inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­ammonium hexa­hydroxido­octa­deca­oxidohexa­molybdogallate(III) hepta­hydrate

aOregon Nanoscience and Microtechnologies Institute (ONAMI), and Department of Chemistry, 1253 University of Oregon, Eugene, OR 97403-1253, USA
*Correspondence e-mail: dwj@uoregon.edu

(Received 1 November 2007; accepted 21 December 2007; online 9 January 2008)

The title compound, (NH4)3[GaMo6(OH)6O18]·7H2O, contains two centrosymmetric GaMo6 B-type Anderson cluster units consisting of central GaO6 octa­hedra surrounded by a hexa­gonal assembly of MoO6 edge-sharing octa­hedra. Like other B-type Anderson clusters, where the central Mo atom is substituted with a di- or trivalent metal ion, the central six μ3-oxido bridges are protonated. The average Ga—O bond length is 1.97 (1) Å, whereas the average Mo—O distances are 2.29 (2), 1.94 (1) and 1.709 (5) Å, respectively, for Mo—(μ3-OH), Mo—(μ2-O) and Mo=O bonds. In the crystal structure, the Ga(μ3-OH)6Mo6O183− polyanionic clusters are surrounded by NH4+ cations and solvent water mol­ecules, forming an extended network of hydrogen bonds.

Related literature

The gallium-substituted B-type Anderson cluster has been observed previously in solution and the solid state (Rollins & Earley, 1959[Rollins, O. W. & Earley, J. E. (1959). J. Am. Chem. Soc. 81, 5571-5572.]; Kitazumi et al., 2003[Kitazumi, I., Nakashima, Y. & Himeno, S. (2003). J. Chromatogr. A, 993, 211-215.]), but crystal structures have not been reported. Anderson–Evans clusters are well known and many papers dealing with their preparation have been published (Anderson, 1937[Anderson, J. S. (1937). Nature (London), 140, 850.]; Lorenzo-Luis & Gili, 2000[Lorenzo-Luis, P. A. & Gili, P. (2000). Recent Res. Dev. Inorg. Chem. 2, 185-196.]; Lee et al., 2001[Lee, U., Joo, H.-C., Kwon, J.-S. & Cho, M.-A. (2001). Acta Cryst. E57, i112-i114.], and references therein). A similar planar core of seven metals is observed in the recently reported structure of [Ga13(μ3-OH)6(μ2-OH)18(H2O)24](NO3)15 (Rather et al., 2005[Rather, E., Gatlin, J. T., Nixon, P. G., Tsukamoto, T., Kravtsov, V. & Johnson, D. W. (2005). J. Am. Chem. Soc. 127, 3242-3243.]). Research into this structure led to isolation of the title compound.

Experimental

Crystal data
  • (NH4)3[GaMo6(OH)6O18]·7H2O

  • Mr = 1215.65

  • Monoclinic, P 21 /c

  • a = 22.7642 (15) Å

  • b = 10.9651 (7) Å

  • c = 11.7599 (8) Å

  • β = 100.2120 (10)°

  • V = 2888.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.56 mm−1

  • T = 173 (2) K

  • 0.38 × 0.20 × 0.03 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]) Tmin = 0.345, Tmax = 0.901

  • 15163 measured reflections

  • 6225 independent reflections

  • 4471 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.17

  • 6225 reflections

  • 397 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.02 e Å−3

  • Δρmin = −1.10 e Å−3

Table 1
Selected bond lengths (Å)

Ga1—O3 1.953 (3)
Ga1—O1 1.954 (4)
Ga1—O2 1.972 (3)
Ga2—O15 1.968 (3)
Ga2—O13 1.969 (3)
Ga2—O14 1.978 (3)
Mo1—O7 1.703 (4)
Mo1—O8 1.711 (4)
Mo1—O5 1.918 (4)
Mo1—O4 1.939 (4)
Mo1—O1 2.293 (4)
Mo1—O2 2.307 (4)
Mo2—O9 1.704 (4)
Mo2—O10 1.714 (4)
Mo2—O6 1.943 (4)
Mo2—O5 1.948 (4)
Mo2—O3 2.287 (4)
Mo2—O2 2.300 (3)
Mo3—O12 1.711 (4)
Mo3—O11 1.715 (4)
Mo3—O4i 1.918 (4)
Mo3—O6 1.949 (4)
Mo3—O3 2.252 (4)
Mo3—O1i 2.286 (4)
Mo4—O19 1.705 (4)
Mo4—O20 1.713 (4)
Mo4—O17 1.939 (3)
Mo4—O16 1.948 (3)
Mo4—O13 2.286 (3)
Mo4—O14 2.324 (3)
Mo5—O21 1.702 (4)
Mo5—O22 1.708 (3)
Mo5—O17 1.932 (4)
Mo5—O18 1.956 (3)
Mo5—O15 2.285 (3)
Mo5—O14 2.284 (3)
Mo6—O23 1.712 (3)
Mo6—O24 1.719 (4)
Mo6—O16ii 1.917 (4)
Mo6—O18 1.944 (4)
Mo6—O15 2.273 (3)
Mo6—O13ii 2.290 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O10iii 0.84 (2) 2.00 (3) 2.822 (5) 166 (6)
O13—H13⋯O23iv 0.84 (2) 1.86 (2) 2.691 (5) 173 (7)
O14—H14⋯O22v 0.84 (2) 1.98 (2) 2.808 (5) 168 (6)
O3—H3⋯O4Svi 0.85 (2) 1.76 (3) 2.602 (5) 169 (8)
O1—H1⋯O11vii 0.85 (2) 1.87 (4) 2.682 (5) 159 (9)
O15—H15⋯O1S 0.83 (2) 1.87 (3) 2.645 (5) 155 (7)
Symmetry codes: (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 3
Short contact geometry (Å)

N1S⋯O24ii 2.911 (7)
N1S⋯O6Svi 2.784 (8)
N2S⋯O16 2.779 (6)
N2S⋯O21iii 2.979 (6)
N2S⋯O24vii 2.901 (6)
N2S⋯O3Sviii 2.899 (7)
N2S⋯O7S 2.898 (7)
N3S⋯O5i 2.775 (6)
N3S⋯O12xii 2.907 (7)
N3S⋯O5S 2.801 (8)
N3S⋯O7Si 3.030 (8)
O1S⋯O18x 2.794 (5)
O1S⋯O18ii 2.905 (6)
O2S⋯O4xi 2.718 (5)
O2S⋯O12 2.797 (6)
O2S⋯O3Sxii 2.830 (7)
O2S⋯O6Six 2.704 (7)
O3S⋯O9 3.016 (6)
O3S⋯O19 3.034 (7)
O3S⋯O5Siv 2.917 (8)
O4S⋯O3xiii 2.602 (5)
O4S⋯O6 2.773 (6)
O4S⋯O6xii 2.934 (6)
O5S⋯O8 2.782 (6)
O5S⋯O16i 3.083 (6)
O6S⋯O20 2.776 (6)
O6S⋯O7S 2.769 (7)
O7S⋯O7xiv 2.973 (6)
Symmetry codes (i): [x, -y+{1\over 2}, z-{1\over 2}]; (ii): [-x, y-{1\over 2}, -z+{1\over 2}]; (iii): [x, -y+{3\over 2}, z+{1\over 2}]; (iv): [ x, -y+{1\over 2}, z+{1\over 2}]; (v): [-x+1, y+{1\over 2}, -z+{3\over 2}]; (vi): [x, -y+{3\over 2}, z-{1\over 2}]; (vii): [-x, y-{1\over 2}, -z+{3\over 2}]; (viii): [x, -y+{1\over 2}, z+{1\over 2}]; (ix): 1-x, 1-y, 1-z; (x): [x, -y+{3\over 2}, z-{1\over 2}]; (xi): [-x+1, y-{1\over 2}, -z+{1\over 2}]; (xii): -x+1, -y, -z+1; (xiii): [x, -y+{1\over 2}, z-{1\over 2}]; (xiv): [x, -y+{3\over 2}, z+{1\over 2}]

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.631), SAINT (Version 6.63) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.631), SAINT (Version 6.63) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.631), SAINT (Version 6.63) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Compounds containing Anderson-type clusters have been explored for applications as structural aesthetics, biologically active compounds, and catalysts (Rollins & Earley, 1959; Lorenzo-Luis & Gili, 2000). They have also been shown to act as building blocks for larger molecular assemblies, where they can be linked to form extended networks with pores and cavities (Lorenzo-Luis & Gili, 2000). The majority of Anderson clusters are based on Mo7O246- or W7O246- frameworks, and many structures have been synthesized with substitution of the central octahedron or variable bridging ligands (Lorenzo-Luis & Gili, 2000). Due to the similarity of the structure of the Mo7O246- complex to the inner planar core of our recently reported flat-Ga13 metal-hydroxo cluster [Ga133-OH)62-OH)18(H2O)24](NO3)15 (Rather et al., 2005), it was hypothesized that a mixed-metal Mo7Ga6 compound could be obtained by reaction of (NH4)6Mo7O24 with six or more equivalents of Ga(NO3)3. Setting up the reaction in a similar manner to the synthesis of flat-Ga13 (dissolving starting materials in a MeOH:H2O mixture and adding N-nitroso-di-n-butylamine), single crystals of the gallium-substituted B-type Anderson cluster, (NH4)3[Ga(µ3-OH)6Mo6O18].7H2O, (I), were isolated and structurally characterized by X-ray crystallography.

Anderson-type polyanions were first described by Anderson (1937). The planar structure consisting of seven metals observed in that compound is also observed in the structure of (I), with average Ga—O bond lengths of 1.97 (1) Å. The average Mo—O distances are 2.29 (2), 1.94 (1) and 1.710 (5) Å, respectively, for Mo-(µ3-OH), Mo-(µ2-O) and Mo=O. There are six µ3-OH bridges, six µ2-oxo bridges, and twelve terminal oxo ligands for each of the two independent cluster anions (Figure 1).

Extensive literature reports have covered the different structural variants and chemistry of hexamolybdoaluminate(III) polyanions (Lorenzo-Luis & Gili, 2000). The synthesis reported herein also represents an alternative preparation of the Al-substituted structure, with no acid addition required (as is usually the case). Synthesis by this method also represents a far more benign method than that previously reported. The Ga-substituted B-type Anderson compound had been synthesized previously by adding a solution of Ga metal in concentrated HNO3 to a solution of MoO3 in aqueous NaOH. The mixture was heated overnight and rinsed several times with acetone, and vacuum dried overnight, affording product as the sodium salt. However, a crystal structure determination of the title compound has not been reported previously (Rollins & Earley, 1959; Kitazumi et al., 2003).

Related literature top

The gallium substituted B-type Anderson cluster has been observed previously in solution and the solid state (Rollins & Earley, 1959; Kitazumi et al., 2003), but the crystal structure has not been reported. Anderson–Evans clusters are well known and many papers dealing with their preparation have been published (Anderson, 1937; Lorenzo-Luis & Gili, 2000; Lee et al., 2001, and references therein). A similar planar core of seven metals is observed in the recently reported structure of [Ga133-OH)62-OH)18(H2O)24](NO3)15 (Rather et al., 2005) Inquiries into this structure led to isolation of the title compound.

Experimental top

Commercial products (NH4)6Mo7O24 (Baker and Adamson) and Ga(NO3)3 (Strem) were used to obtain the title compound, (I). (NH4)6Mo7O24 (0.25 g, 0.2 mmol) and Ga(NO3)3 (0.7 g, 1.92 mmol) were dissolved in a 1:1 H2O/MeOH mixture (10 ml) in a 20 ml scintillation vial. The mixture was heated slightly, with some cloudiness remaining in the mixture. N-nitroso-di-n-butylamine (0.45 g, 0.5 ml, 2.8 mmol) was added, and was not initially miscible. Additional MeOH (~2 ml) brought most into solution, and the mixture was then filtered. The remaining solution was evaporated, and after 9 d clear, colorless crystals with block-like habit had formed around the outside edge of the vial. The crystals were isolated in 90% crude yield. Fewer equivalents of Ga(NO3)3 (relative to (NH4)6Mo7O24) and no organic additive (H2O as solvent only) have also been used successfully to produce crystals of (I).

Refinement top

The H atoms of the µ3-oxo groups were found from difference Fourier maps and were refined with restraints; the value of 0.85 Å was used as a target for corresponding O—H distances in the refinement. The H atoms in the NH4+ cations and solvent water molecules were not found and thus were not taken into consideration. Positions of N atoms of the NH4+ cations versus positions of the solvent water molecules were found based on analysis of the network of H-bonds in the structure. The positions of two NH4+ cations found in the structure of (I) are close to positions of the K cations found in the structure of K3[Co(µ3-OH)6Mo6O18].7H2O (Lee et al., 2001), but the position of the third one is different against the positions of the third K cation in the potassium compound. Both structures crystallize in the same space groups and exhibit similar lattice parameters of the unit cells. However, the β-angles in these structures are different (100.212 (1)° in (I) versus 94.577 (9)° in K3[Co(µ3-OH)6Mo6O18].7H2O) that indicates the packing in these structures seems to be different. The highest peak and the deepest hole observed in the final Fourier map are 0.96 and 0.87 Å away from atoms O1S and Mo6, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000; molecular graphics: SHELXTL (Bruker, 2000; software used to prepare material for publication: SHELXTL (Bruker, 2000.

Figures top
[Figure 1] Fig. 1. One of the two symmetrically independent Ga(µ3-OH)6Mo6O18-3 anions in the crystal structure of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code (i): 1 - x, 1 - y, 1 - z].
[Figure 2] Fig. 2. The second polyanionic cluster, displayed at the same probability level than in Fig. 1. [Symmetry code: (ii) -x, 1 - y, 1 - z.]
Triammonium hexahydroxidooctadecaoxidohexamolybdogallate(III) heptahydrate top
Crystal data top
(NH4)3[GaMo6(OH)6O18]·7H2OF(000) = 2336
Mr = 1215.65Dx = 2.795 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4958 reflections
a = 22.7642 (15) Åθ = 2.6–27.0°
b = 10.9651 (7) ŵ = 3.56 mm1
c = 11.7599 (8) ÅT = 173 K
β = 100.212 (1)°Plate, colorless
V = 2888.9 (3) Å30.38 × 0.20 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
6225 independent reflections
Radiation source: fine-focus sealed tube4471 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.0°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 2928
Tmin = 0.345, Tmax = 0.901k = 1312
15163 measured reflectionsl = 158
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0387P)2 + 12.6663P]
where P = (Fo2 + 2Fc2)/3
6225 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 1.02 e Å3
6 restraintsΔρmin = 1.10 e Å3
Crystal data top
(NH4)3[GaMo6(OH)6O18]·7H2OV = 2888.9 (3) Å3
Mr = 1215.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.7642 (15) ŵ = 3.56 mm1
b = 10.9651 (7) ÅT = 173 K
c = 11.7599 (8) Å0.38 × 0.20 × 0.03 mm
β = 100.212 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6225 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
4471 reflections with I > 2σ(I)
Tmin = 0.345, Tmax = 0.901Rint = 0.020
15163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0387P)2 + 12.6663P]
where P = (Fo2 + 2Fc2)/3
6225 reflectionsΔρmax = 1.02 e Å3
397 parametersΔρmin = 1.10 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ga10.50000.50000.50000.01123 (17)
Ga20.00000.50000.50000.00902 (16)
Mo10.35141 (2)0.51841 (4)0.45196 (4)0.01479 (12)
Mo20.41872 (2)0.26668 (4)0.56993 (4)0.01458 (12)
Mo30.56707 (2)0.25263 (4)0.62097 (4)0.01402 (12)
Mo40.149068 (19)0.48479 (4)0.54667 (4)0.01355 (12)
Mo50.079304 (19)0.73509 (4)0.42939 (4)0.01232 (11)
Mo60.069381 (19)0.74690 (4)0.37855 (4)0.01178 (11)
O10.43873 (16)0.6143 (3)0.5303 (3)0.0141 (7)
O20.43179 (15)0.4003 (3)0.4257 (3)0.0129 (7)
O30.49702 (16)0.3947 (3)0.6328 (3)0.0134 (7)
O40.37835 (15)0.6157 (3)0.3335 (3)0.0158 (8)
O50.37155 (16)0.4126 (3)0.5830 (3)0.0170 (8)
O60.49123 (16)0.1923 (3)0.5366 (3)0.0156 (7)
O70.31028 (18)0.6221 (4)0.5119 (3)0.0246 (9)
O80.30144 (17)0.4316 (4)0.3604 (3)0.0237 (9)
O90.36921 (17)0.1825 (4)0.4758 (3)0.0231 (9)
O100.41851 (18)0.2072 (4)0.7046 (3)0.0236 (9)
O110.56491 (18)0.1958 (4)0.7561 (3)0.0226 (9)
O120.61044 (18)0.1536 (4)0.5596 (3)0.0238 (9)
O130.06252 (15)0.3866 (3)0.4699 (3)0.0102 (7)
O140.06773 (16)0.6024 (3)0.5736 (3)0.0116 (7)
O150.00201 (15)0.6053 (3)0.3652 (3)0.0110 (7)
O160.12375 (16)0.3851 (3)0.6664 (3)0.0162 (8)
O170.12752 (16)0.5927 (3)0.4152 (3)0.0151 (7)
O180.00595 (15)0.8078 (3)0.4637 (3)0.0136 (7)
O190.19123 (17)0.3843 (4)0.4850 (3)0.0226 (9)
O200.19832 (17)0.5724 (4)0.6393 (3)0.0234 (9)
O210.12650 (17)0.8245 (4)0.5225 (3)0.0211 (8)
O220.07868 (17)0.7965 (3)0.2957 (3)0.0189 (8)
O230.06660 (17)0.8033 (3)0.2438 (3)0.0193 (8)
O240.11382 (17)0.8471 (3)0.4373 (3)0.0202 (8)
N1S0.1801 (2)0.5087 (5)0.2359 (5)0.0322 (12)
N2S0.1667 (2)0.4712 (5)0.8877 (4)0.0248 (11)
N3S0.3235 (3)0.0134 (5)0.2727 (5)0.0359 (14)
O1S0.0158 (3)0.5433 (4)0.1444 (4)0.0396 (13)
O2S0.6662 (2)0.0517 (4)0.3883 (4)0.0323 (10)
O3S0.2536 (2)0.1465 (5)0.5634 (4)0.0427 (12)
O4S0.4997 (3)0.0459 (5)0.3479 (4)0.063 (2)
O5S0.2479 (2)0.2149 (5)0.2729 (5)0.0456 (13)
O6S0.2500 (2)0.8016 (5)0.6761 (4)0.0430 (12)
O7S0.2491 (2)0.6706 (5)0.8771 (4)0.0446 (13)
H10.428 (4)0.643 (8)0.591 (5)0.07 (3)*
H20.434 (3)0.373 (6)0.360 (3)0.032 (19)*
H30.493 (4)0.416 (8)0.701 (3)0.06 (3)*
H130.062 (3)0.365 (6)0.401 (2)0.027 (18)*
H140.065 (3)0.634 (6)0.638 (3)0.027 (18)*
H150.003 (3)0.568 (5)0.304 (3)0.031 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga10.0137 (4)0.0111 (4)0.0095 (4)0.0004 (3)0.0037 (3)0.0004 (3)
Ga20.0122 (4)0.0076 (4)0.0078 (4)0.0004 (3)0.0033 (3)0.0009 (3)
Mo10.0136 (2)0.0175 (3)0.0137 (2)0.00039 (17)0.00386 (17)0.00109 (18)
Mo20.0179 (2)0.0135 (2)0.0132 (2)0.00216 (17)0.00494 (17)0.00214 (17)
Mo30.0182 (2)0.0129 (2)0.0114 (2)0.00243 (17)0.00382 (17)0.00248 (17)
Mo40.0130 (2)0.0149 (2)0.0130 (2)0.00026 (16)0.00294 (17)0.00230 (17)
Mo50.0163 (2)0.0106 (2)0.0105 (2)0.00180 (16)0.00373 (17)0.00182 (16)
Mo60.0164 (2)0.0102 (2)0.0094 (2)0.00274 (16)0.00408 (16)0.00240 (16)
O10.0144 (19)0.018 (2)0.0103 (18)0.0022 (14)0.0039 (14)0.0003 (15)
O20.0146 (18)0.0135 (18)0.0107 (18)0.0024 (14)0.0026 (14)0.0000 (15)
O30.0168 (19)0.0130 (18)0.0111 (18)0.0005 (14)0.0045 (14)0.0018 (15)
O40.0149 (18)0.020 (2)0.0115 (17)0.0002 (15)0.0002 (14)0.0015 (15)
O50.0157 (19)0.019 (2)0.0188 (19)0.0008 (15)0.0090 (15)0.0015 (15)
O60.020 (2)0.0124 (18)0.0147 (18)0.0008 (14)0.0045 (14)0.0014 (15)
O70.024 (2)0.028 (2)0.023 (2)0.0061 (17)0.0100 (17)0.0019 (18)
O80.018 (2)0.026 (2)0.027 (2)0.0047 (16)0.0038 (16)0.0017 (18)
O90.024 (2)0.022 (2)0.023 (2)0.0078 (16)0.0037 (16)0.0005 (17)
O100.026 (2)0.023 (2)0.024 (2)0.0022 (17)0.0092 (17)0.0061 (17)
O110.028 (2)0.022 (2)0.0181 (19)0.0011 (17)0.0039 (16)0.0082 (17)
O120.029 (2)0.023 (2)0.020 (2)0.0043 (17)0.0072 (17)0.0003 (17)
O130.0146 (18)0.0108 (17)0.0059 (16)0.0017 (13)0.0037 (13)0.0002 (14)
O140.0200 (19)0.0109 (18)0.0046 (16)0.0005 (14)0.0037 (14)0.0001 (14)
O150.0197 (19)0.0091 (17)0.0050 (16)0.0009 (14)0.0042 (13)0.0008 (14)
O160.0175 (19)0.0160 (19)0.0148 (18)0.0015 (15)0.0025 (14)0.0037 (15)
O170.0184 (19)0.0167 (19)0.0113 (17)0.0001 (14)0.0058 (14)0.0023 (14)
O180.0173 (19)0.0097 (17)0.0140 (17)0.0011 (14)0.0037 (14)0.0001 (14)
O190.021 (2)0.025 (2)0.025 (2)0.0058 (16)0.0134 (16)0.0031 (17)
O200.022 (2)0.027 (2)0.019 (2)0.0062 (17)0.0009 (16)0.0002 (17)
O210.022 (2)0.020 (2)0.021 (2)0.0041 (16)0.0043 (16)0.0008 (16)
O220.029 (2)0.018 (2)0.0110 (18)0.0026 (16)0.0067 (15)0.0024 (15)
O230.028 (2)0.019 (2)0.0114 (18)0.0017 (16)0.0044 (15)0.0040 (15)
O240.023 (2)0.018 (2)0.022 (2)0.0041 (16)0.0089 (16)0.0009 (16)
N1S0.031 (3)0.041 (3)0.025 (3)0.000 (2)0.005 (2)0.007 (2)
N2S0.027 (3)0.029 (3)0.021 (2)0.001 (2)0.011 (2)0.005 (2)
N3S0.036 (3)0.042 (3)0.032 (3)0.006 (3)0.014 (3)0.016 (3)
O1S0.086 (4)0.019 (2)0.018 (2)0.004 (2)0.022 (2)0.0010 (18)
O2S0.034 (3)0.041 (3)0.021 (2)0.005 (2)0.0056 (18)0.001 (2)
O3S0.032 (3)0.051 (3)0.042 (3)0.005 (2)0.001 (2)0.002 (2)
O4S0.159 (7)0.021 (3)0.013 (2)0.008 (3)0.021 (3)0.0012 (19)
O5S0.038 (3)0.041 (3)0.057 (3)0.010 (2)0.008 (2)0.014 (3)
O6S0.044 (3)0.040 (3)0.044 (3)0.012 (2)0.007 (2)0.005 (2)
O7S0.053 (3)0.038 (3)0.038 (3)0.011 (2)0.004 (2)0.003 (2)
Geometric parameters (Å, º) top
Ga1—O3i1.953 (3)Mo3—O61.949 (4)
Ga1—O31.953 (3)Mo3—O32.252 (4)
Ga1—O1i1.954 (4)Mo3—O1i2.286 (4)
Ga1—O11.954 (4)Mo4—O191.705 (4)
Ga1—O2i1.972 (3)Mo4—O201.713 (4)
Ga1—O21.972 (3)Mo4—O171.939 (3)
Ga2—O15ii1.968 (3)Mo4—O161.948 (3)
Ga2—O151.968 (3)Mo4—O132.286 (3)
Ga2—O13ii1.969 (3)Mo4—O142.324 (3)
Ga2—O131.969 (3)Mo5—O211.702 (4)
Ga2—O141.978 (3)Mo5—O221.708 (3)
Ga2—O14ii1.978 (3)Mo5—O171.932 (4)
Mo1—O71.703 (4)Mo5—O181.956 (3)
Mo1—O81.711 (4)Mo5—O152.285 (3)
Mo1—O51.918 (4)Mo5—O142.284 (3)
Mo1—O41.939 (4)Mo6—O231.712 (3)
Mo1—O12.293 (4)Mo6—O241.719 (4)
Mo1—O22.307 (4)Mo6—O16ii1.917 (4)
Mo2—O91.704 (4)Mo6—O181.944 (4)
Mo2—O101.714 (4)Mo6—O152.273 (3)
Mo2—O61.943 (4)Mo6—O13ii2.290 (3)
Mo2—O51.948 (4)O1—H10.85 (2)
Mo2—O32.287 (4)O2—H20.84 (2)
Mo2—O22.300 (3)O3—H30.85 (2)
Mo3—O121.711 (4)O13—H130.84 (2)
Mo3—O111.715 (4)O14—H140.84 (2)
Mo3—O4i1.918 (4)O15—H150.83 (2)
O3i—Ga1—O3180.0O19—Mo4—O1392.19 (16)
O3i—Ga1—O1i96.11 (15)O20—Mo4—O13159.49 (16)
O3—Ga1—O1i83.89 (15)O17—Mo4—O1383.94 (14)
O3i—Ga1—O183.89 (15)O16—Mo4—O1371.12 (13)
O3—Ga1—O196.11 (15)O19—Mo4—O14159.82 (16)
O1i—Ga1—O1180.00 (14)O20—Mo4—O1492.85 (16)
O3i—Ga1—O2i83.70 (15)O17—Mo4—O1471.01 (13)
O3—Ga1—O2i96.30 (15)O16—Mo4—O1482.43 (13)
O1i—Ga1—O2i84.55 (15)O13—Mo4—O1470.34 (12)
O1—Ga1—O2i95.45 (15)O21—Mo5—O22105.42 (18)
O3i—Ga1—O296.30 (15)O21—Mo5—O17102.56 (17)
O3—Ga1—O283.70 (15)O22—Mo5—O1798.72 (16)
O1i—Ga1—O295.45 (15)O21—Mo5—O1895.58 (17)
O1—Ga1—O284.55 (15)O22—Mo5—O1899.26 (16)
O2i—Ga1—O2179.999 (1)O17—Mo5—O18149.97 (15)
O15ii—Ga2—O15180.0O21—Mo5—O15158.85 (15)
O15ii—Ga2—O13ii96.04 (14)O22—Mo5—O1593.52 (16)
O15—Ga2—O13ii83.96 (14)O17—Mo5—O1583.36 (14)
O15ii—Ga2—O1383.96 (14)O18—Mo5—O1571.71 (13)
O15—Ga2—O1396.04 (14)O21—Mo5—O1491.86 (15)
O13ii—Ga2—O13180.0O22—Mo5—O14161.99 (16)
O15ii—Ga2—O1496.23 (14)O17—Mo5—O1472.03 (13)
O15—Ga2—O1483.77 (14)O18—Mo5—O1483.77 (13)
O13ii—Ga2—O1495.44 (14)O15—Mo5—O1470.43 (12)
O13—Ga2—O1484.56 (14)O23—Mo6—O24105.18 (18)
O15ii—Ga2—O14ii83.77 (14)O23—Mo6—O16ii98.37 (17)
O15—Ga2—O14ii96.23 (14)O24—Mo6—O16ii101.31 (17)
O13ii—Ga2—O14ii84.56 (14)O23—Mo6—O18100.29 (17)
O13—Ga2—O14ii95.45 (14)O24—Mo6—O1895.85 (17)
O14—Ga2—O14ii180.0O16ii—Mo6—O18150.31 (15)
O7—Mo1—O8106.2 (2)O23—Mo6—O1592.21 (15)
O7—Mo1—O598.15 (17)O24—Mo6—O15160.59 (15)
O8—Mo1—O5101.91 (18)O16ii—Mo6—O1584.25 (14)
O7—Mo1—O4101.41 (17)O18—Mo6—O1572.17 (13)
O8—Mo1—O496.51 (17)O23—Mo6—O13ii160.43 (15)
O5—Mo1—O4148.11 (15)O24—Mo6—O13ii93.42 (15)
O7—Mo1—O191.64 (17)O16ii—Mo6—O13ii71.55 (13)
O8—Mo1—O1160.15 (16)O18—Mo6—O13ii83.48 (13)
O5—Mo1—O183.59 (14)O15—Mo6—O13ii70.50 (12)
O4—Mo1—O170.98 (13)Ga1—O1—Mo3i102.26 (14)
O7—Mo1—O2159.64 (17)Ga1—O1—Mo1103.21 (16)
O8—Mo1—O293.31 (16)Mo3i—O1—Mo193.09 (13)
O5—Mo1—O271.66 (13)Ga1—O1—H1135 (6)
O4—Mo1—O281.56 (14)Mo3i—O1—H1115 (6)
O1—Mo1—O270.09 (13)Mo1—O1—H199 (6)
O9—Mo2—O10106.50 (19)Ga1—O2—Mo2102.79 (14)
O9—Mo2—O697.41 (17)Ga1—O2—Mo1102.15 (15)
O10—Mo2—O699.69 (17)Mo2—O2—Mo192.85 (12)
O9—Mo2—O5100.70 (18)Ga1—O2—H2116 (5)
O10—Mo2—O598.51 (17)Mo2—O2—H2119 (5)
O6—Mo2—O5149.42 (15)Mo1—O2—H2120 (5)
O9—Mo2—O3158.51 (16)Ga1—O3—Mo3103.53 (15)
O10—Mo2—O393.70 (16)Ga1—O3—Mo2103.88 (15)
O6—Mo2—O371.45 (14)Mo3—O3—Mo294.30 (13)
O5—Mo2—O383.06 (14)Ga1—O3—H3128 (6)
O9—Mo2—O291.34 (16)Mo3—O3—H3116 (6)
O10—Mo2—O2161.06 (17)Mo2—O3—H3106 (6)
O6—Mo2—O283.87 (14)Mo3i—O4—Mo1119.01 (17)
O5—Mo2—O271.34 (14)Mo1—O5—Mo2119.36 (18)
O3—Mo2—O269.63 (12)Mo2—O6—Mo3117.54 (18)
O12—Mo3—O11105.88 (19)Ga2—O13—Mo4103.36 (14)
O12—Mo3—O4i101.65 (17)Ga2—O13—Mo6ii102.45 (13)
O11—Mo3—O4i97.94 (17)Mo4—O13—Mo6ii93.37 (12)
O12—Mo3—O695.45 (17)Ga2—O13—H13117 (4)
O11—Mo3—O6100.37 (17)Mo4—O13—H13113 (4)
O4i—Mo3—O6150.41 (15)Mo6ii—O13—H13124 (5)
O12—Mo3—O3158.97 (16)Ga2—O14—Mo5102.74 (14)
O11—Mo3—O393.27 (16)Ga2—O14—Mo4101.74 (14)
O4i—Mo3—O383.83 (14)Mo5—O14—Mo493.04 (12)
O6—Mo3—O372.14 (14)Ga2—O14—H14117 (4)
O12—Mo3—O1i92.00 (16)Mo5—O14—H14116 (5)
O11—Mo3—O1i160.95 (16)Mo4—O14—H14122 (4)
O4i—Mo3—O1i71.47 (14)Ga2—O15—Mo6103.08 (14)
O6—Mo3—O1i84.08 (14)Ga2—O15—Mo5103.06 (14)
O3—Mo3—O1i70.29 (13)Mo6—O15—Mo594.02 (13)
O19—Mo4—O20106.2 (2)Ga2—O15—H15115 (5)
O19—Mo4—O1797.87 (17)Mo6—O15—H15121 (5)
O20—Mo4—O17102.08 (17)Mo5—O15—H15117 (5)
O19—Mo4—O16101.89 (17)Mo6ii—O16—Mo4118.93 (18)
O20—Mo4—O1695.69 (17)Mo5—O17—Mo4119.45 (17)
O17—Mo4—O16148.51 (15)Mo6—O18—Mo5117.47 (17)
O3i—Ga1—O1—Mo3i1.23 (15)O15—Ga2—O13—Mo482.62 (15)
O3—Ga1—O1—Mo3i178.77 (15)O13ii—Ga2—O13—Mo464 (8)
O2i—Ga1—O1—Mo3i84.27 (15)O14—Ga2—O13—Mo40.50 (13)
O2—Ga1—O1—Mo3i95.73 (15)O14ii—Ga2—O13—Mo4179.50 (13)
O3i—Ga1—O1—Mo197.41 (16)O15ii—Ga2—O13—Mo6ii0.82 (14)
O3—Ga1—O1—Mo182.59 (16)O15—Ga2—O13—Mo6ii179.18 (14)
O2i—Ga1—O1—Mo1179.54 (14)O14—Ga2—O13—Mo6ii96.06 (15)
O2—Ga1—O1—Mo10.46 (14)O14ii—Ga2—O13—Mo6ii83.94 (15)
O7—Mo1—O1—Ga1170.39 (18)O19—Mo4—O13—Ga2169.21 (17)
O8—Mo1—O1—Ga135.1 (5)O20—Mo4—O13—Ga236.9 (5)
O5—Mo1—O1—Ga172.37 (16)O17—Mo4—O13—Ga271.52 (15)
O4—Mo1—O1—Ga188.10 (17)O16—Mo4—O13—Ga288.98 (16)
O2—Mo1—O1—Ga10.41 (13)O14—Mo4—O13—Ga20.45 (12)
O7—Mo1—O1—Mo3i86.25 (16)O19—Mo4—O13—Mo6ii87.14 (16)
O8—Mo1—O1—Mo3i68.3 (5)O20—Mo4—O13—Mo6ii66.7 (5)
O5—Mo1—O1—Mo3i175.73 (15)O17—Mo4—O13—Mo6ii175.17 (14)
O4—Mo1—O1—Mo3i15.26 (13)O16—Mo4—O13—Mo6ii14.67 (13)
O2—Mo1—O1—Mo3i102.96 (14)O14—Mo4—O13—Mo6ii103.20 (13)
O3i—Ga1—O2—Mo2179.47 (14)O15ii—Ga2—O14—Mo5179.66 (14)
O3—Ga1—O2—Mo20.53 (14)O15—Ga2—O14—Mo50.34 (14)
O1i—Ga1—O2—Mo283.75 (15)O13ii—Ga2—O14—Mo583.63 (15)
O1—Ga1—O2—Mo296.25 (15)O13—Ga2—O14—Mo596.37 (15)
O3i—Ga1—O2—Mo183.67 (15)O15ii—Ga2—O14—Mo483.78 (14)
O3—Ga1—O2—Mo196.33 (15)O15—Ga2—O14—Mo496.22 (14)
O1i—Ga1—O2—Mo1179.55 (14)O13ii—Ga2—O14—Mo4179.51 (13)
O1—Ga1—O2—Mo10.45 (14)O13—Ga2—O14—Mo40.49 (13)
O9—Mo2—O2—Ga1170.25 (18)O14ii—Ga2—O14—Mo4130 (9)
O10—Mo2—O2—Ga129.1 (6)O21—Mo5—O14—Ga2168.49 (18)
O6—Mo2—O2—Ga172.94 (16)O22—Mo5—O14—Ga227.7 (6)
O5—Mo2—O2—Ga188.91 (17)O17—Mo5—O14—Ga288.91 (17)
O3—Mo2—O2—Ga10.48 (13)O18—Mo5—O14—Ga273.08 (16)
O9—Mo2—O2—Mo186.60 (17)O15—Mo5—O14—Ga20.31 (12)
O10—Mo2—O2—Mo174.1 (5)O21—Mo5—O14—Mo488.75 (16)
O6—Mo2—O2—Mo1176.08 (14)O22—Mo5—O14—Mo475.0 (5)
O5—Mo2—O2—Mo114.24 (13)O17—Mo5—O14—Mo413.85 (13)
O3—Mo2—O2—Mo1103.63 (14)O18—Mo5—O14—Mo4175.84 (14)
O7—Mo1—O2—Ga126.9 (5)O15—Mo5—O14—Mo4103.06 (14)
O8—Mo1—O2—Ga1169.24 (17)O19—Mo4—O14—Ga230.9 (5)
O5—Mo1—O2—Ga189.30 (17)O20—Mo4—O14—Ga2168.40 (17)
O4—Mo1—O2—Ga173.15 (16)O17—Mo4—O14—Ga289.81 (16)
O1—Mo1—O2—Ga10.41 (12)O16—Mo4—O14—Ga273.04 (15)
O7—Mo1—O2—Mo276.8 (5)O13—Mo4—O14—Ga20.44 (12)
O8—Mo1—O2—Mo287.02 (16)O19—Mo4—O14—Mo572.8 (5)
O5—Mo1—O2—Mo214.43 (13)O20—Mo4—O14—Mo587.92 (16)
O4—Mo1—O2—Mo2176.88 (14)O17—Mo4—O14—Mo513.88 (13)
O1—Mo1—O2—Mo2104.14 (14)O16—Mo4—O14—Mo5176.72 (14)
O1i—Ga1—O3—Mo31.25 (15)O13—Mo4—O14—Mo5104.13 (13)
O1—Ga1—O3—Mo3178.75 (15)O13ii—Ga2—O15—Mo60.83 (14)
O2i—Ga1—O3—Mo382.55 (16)O13—Ga2—O15—Mo6179.18 (14)
O2—Ga1—O3—Mo397.45 (16)O14—Ga2—O15—Mo697.00 (15)
O1i—Ga1—O3—Mo296.74 (16)O14ii—Ga2—O15—Mo683.00 (15)
O1—Ga1—O3—Mo283.26 (16)O13ii—Ga2—O15—Mo596.51 (15)
O2i—Ga1—O3—Mo2179.46 (14)O13—Ga2—O15—Mo583.49 (15)
O2—Ga1—O3—Mo20.54 (14)O14—Ga2—O15—Mo50.34 (14)
O12—Mo3—O3—Ga135.2 (5)O14ii—Ga2—O15—Mo5179.66 (14)
O11—Mo3—O3—Ga1169.01 (18)O23—Mo6—O15—Ga2169.88 (18)
O4i—Mo3—O3—Ga171.36 (16)O24—Mo6—O15—Ga236.2 (5)
O6—Mo3—O3—Ga191.15 (17)O16ii—Mo6—O15—Ga271.69 (16)
O1i—Mo3—O3—Ga11.13 (13)O18—Mo6—O15—Ga290.02 (16)
O12—Mo3—O3—Mo270.2 (5)O13ii—Mo6—O15—Ga20.75 (13)
O11—Mo3—O3—Mo285.60 (17)O23—Mo6—O15—Mo585.71 (16)
O4i—Mo3—O3—Mo2176.76 (14)O24—Mo6—O15—Mo568.2 (5)
O6—Mo3—O3—Mo214.25 (13)O16ii—Mo6—O15—Mo5176.10 (14)
O1i—Mo3—O3—Mo2104.27 (15)O18—Mo6—O15—Mo514.39 (12)
O9—Mo2—O3—Ga129.5 (5)O13ii—Mo6—O15—Mo5103.66 (14)
O10—Mo2—O3—Ga1170.27 (18)O21—Mo5—O15—Ga234.9 (5)
O6—Mo2—O3—Ga190.74 (17)O22—Mo5—O15—Ga2171.32 (17)
O5—Mo2—O3—Ga172.14 (16)O17—Mo5—O15—Ga272.94 (16)
O2—Mo2—O3—Ga10.49 (13)O18—Mo5—O15—Ga290.09 (16)
O9—Mo2—O3—Mo375.6 (5)O14—Mo5—O15—Ga20.31 (12)
O10—Mo2—O3—Mo384.64 (17)O21—Mo5—O15—Mo669.6 (5)
O6—Mo2—O3—Mo314.35 (13)O22—Mo5—O15—Mo684.26 (15)
O5—Mo2—O3—Mo3177.23 (14)O17—Mo5—O15—Mo6177.37 (13)
O2—Mo2—O3—Mo3104.60 (14)O18—Mo5—O15—Mo614.34 (12)
O7—Mo1—O4—Mo3i66.8 (2)O14—Mo5—O15—Mo6104.12 (14)
O8—Mo1—O4—Mo3i174.9 (2)O19—Mo4—O16—Mo6ii68.1 (2)
O5—Mo1—O4—Mo3i59.9 (4)O20—Mo4—O16—Mo6ii175.9 (2)
O1—Mo1—O4—Mo3i20.98 (17)O17—Mo4—O16—Mo6ii59.7 (4)
O2—Mo1—O4—Mo3i92.7 (2)O13—Mo4—O16—Mo6ii20.19 (17)
O7—Mo1—O5—Mo2178.4 (2)O14—Mo4—O16—Mo6ii91.9 (2)
O8—Mo1—O5—Mo269.8 (2)O21—Mo5—O17—Mo468.7 (2)
O4—Mo1—O5—Mo254.1 (4)O22—Mo5—O17—Mo4176.7 (2)
O1—Mo1—O5—Mo290.8 (2)O18—Mo5—O17—Mo457.1 (4)
O2—Mo1—O5—Mo219.71 (18)O15—Mo5—O17—Mo490.7 (2)
O9—Mo2—O5—Mo168.0 (2)O14—Mo5—O17—Mo419.20 (18)
O10—Mo2—O5—Mo1176.7 (2)O19—Mo4—O17—Mo5178.4 (2)
O6—Mo2—O5—Mo157.3 (4)O20—Mo4—O17—Mo569.9 (2)
O3—Mo2—O5—Mo190.6 (2)O16—Mo4—O17—Mo553.0 (4)
O2—Mo2—O5—Mo119.81 (18)O13—Mo4—O17—Mo590.2 (2)
O9—Mo2—O6—Mo3179.9 (2)O14—Mo4—O17—Mo518.98 (17)
O10—Mo2—O6—Mo371.9 (2)O23—Mo6—O18—Mo570.0 (2)
O5—Mo2—O6—Mo353.9 (4)O24—Mo6—O18—Mo5176.6 (2)
O3—Mo2—O6—Mo318.79 (17)O16ii—Mo6—O18—Mo558.1 (4)
O2—Mo2—O6—Mo389.33 (19)O15—Mo6—O18—Mo519.05 (16)
O12—Mo3—O6—Mo2178.4 (2)O13ii—Mo6—O18—Mo590.61 (18)
O11—Mo3—O6—Mo271.1 (2)O21—Mo5—O18—Mo6178.3 (2)
O4i—Mo3—O6—Mo256.3 (4)O22—Mo5—O18—Mo671.7 (2)
O3—Mo3—O6—Mo219.01 (17)O17—Mo5—O18—Mo654.4 (4)
O1i—Mo3—O6—Mo290.18 (19)O15—Mo5—O18—Mo619.00 (16)
O15ii—Ga2—O13—Mo497.38 (15)O14—Mo5—O18—Mo690.41 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10iii0.84 (2)2.00 (3)2.822 (5)166 (6)
O13—H13···O23iv0.84 (2)1.86 (2)2.691 (5)173 (7)
O14—H14···O22v0.84 (2)1.98 (2)2.808 (5)168 (6)
O3—H3···O4Svi0.85 (2)1.76 (3)2.602 (5)169 (8)
O1—H1···O11vii0.85 (2)1.87 (4)2.682 (5)159 (9)
O15—H15···O1S0.83 (2)1.87 (3)2.645 (5)155 (7)
Symmetry codes: (iii) x, y+1/2, z1/2; (iv) x, y1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(NH4)3[GaMo6(OH)6O18]·7H2O
Mr1215.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)22.7642 (15), 10.9651 (7), 11.7599 (8)
β (°) 100.212 (1)
V3)2888.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.56
Crystal size (mm)0.38 × 0.20 × 0.03
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.345, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
15163, 6225, 4471
Rint0.020
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.17
No. of reflections6225
No. of parameters397
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0387P)2 + 12.6663P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.02, 1.10

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT (Bruker, 2000, SHELXTL (Bruker, 2000), SHELXTL (Bruker, 2000.

Selected bond lengths (Å) top
Ga1—O31.953 (3)Mo3—O61.949 (4)
Ga1—O11.954 (4)Mo3—O32.252 (4)
Ga1—O21.972 (3)Mo3—O1i2.286 (4)
Ga2—O151.968 (3)Mo4—O191.705 (4)
Ga2—O131.969 (3)Mo4—O201.713 (4)
Ga2—O141.978 (3)Mo4—O171.939 (3)
Mo1—O71.703 (4)Mo4—O161.948 (3)
Mo1—O81.711 (4)Mo4—O132.286 (3)
Mo1—O51.918 (4)Mo4—O142.324 (3)
Mo1—O41.939 (4)Mo5—O211.702 (4)
Mo1—O12.293 (4)Mo5—O221.708 (3)
Mo1—O22.307 (4)Mo5—O171.932 (4)
Mo2—O91.704 (4)Mo5—O181.956 (3)
Mo2—O101.714 (4)Mo5—O152.285 (3)
Mo2—O61.943 (4)Mo5—O142.284 (3)
Mo2—O51.948 (4)Mo6—O231.712 (3)
Mo2—O32.287 (4)Mo6—O241.719 (4)
Mo2—O22.300 (3)Mo6—O16ii1.917 (4)
Mo3—O121.711 (4)Mo6—O181.944 (4)
Mo3—O111.715 (4)Mo6—O152.273 (3)
Mo3—O4i1.918 (4)Mo6—O13ii2.290 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10iii0.84 (2)2.00 (3)2.822 (5)166 (6)
O13—H13···O23iv0.84 (2)1.86 (2)2.691 (5)173 (7)
O14—H14···O22v0.84 (2)1.98 (2)2.808 (5)168 (6)
O3—H3···O4Svi0.85 (2)1.76 (3)2.602 (5)169 (8)
O1—H1···O11vii0.85 (2)1.87 (4)2.682 (5)159 (9)
O15—H15···O1S0.83 (2)1.87 (3)2.645 (5)155 (7)
Symmetry codes: (iii) x, y+1/2, z1/2; (iv) x, y1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1/2, z+3/2.
Short contact geometry (Å). top
N1S···O24ii2.911 (7)
N1S···O6Svi2.784 (8)
N2S···O162.779 (6)
N2S···O21iii2.979 (6)
N2S···O24vii2.901 (6)
N2S···O3Sviii2.899 (7)
N2S···O7S2.898 (7)
N3S···O5i2.775 (6)
N3S···O12xii2.907 (7)
N3S···O5S2.801 (8)
N3S···O7Si3.030 (8)
O1S···O18x2.794 (5)
O1S···O18ii2.905 (6)
O2S···O4xi2.718 (5)
O2S···O122.797 (6)
O2S···O3Sxii2.830 (7)
O2S···O6Six2.704 (7)
O3S···O93.016 (6)
O3S···O193.034 (7)
O3S···O5Siv2.917 (8)
O4S···O3xiii2.602 (5)
O4S···O62.773 (6)
O4S···O6xii2.934 (6)
O5S···O82.782 (6)
O5S···O16i3.083 (6)
O6S···O202.776 (6)
O6S···O7S2.769 (7)
O7S···O7xiv2.973 (6)
Symmetry codes (i): x, -y+1/2, z-1/2; (ii): -x, y-1/2, -z+1/2; (iii): x, -y+3/2, z+1/2; (iv): x, -y+1/2, z+1/2; (v): -x+1, y+1/2, -z+3/2; (vi): x, -y+3/2, z-1/2; (vii): -x, y-1/2, -z+3/2; (viii): x, -y+1/2, z+1/2; (ix): 1-x, 1-y, 1-z; (x): x, -y+3/2, z-1/2; (xi): -x+1, y-1/2, -z+1/2; (xii): -x+1, -y, -z+1; (xiii): x, -y+1/2, z-1/2; (xiv): x, -y+3/2, z+1/2
 

Acknowledgements

The authors gratefully acknowledge the ARL-ONAMI Nanoarchitectures for Enhanced Performance Center and the University of Oregon for generous financial support. DWJ is a Cottrell Scholar of Research Corporation and thanks the University of Oregon for generous financial support. DWJ gratefully acknowledges the NSF for a CAREER award. The purchase of the X-ray diffractometer was made possible by a grant from the NSF (grant No. CHE-0234965) to the University of Oregon.

References

First citationAnderson, J. S. (1937). Nature (London), 140, 850.  CrossRef Google Scholar
First citationBruker (2000). SMART (Version 5.631), SAINT (Version 6.63) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitazumi, I., Nakashima, Y. & Himeno, S. (2003). J. Chromatogr. A, 993, 211–215.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, U., Joo, H.-C., Kwon, J.-S. & Cho, M.-A. (2001). Acta Cryst. E57, i112–i114.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLorenzo-Luis, P. A. & Gili, P. (2000). Recent Res. Dev. Inorg. Chem. 2, 185–196.  CAS Google Scholar
First citationRather, E., Gatlin, J. T., Nixon, P. G., Tsukamoto, T., Kravtsov, V. & Johnson, D. W. (2005). J. Am. Chem. Soc. 127, 3242–3243.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRollins, O. W. & Earley, J. E. (1959). J. Am. Chem. Soc. 81, 5571–5572.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds