freely. The range of O—H distances = 0.864 (16) to 0.909 (15) Å and range of C—H distances = 0.954 (11) to 1.030 (10) Å.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing in (I) showing hydrogen-bonding, C—H–π and ππ interactions as dashed lines.
(2-Butoxyphenyl)boronic acid top
Crystal data top
C10H15BO3F(000) = 416
Mr = 194.03Dx = 1.212 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7109 reflections
a = 7.4809 (4) Åθ = 2.3–30.0°
b = 15.3510 (7) ŵ = 0.09 mm1
c = 9.2824 (4) ÅT = 102 K
β = 94.299 (4)°Prismatic, colourless
V = 1062.98 (9) Å30.74 × 0.47 × 0.32 mm
Z = 4
Data collection top
Kuma KM4 CCD
diffractometer
2419 independent reflections
Radiation source: fine-focus sealed tube1924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 8.6479 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
k = 1919
Tmin = 0.92, Tmax = 0.97l = 1211
9363 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0603P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
2419 reflectionsΔρmax = 0.35 e Å3
188 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Crystal data top
C10H15BO3V = 1062.98 (9) Å3
Mr = 194.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4809 (4) ŵ = 0.09 mm1
b = 15.3510 (7) ÅT = 102 K
c = 9.2824 (4) Å0.74 × 0.47 × 0.32 mm
β = 94.299 (4)°
Data collection top
Kuma KM4 CCD
diffractometer
2419 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
1924 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.97Rint = 0.012
9363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.096All H-atom parameters refined
S = 1.14Δρmax = 0.35 e Å3
2419 reflectionsΔρmin = 0.16 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22865 (11)0.48929 (6)0.46605 (10)0.0187 (2)
C20.15354 (11)0.42983 (6)0.36299 (10)0.0181 (2)
C30.12666 (12)0.34464 (6)0.41017 (11)0.0213 (2)
C40.16761 (12)0.31891 (6)0.55234 (11)0.0242 (2)
C50.23872 (12)0.37970 (7)0.65050 (10)0.0244 (2)
C60.27140 (12)0.46477 (6)0.60865 (10)0.0219 (2)
C70.32860 (12)0.63751 (6)0.51594 (10)0.0196 (2)
C80.34388 (13)0.72079 (6)0.43222 (10)0.0205 (2)
C90.42380 (14)0.79405 (6)0.52702 (11)0.0236 (2)
C100.46998 (16)0.87395 (7)0.44072 (13)0.0324 (3)
B10.09189 (13)0.45600 (7)0.20334 (11)0.0189 (2)
O10.25505 (9)0.57244 (4)0.41655 (7)0.02163 (19)
O20.10984 (9)0.53922 (4)0.15252 (7)0.02530 (19)
O30.01624 (9)0.39432 (4)0.11431 (8)0.0266 (2)
H2O0.157 (2)0.5714 (9)0.2219 (17)0.056 (4)*
H3O0.0232 (18)0.4136 (9)0.0250 (16)0.055 (4)*
H30.0761 (15)0.3037 (7)0.3414 (12)0.027 (3)*
H40.1452 (14)0.2583 (7)0.5786 (12)0.028 (3)*
H50.2692 (15)0.3638 (8)0.7519 (13)0.034 (3)*
H60.3221 (14)0.5074 (7)0.6758 (12)0.029 (3)*
H7A0.4484 (14)0.6175 (7)0.5556 (10)0.022 (3)*
H7B0.2485 (13)0.6452 (7)0.5943 (11)0.019 (2)*
H8A0.4243 (13)0.7100 (6)0.3536 (11)0.022 (3)*
H8B0.2185 (14)0.7378 (7)0.3876 (12)0.026 (3)*
H9A0.5375 (14)0.7721 (7)0.5801 (12)0.027 (3)*
H9B0.3361 (16)0.8101 (7)0.5990 (12)0.030 (3)*
H10A0.5591 (18)0.8578 (8)0.3676 (15)0.052 (4)*
H10B0.3595 (18)0.8990 (8)0.3852 (14)0.045 (3)*
H10C0.5225 (16)0.9206 (8)0.5042 (13)0.045 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0164 (4)0.0187 (5)0.0210 (5)0.0035 (3)0.0007 (3)0.0005 (4)
C20.0152 (4)0.0192 (5)0.0200 (4)0.0025 (3)0.0009 (3)0.0001 (4)
C30.0193 (5)0.0195 (5)0.0251 (5)0.0011 (4)0.0010 (4)0.0008 (4)
C40.0241 (5)0.0203 (5)0.0284 (5)0.0027 (4)0.0032 (4)0.0056 (4)
C50.0242 (5)0.0281 (5)0.0209 (5)0.0060 (4)0.0012 (4)0.0053 (4)
C60.0229 (5)0.0233 (5)0.0190 (5)0.0035 (4)0.0016 (4)0.0015 (4)
C70.0212 (5)0.0204 (5)0.0167 (4)0.0003 (3)0.0026 (4)0.0041 (4)
C80.0223 (5)0.0216 (5)0.0171 (5)0.0011 (4)0.0020 (4)0.0013 (4)
C90.0306 (5)0.0193 (5)0.0200 (5)0.0018 (4)0.0031 (4)0.0021 (4)
C100.0397 (6)0.0234 (5)0.0332 (6)0.0038 (5)0.0032 (5)0.0012 (5)
B10.0179 (5)0.0184 (5)0.0205 (5)0.0009 (4)0.0011 (4)0.0009 (4)
O10.0289 (4)0.0173 (4)0.0176 (3)0.0030 (3)0.0047 (3)0.0005 (3)
O20.0369 (4)0.0203 (4)0.0176 (4)0.0063 (3)0.0057 (3)0.0002 (3)
O30.0363 (4)0.0194 (4)0.0225 (4)0.0020 (3)0.0090 (3)0.0008 (3)
Geometric parameters (Å, º) top
C1—O11.3758 (11)C7—H7B0.983 (10)
C1—C61.3902 (13)C8—C91.5223 (13)
C1—C21.4083 (13)C8—H8A0.994 (10)
C2—C31.3984 (13)C8—H8B1.030 (10)
C2—B11.5710 (13)C9—C101.5189 (14)
C3—C41.3895 (13)C9—H9A1.009 (11)
C3—H30.954 (11)C9—H9B1.001 (12)
C4—C51.3825 (14)C10—H10A1.017 (14)
C4—H40.980 (10)C10—H10B1.017 (13)
C5—C61.3895 (14)C10—H10C0.990 (13)
C5—H50.982 (12)B1—O31.3526 (12)
C6—H60.962 (12)B1—O21.3718 (12)
C7—O11.4408 (10)O2—H2O0.864 (16)
C7—C81.5050 (13)O3—H3O0.909 (15)
C7—H7A0.992 (10)
O1—C1—C6122.72 (9)C7—C8—C9111.76 (7)
O1—C1—C2115.75 (8)C7—C8—H8A108.1 (6)
C6—C1—C2121.53 (9)C9—C8—H8A108.3 (6)
C3—C2—C1116.92 (8)C7—C8—H8B108.7 (6)
C3—C2—B1119.71 (8)C9—C8—H8B110.6 (6)
C1—C2—B1123.30 (8)H8A—C8—H8B109.3 (8)
C4—C3—C2122.46 (9)C10—C9—C8112.75 (8)
C4—C3—H3119.8 (6)C10—C9—H9A108.1 (6)
C2—C3—H3117.8 (6)C8—C9—H9A108.4 (6)
C5—C4—C3118.72 (9)C10—C9—H9B109.8 (6)
C5—C4—H4122.8 (6)C8—C9—H9B108.6 (6)
C3—C4—H4118.5 (6)H9A—C9—H9B109.1 (9)
C4—C5—C6121.15 (9)C9—C10—H10A110.0 (7)
C4—C5—H5120.9 (7)C9—C10—H10B111.4 (7)
C6—C5—H5118.0 (7)H10A—C10—H10B107.6 (11)
C5—C6—C1119.20 (9)C9—C10—H10C111.5 (7)
C5—C6—H6121.8 (7)H10A—C10—H10C108.8 (10)
C1—C6—H6119.0 (7)H10B—C10—H10C107.4 (10)
O1—C7—C8107.37 (7)O3—B1—O2119.28 (8)
O1—C7—H7A108.3 (6)O3—B1—C2118.50 (8)
C8—C7—H7A110.7 (6)O2—B1—C2122.22 (8)
O1—C7—H7B109.4 (6)C1—O1—C7119.14 (7)
C8—C7—H7B110.7 (6)B1—O2—H2O108.7 (10)
H7A—C7—H7B110.3 (8)B1—O3—H3O114.9 (9)
O1—C1—C2—C3179.49 (7)C2—C1—C6—C50.21 (14)
C6—C1—C2—C31.00 (13)O1—C7—C8—C9179.00 (7)
O1—C1—C2—B13.50 (13)C7—C8—C9—C10170.24 (9)
C6—C1—C2—B1176.01 (8)C3—C2—B1—O31.04 (13)
C1—C2—C3—C41.34 (13)C1—C2—B1—O3177.97 (8)
B1—C2—C3—C4175.78 (8)C3—C2—B1—O2177.95 (8)
C2—C3—C4—C50.45 (14)C1—C2—B1—O21.02 (14)
C3—C4—C5—C60.84 (14)C6—C1—O1—C70.53 (12)
C4—C5—C6—C11.16 (14)C2—C1—O1—C7178.98 (8)
O1—C1—C6—C5179.27 (8)C8—C7—O1—C1179.46 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.864 (16)1.900 (16)2.6547 (9)145.1 (13)
O3—H3O···O2i0.909 (15)1.870 (15)2.7776 (9)175.8 (13)
C7—H7A···C1ii0.992 (10)2.939 (10)3.8346 (12)150.7 (8)
C7—H7A···C2ii0.992 (10)3.103 (10)4.0850 (12)170.7 (8)
C7—H7A···C6ii0.992 (10)2.965 (10)3.6436 (13)126.5 (7)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H15BO3
Mr194.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)102
a, b, c (Å)7.4809 (4), 15.3510 (7), 9.2824 (4)
β (°) 94.299 (4)
V3)1062.98 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.74 × 0.47 × 0.32
Data collection
DiffractometerKuma KM4 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2005)
Tmin, Tmax0.92, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
9363, 2419, 1924
Rint0.012
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.096, 1.14
No. of reflections2419
No. of parameters188
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.35, 0.16

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.864 (16)1.900 (16)2.6547 (9)145.1 (13)
O3—H3O···O2i0.909 (15)1.870 (15)2.7776 (9)175.8 (13)
C7—H7A···C1ii0.992 (10)2.939 (10)3.8346 (12)150.7 (8)
C7—H7A···C2ii0.992 (10)3.103 (10)4.0850 (12)170.7 (8)
C7—H7A···C6ii0.992 (10)2.965 (10)3.6436 (13)126.5 (7)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Warsaw University of Technology and by the Polish Ministry of Science and Higher Education (grant No. N N205 055633). This work was supported by the Aldrich Chemical Company through the donation of chemicals.

References

First citationBrandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDabrowski, M., Lulinski, S., Serwatowski, J. & Szczerbinska, M. (2006). Acta Cryst. C62, o702–o704.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationRettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071–3075.  CAS Google Scholar
First citationSerwatowski, J., Klis, T. & Kacprzak, K. (2006). Acta Cryst. E62, o1308–o1309.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907–6912.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds