organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6H,12H-5,11-Ethano­dibenzo[b,f][1,5]diazo­cine

aDepartment of Chemistry and Biomolecular Sciences, Building F7B, Macquarie University, NSW 2109, Australia, and bCrystal Structure Analysis Facility, School of Chemistry, F11, University of Sydney, NSW 2006, Australia
*Correspondence e-mail: andrew.try@mq.edu.au

(Received 7 January 2008; accepted 10 January 2008; online 16 January 2008)

In the mol­ecule of the title compound, C16H16N2, the ethano-strapped analogue of unsubstituted Tröger's base, the dihedral angle between the two benzene rings is 75.85 (4)°, the smallest angle measured for an ethano-strapped analogue.

Related literature

For related literature, see: Hamada & Mukai (1996[Hamada, Y. & Mukai, S. (1996). Tetrahedron Asymmetry, 7, 2671-2674.]); Ishida et al. (2005[Ishida, Y., Ito, H., Mori, D. & Saigo, K. (2005). Tetrahedron Lett. 46, 109-112.]); Solano et al. (2005[Solano, C., Svensson, D., Olomi, Z., Jensen, J., Wendt, O. F. & Wärnmark, K. (2005). Eur. J. Org. Chem. pp. 3510-3517.]); Faroughi et al. (2006a[Faroughi, M., Try, A. C. & Turner, P. (2006a). Acta Cryst. E62, o3674-o3675.],b[Faroughi, M., Try, A. C. & Turner, P. (2006b). Acta Cryst. E62, o3893-o3894.]); Faroughi, Try & Turner (2007[Faroughi, M., Try, A. C. & Turner, P. (2007). Acta Cryst. E63, o2695.]); Faroughi, Jensen & Try (2007[Faroughi, M., Jensen, P. & Try, A. C. (2007). Acta Cryst. E63, o3111.]). For related structures, see: Faroughi, Try, Klepetko et al. (2007[Faroughi, M., Try, A. C., Klepetko, J. & Turner, P. (2007). Tetrahedron Lett. 48, 6548-6551.]); Faroughi et al. (2008[Faroughi, M., Try, A. C. & Turner, P. (2008). Acta Cryst. E64, o39.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2

  • Mr = 236.31

  • Orthorhombic, P b c a

  • a = 11.717 (2) Å

  • b = 8.907 (2) Å

  • c = 22.829 (4) Å

  • V = 2382.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 (2) K

  • 0.43 × 0.42 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: Gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) and XPREP (Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.990

  • 21723 measured reflections

  • 2913 independent reflections

  • 2398 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.03

  • 2913 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: TEXSAN (Molecular Structure Corporation, 1998[Molecular Structure Corporation (1998). TEXSAN. MSC, The Woodlands, Texas, USA.]), Xtal3.6 (Hall et al., 1999[Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. Xtal3.6 Reference Manual. University of Western Australia, Australia.]), ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX.

Supporting information


Comment top

Tröger's base compounds related to the title compound, (I), Fig. 1, are formed from an acid catalysed condensation of anilines, or a range of other amino aromatics, with either formaldehyde or formaldehyde equivalents. The compounds are characterized by the presence of a methano-strapped diazocine ring that is fused to two aromatic rings and this strapped ring system imparts a V-shaped structure on the compounds. The dihedral angle between the aromatic rings has been measured for over 20 simple dibenzo Tröger's base analogues and has been found to lie between 82° (Solano et al., 2005) and 108° (Faroughi et al., 2006b). It has been shown that reaction of 1,2-dibromoethane with several Tröger's base compounds affords ethano-straped analogues (Hamada & Mukai, 1996; Ishida et al., 2005; Faroughi et al., 2007a; Faroughi et al., 2008), as outlined in Fig. 2. The structure of (I) is the third reported structure of an ethano-strapped analogue of Tröger's base. All three structures support the results of molecular modelling studies, which predict that the ethano-strapped analogues should have smaller dihedral angles in comparison with their methano-strapped precursors. The size of the angle for the methano-strapped structures (2,8-dibromo, 2,8-dichloro and unsubstituted, respectively) are as follows: 95° (Faroughi et al., 2006a), 96° (Faroughi et al., 2007b) and 95° (Faroughi, Jensen & Try, 2007), whilst the corresponding values for the ethano-strapped structures are 86° (Faroughi et al., 2007a), 87° (Faroughi et al., 2008) and, for the subject of this report, (I) 76°.

Related literature top

For related literature, see: Hamada & Mukai (1996); Ishida et al. (2005); Solano et al. (2005); Faroughi et al. (2006a,b); Faroughi, Try & Turner (2007); Faroughi, Jensen & Try (2007). For related structures, see: Faroughi, Try, Klepetko et al. (2007); Faroughi et al. (2008).

Experimental top

The title compound was prepared according to the literature procedure (Hamada & Mukai, 1996) in 37% yield. Single crystals were produced from slow evaporation of a dichloromethane solution of (I).

Refinement top

H atoms were positioned geometrically, with C—H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995) and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: TEXSAN for Windows (Molecular Structure Corporation, 1998), Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I), showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Synthetic scheme for the synthesis of (I) showing the numbering system used in naming the compound.
6H,12H-5,11-Ethanodibenzo[b,f][1,5]diazocine top
Crystal data top
C16H16N2Dx = 1.318 Mg m3
Mr = 236.31Melting point: 447 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 985 reflections
a = 11.717 (2) Åθ = 2.5–27.9°
b = 8.907 (2) ŵ = 0.08 mm1
c = 22.829 (4) ÅT = 150 K
V = 2382.5 (8) Å3Plate, colourless
Z = 80.43 × 0.42 × 0.15 mm
F(000) = 1008
Data collection top
Bruker SMART 1000 CCD
diffractometer
2913 independent reflections
Radiation source: fine-focus sealed tube2398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: gaussian
(Coppens et al., 1965) and XPREP (Siemens, 1995)
h = 1515
Tmin = 0.968, Tmax = 0.990k = 1111
21723 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.8505P]
where P = (Fo2 + 2Fc2)/3
2913 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H16N2V = 2382.5 (8) Å3
Mr = 236.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.717 (2) ŵ = 0.08 mm1
b = 8.907 (2) ÅT = 150 K
c = 22.829 (4) Å0.43 × 0.42 × 0.15 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2913 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965) and XPREP (Siemens, 1995)
2398 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.990Rint = 0.039
21723 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
2913 reflectionsΔρmin = 0.20 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.12902 (7)0.27164 (10)0.17143 (4)0.0194 (2)
N20.04073 (7)0.01939 (10)0.19142 (4)0.0194 (2)
C10.01598 (9)0.29851 (11)0.15021 (5)0.0187 (2)
C20.00104 (9)0.42146 (12)0.11285 (5)0.0222 (2)
H20.06480.48240.10310.027*
C30.10531 (10)0.45585 (12)0.08975 (5)0.0244 (2)
H30.11380.53890.06400.029*
C40.19937 (9)0.36838 (12)0.10442 (5)0.0229 (2)
H40.27290.39290.08970.027*
C50.18463 (9)0.24492 (12)0.14072 (5)0.0202 (2)
H50.24890.18480.15030.024*
C60.07795 (9)0.20660 (11)0.16355 (4)0.0184 (2)
C70.06746 (9)0.06157 (12)0.19875 (5)0.0203 (2)
H7A0.07720.08570.24080.024*
H7B0.13070.00610.18740.024*
C80.07275 (9)0.04025 (11)0.13126 (5)0.0180 (2)
C90.02315 (9)0.16067 (12)0.10144 (5)0.0218 (2)
H90.02950.22380.12140.026*
C100.04935 (10)0.18974 (13)0.04328 (5)0.0252 (2)
H100.01390.27110.02350.030*
C110.12743 (10)0.09959 (13)0.01412 (5)0.0261 (3)
H110.14710.12000.02550.031*
C120.17656 (10)0.02068 (13)0.04333 (5)0.0234 (2)
H120.22980.08240.02320.028*
C130.14986 (9)0.05357 (11)0.10154 (5)0.0187 (2)
C140.20158 (9)0.19445 (12)0.12853 (5)0.0207 (2)
H14A0.27420.16670.14790.025*
H14B0.22000.26570.09660.025*
C150.13809 (10)0.20766 (12)0.23032 (5)0.0225 (2)
H15A0.07590.24830.25500.027*
H15B0.21160.23880.24790.027*
C160.13116 (9)0.03597 (12)0.23015 (5)0.0221 (2)
H16A0.20530.00570.21720.027*
H16B0.11660.00010.27050.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0199 (4)0.0179 (4)0.0205 (4)0.0011 (3)0.0002 (3)0.0007 (3)
N20.0207 (4)0.0183 (4)0.0192 (4)0.0001 (3)0.0008 (3)0.0009 (3)
C10.0212 (5)0.0159 (5)0.0190 (5)0.0006 (4)0.0008 (4)0.0029 (4)
C20.0248 (5)0.0167 (5)0.0251 (5)0.0013 (4)0.0030 (4)0.0003 (4)
C30.0309 (6)0.0186 (5)0.0238 (5)0.0033 (4)0.0003 (4)0.0022 (4)
C40.0224 (5)0.0240 (5)0.0222 (5)0.0048 (4)0.0012 (4)0.0032 (4)
C50.0203 (5)0.0207 (5)0.0196 (5)0.0001 (4)0.0030 (4)0.0041 (4)
C60.0216 (5)0.0162 (5)0.0175 (5)0.0010 (4)0.0030 (4)0.0032 (4)
C70.0208 (5)0.0196 (5)0.0207 (5)0.0008 (4)0.0034 (4)0.0014 (4)
C80.0176 (5)0.0159 (5)0.0206 (5)0.0032 (4)0.0004 (4)0.0016 (4)
C90.0198 (5)0.0170 (5)0.0284 (6)0.0011 (4)0.0015 (4)0.0005 (4)
C100.0282 (6)0.0202 (5)0.0270 (6)0.0033 (4)0.0059 (4)0.0045 (4)
C110.0323 (6)0.0260 (6)0.0199 (5)0.0074 (5)0.0003 (4)0.0020 (4)
C120.0243 (5)0.0227 (5)0.0231 (5)0.0034 (4)0.0036 (4)0.0029 (4)
C130.0173 (5)0.0171 (5)0.0216 (5)0.0029 (4)0.0001 (4)0.0013 (4)
C140.0180 (5)0.0197 (5)0.0244 (5)0.0014 (4)0.0024 (4)0.0006 (4)
C150.0253 (5)0.0219 (5)0.0204 (5)0.0018 (4)0.0028 (4)0.0012 (4)
C160.0245 (5)0.0217 (5)0.0202 (5)0.0002 (4)0.0026 (4)0.0022 (4)
Geometric parameters (Å, º) top
N1—C11.4305 (14)C8—C91.3970 (15)
N1—C151.4639 (14)C8—C131.4053 (15)
N1—C141.4679 (13)C9—C101.3873 (16)
N2—C81.4358 (14)C9—H90.9500
N2—C161.4654 (14)C10—C111.3874 (17)
N2—C71.4680 (14)C10—H100.9500
C1—C21.3991 (15)C11—C121.3870 (17)
C1—C61.4051 (15)C11—H110.9500
C2—C31.3873 (16)C12—C131.3964 (15)
C2—H20.9500C12—H120.9500
C3—C41.3906 (16)C13—C141.5236 (15)
C3—H30.9500C14—H14A0.9900
C4—C51.3877 (16)C14—H14B0.9900
C4—H40.9500C15—C161.5315 (15)
C5—C61.3966 (15)C15—H15A0.9900
C5—H50.9500C15—H15B0.9900
C6—C71.5262 (15)C16—H16A0.9900
C7—H7A0.9900C16—H16B0.9900
C7—H7B0.9900
C1—N1—C15116.32 (9)C10—C9—C8121.17 (10)
C1—N1—C14112.87 (8)C10—C9—H9119.4
C15—N1—C14112.85 (9)C8—C9—H9119.4
C8—N2—C16115.58 (8)C9—C10—C11119.81 (10)
C8—N2—C7113.47 (8)C9—C10—H10120.1
C16—N2—C7112.97 (8)C11—C10—H10120.1
C2—C1—C6119.35 (10)C12—C11—C10119.34 (11)
C2—C1—N1116.96 (9)C12—C11—H11120.3
C6—C1—N1123.66 (9)C10—C11—H11120.3
C3—C2—C1121.13 (10)C11—C12—C13121.78 (10)
C3—C2—H2119.4C11—C12—H12119.1
C1—C2—H2119.4C13—C12—H12119.1
C2—C3—C4119.78 (10)C12—C13—C8118.60 (10)
C2—C3—H3120.1C12—C13—C14117.94 (9)
C4—C3—H3120.1C8—C13—C14123.39 (9)
C5—C4—C3119.28 (10)N1—C14—C13115.16 (8)
C5—C4—H4120.4N1—C14—H14A108.5
C3—C4—H4120.4C13—C14—H14A108.5
C4—C5—C6121.86 (10)N1—C14—H14B108.5
C4—C5—H5119.1C13—C14—H14B108.5
C6—C5—H5119.1H14A—C14—H14B107.5
C5—C6—C1118.54 (10)N1—C15—C16112.49 (9)
C5—C6—C7118.38 (9)N1—C15—H15A109.1
C1—C6—C7122.97 (9)C16—C15—H15A109.1
N2—C7—C6115.16 (8)N1—C15—H15B109.1
N2—C7—H7A108.5C16—C15—H15B109.1
C6—C7—H7A108.5H15A—C15—H15B107.8
N2—C7—H7B108.5N2—C16—C15112.08 (9)
C6—C7—H7B108.5N2—C16—H16A109.2
H7A—C7—H7B107.5C15—C16—H16A109.2
C9—C8—C13119.27 (10)N2—C16—H16B109.2
C9—C8—N2117.18 (9)C15—C16—H16B109.2
C13—C8—N2123.56 (9)H16A—C16—H16B107.9
C15—N1—C1—C2147.34 (10)C7—N2—C8—C1397.36 (11)
C14—N1—C1—C279.92 (11)C13—C8—C9—C100.49 (16)
C15—N1—C1—C634.51 (14)N2—C8—C9—C10179.77 (10)
C14—N1—C1—C698.24 (12)C8—C9—C10—C111.00 (16)
C6—C1—C2—C31.33 (16)C9—C10—C11—C121.34 (17)
N1—C1—C2—C3179.57 (10)C10—C11—C12—C130.20 (17)
C1—C2—C3—C40.89 (17)C11—C12—C13—C81.28 (16)
C2—C3—C4—C51.89 (16)C11—C12—C13—C14175.68 (10)
C3—C4—C5—C60.67 (16)C9—C8—C13—C121.61 (15)
C4—C5—C6—C11.54 (15)N2—C8—C13—C12178.68 (9)
C4—C5—C6—C7174.80 (9)C9—C8—C13—C14175.18 (9)
C2—C1—C6—C52.51 (15)N2—C8—C13—C144.53 (16)
N1—C1—C6—C5179.38 (9)C1—N1—C14—C1350.30 (12)
C2—C1—C6—C7173.65 (10)C15—N1—C14—C1384.12 (11)
N1—C1—C6—C74.46 (16)C12—C13—C14—N1146.11 (10)
C8—N2—C7—C649.21 (12)C8—C13—C14—N130.70 (14)
C16—N2—C7—C684.85 (11)C1—N1—C15—C1686.36 (11)
C5—C6—C7—N2144.50 (10)C14—N1—C15—C1646.39 (12)
C1—C6—C7—N231.66 (14)C8—N2—C16—C1586.95 (11)
C16—N2—C8—C9144.83 (9)C7—N2—C16—C1546.09 (12)
C7—N2—C8—C982.36 (11)N1—C15—C16—N243.67 (13)
C16—N2—C8—C1335.45 (14)

Experimental details

Crystal data
Chemical formulaC16H16N2
Mr236.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)11.717 (2), 8.907 (2), 22.829 (4)
V3)2382.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.43 × 0.42 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965) and XPREP (Siemens, 1995)
Tmin, Tmax0.968, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
21723, 2913, 2398
Rint0.039
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.03
No. of reflections2913
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.20

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995) and XPREP (Siemens, 1995), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), TEXSAN for Windows (Molecular Structure Corporation, 1998), Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank the Australian Research Council for a Discovery Project grant to ACT (grant No. DP0345180) and Macquarie University for the award of a Macquarie University Research Development grant.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFaroughi, M., Jensen, P. & Try, A. C. (2007). Acta Cryst. E63, o3111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaroughi, M., Try, A. C., Klepetko, J. & Turner, P. (2007). Tetrahedron Lett. 48, 6548–6551.  Web of Science CSD CrossRef CAS Google Scholar
First citationFaroughi, M., Try, A. C. & Turner, P. (2006a). Acta Cryst. E62, o3674–o3675.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaroughi, M., Try, A. C. & Turner, P. (2006b). Acta Cryst. E62, o3893–o3894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaroughi, M., Try, A. C. & Turner, P. (2007). Acta Cryst. E63, o2695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaroughi, M., Try, A. C. & Turner, P. (2008). Acta Cryst. E64, o39.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. Xtal3.6 Reference Manual. University of Western Australia, Australia.  Google Scholar
First citationHamada, Y. & Mukai, S. (1996). Tetrahedron Asymmetry, 7, 2671–2674.  CrossRef CAS Web of Science Google Scholar
First citationIshida, Y., Ito, H., Mori, D. & Saigo, K. (2005). Tetrahedron Lett. 46, 109–112.  Web of Science CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation (1998). TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSolano, C., Svensson, D., Olomi, Z., Jensen, J., Wendt, O. F. & Wärnmark, K. (2005). Eur. J. Org. Chem. pp. 3510–3517.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds