metal-organic compounds
cis-Bis(2-sulfidopyridine N-oxide)platinum(II)
aDepartment of Chemistry, Popes College, Sawyerpuram, Tamilnadu, India, bDepartment of Physics, Karunya University, Coimbatore 641 114, India, and cInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com
In the 5H4NOS)2], the Pt atom is coordinated by two O atoms and two S atoms in a cis configuration, forming a distorted square-planar coordination geometry. The molecule exhibits pseudo-C2v symmetry and is essentially planar, with a maximum deviation from planarity of 0.0124 (2) Å. The dihedral angle between the two pyridine rings is 5.85 (2)°.
of the title complex, [Pt(CRelated literature
For related literature, see: Bovin et al. (1992); Chen et al. (1991); Dyksterhouse et al. (2000); Katsuyuki et al. (1991); Leonard et al. (1955); Lobana & Bhatia (1989); Lydon et al. (1982); Ohms et al. (1982); Symons & West (1985); Zhou et al. (2005); Shi et al. (1997).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2006); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP2 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808002006/wn2232sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808002006/wn2232Isup2.hkl
By heating a mixture of dichlorido(ethane1,2–diamine)platinum(II), Pt(en)Cl2 (0.326 g,1 mmol) and 1-hydroxypyridine-2- thione sodium salt (0.298 g, 2 mmol) in 20 ml of water at 338 K with magnetic stirring for 1 h, a red-orange compound was obtained. This was filtered and dried (0.32 g, 80% yield). The compound was dissolved in methanol and allowed to undergo slow evaporation. Fine red crystals were obtained after a week.
H atoms were placed in calculated positions [C—H = 0.95 Å] and refined in the riding model approximation; Uiso(H) = 1.2Ueq (C). The highest residual electron density peak is 1.724 Å from C13 and the deepest hole lies 1.688 Å from N1.
Data collection: APEX2 (Bruker, 2006); cell
APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP2 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 50% probability level. |
[Pt(C5H4NOS)2] | F(000) = 832 |
Mr = 447.39 | Dx = 2.545 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2yn | Cell parameters from 9973 reflections |
a = 6.9832 (3) Å | θ = 2.8–28° |
b = 22.3897 (11) Å | µ = 12.36 mm−1 |
c = 8.1495 (4) Å | T = 193 K |
β = 113.572 (3)° | Block, orange |
V = 1167.87 (10) Å3 | 0.27 × 0.22 × 0.08 mm |
Z = 4 |
Bruker APEXII Kappa-CCD diffractometer | 2610 reflections with I > 2σ(I) |
CCD scan | Rint = 0.068 |
Absorption correction: multi-scan (SADABS; Blessing, 1995, 1997) | θmax = 27.9°, θmin = 1.8° |
Tmin = 0.051, Tmax = 0.372 | h = −9→9 |
25638 measured reflections | k = −29→29 |
2778 independent reflections | l = −10→10 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.054 | w = 1/[σ2(Fo2) + (0.0153P)2 + 17.8973P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.114 | (Δ/σ)max = 0.001 |
S = 1.32 | Δρmax = 1.73 e Å−3 |
2778 reflections | Δρmin = −3.87 e Å−3 |
154 parameters |
[Pt(C5H4NOS)2] | V = 1167.87 (10) Å3 |
Mr = 447.39 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.9832 (3) Å | µ = 12.36 mm−1 |
b = 22.3897 (11) Å | T = 193 K |
c = 8.1495 (4) Å | 0.27 × 0.22 × 0.08 mm |
β = 113.572 (3)° |
Bruker APEXII Kappa-CCD diffractometer | 2778 independent reflections |
Absorption correction: multi-scan (SADABS; Blessing, 1995, 1997) | 2610 reflections with I > 2σ(I) |
Tmin = 0.051, Tmax = 0.372 | Rint = 0.068 |
25638 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.32 | w = 1/[σ2(Fo2) + (0.0153P)2 + 17.8973P] where P = (Fo2 + 2Fc2)/3 |
2778 reflections | Δρmax = 1.73 e Å−3 |
154 parameters | Δρmin = −3.87 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.75198 (6) | 0.117494 (18) | 0.60862 (6) | 0.03763 (14) | |
N1 | 0.5870 (13) | 0.1570 (4) | 0.2386 (12) | 0.0373 (18) | |
C2 | 0.5399 (16) | 0.1976 (5) | 0.1045 (15) | 0.042 (2) | |
H2 | 0.5774 | 0.2384 | 0.1308 | 0.05* | |
C3 | 0.4376 (18) | 0.1791 (6) | −0.0694 (17) | 0.050 (3) | |
H3 | 0.4097 | 0.2066 | −0.165 | 0.059* | |
C4 | 0.3746 (18) | 0.1195 (6) | −0.1053 (16) | 0.048 (3) | |
H4 | 0.3007 | 0.1064 | −0.2251 | 0.058* | |
C5 | 0.4207 (16) | 0.0803 (5) | 0.0340 (15) | 0.042 (2) | |
H5 | 0.3772 | 0.0399 | 0.0102 | 0.05* | |
C6 | 0.5318 (17) | 0.0990 (5) | 0.2124 (15) | 0.039 (2) | |
O7 | 0.6952 (11) | 0.1788 (3) | 0.4073 (10) | 0.0380 (15) | |
S8 | 0.5946 (4) | 0.05080 (12) | 0.3916 (4) | 0.0413 (6) | |
N9 | 0.9639 (13) | 0.1639 (4) | 0.9685 (12) | 0.0378 (19) | |
C10 | 1.0646 (17) | 0.2052 (5) | 1.0962 (16) | 0.042 (2) | |
H10 | 1.0885 | 0.2441 | 1.0617 | 0.051* | |
C11 | 1.1311 (17) | 0.1915 (5) | 1.2724 (16) | 0.044 (2) | |
H11 | 1.1986 | 0.2208 | 1.3612 | 0.053* | |
C12 | 1.0994 (17) | 0.1342 (5) | 1.3215 (15) | 0.043 (2) | |
H12 | 1.147 | 0.1239 | 1.4445 | 0.051* | |
C13 | 0.9994 (17) | 0.0921 (5) | 1.1923 (15) | 0.042 (2) | |
H13 | 0.9763 | 0.053 | 1.2263 | 0.051* | |
C14 | 0.9315 (16) | 0.1069 (5) | 1.0105 (14) | 0.038 (2) | |
O15 | 0.8948 (11) | 0.1822 (3) | 0.7947 (9) | 0.0381 (16) | |
S16 | 0.8174 (4) | 0.05572 (12) | 0.8401 (4) | 0.0394 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.0364 (2) | 0.0382 (2) | 0.0391 (2) | 0.00055 (17) | 0.01591 (17) | 0.00058 (17) |
N1 | 0.032 (4) | 0.039 (5) | 0.042 (5) | −0.002 (3) | 0.017 (4) | −0.001 (4) |
C2 | 0.033 (5) | 0.049 (6) | 0.039 (6) | 0.006 (4) | 0.009 (4) | 0.011 (5) |
C3 | 0.043 (6) | 0.063 (7) | 0.046 (7) | 0.003 (5) | 0.021 (5) | 0.013 (6) |
C4 | 0.040 (6) | 0.062 (7) | 0.041 (6) | 0.001 (5) | 0.014 (5) | 0.000 (5) |
C5 | 0.031 (5) | 0.056 (7) | 0.041 (6) | −0.003 (5) | 0.016 (4) | −0.003 (5) |
C6 | 0.037 (5) | 0.041 (5) | 0.045 (6) | 0.001 (4) | 0.023 (5) | 0.000 (4) |
O7 | 0.035 (4) | 0.043 (4) | 0.036 (4) | −0.003 (3) | 0.016 (3) | −0.002 (3) |
S8 | 0.0440 (14) | 0.0404 (13) | 0.0391 (14) | −0.0015 (11) | 0.0164 (12) | 0.0009 (11) |
N9 | 0.032 (4) | 0.041 (5) | 0.044 (5) | 0.002 (3) | 0.020 (4) | 0.000 (4) |
C10 | 0.039 (6) | 0.039 (5) | 0.050 (7) | −0.001 (4) | 0.019 (5) | −0.003 (5) |
C11 | 0.037 (6) | 0.050 (6) | 0.044 (6) | 0.000 (5) | 0.016 (5) | −0.009 (5) |
C12 | 0.039 (6) | 0.052 (6) | 0.038 (6) | 0.003 (5) | 0.016 (5) | −0.001 (5) |
C13 | 0.042 (6) | 0.047 (6) | 0.043 (6) | 0.004 (5) | 0.024 (5) | 0.007 (5) |
C14 | 0.032 (5) | 0.044 (6) | 0.040 (6) | 0.001 (4) | 0.017 (4) | −0.001 (4) |
O15 | 0.038 (4) | 0.042 (4) | 0.034 (4) | 0.000 (3) | 0.014 (3) | 0.005 (3) |
S16 | 0.0399 (14) | 0.0399 (13) | 0.0381 (14) | −0.0016 (10) | 0.0154 (11) | −0.0001 (10) |
Pt1—O15 | 2.045 (7) | N9—C14 | 1.364 (13) |
Pt1—O7 | 2.052 (7) | C10—C11 | 1.356 (16) |
Pt1—S16 | 2.234 (3) | C11—C12 | 1.389 (16) |
Pt1—S8 | 2.239 (3) | C12—C13 | 1.376 (16) |
N1—C6 | 1.348 (13) | C13—C14 | 1.403 (15) |
N1—C2 | 1.357 (13) | C14—S16 | 1.730 (11) |
N1—O7 | 1.367 (11) | C2—H2 | 0.9500 |
C2—C3 | 1.372 (16) | C3—H3 | 0.9500 |
C3—C4 | 1.399 (17) | C4—H4 | 0.9500 |
C4—C5 | 1.367 (16) | C5—H5 | 0.9500 |
C5—C6 | 1.410 (15) | C10—H10 | 0.9500 |
C6—S8 | 1.725 (11) | C11—H11 | 0.9500 |
N9—C10 | 1.359 (14) | C12—H12 | 0.9500 |
N9—O15 | 1.363 (11) | C13—H13 | 0.9500 |
O15—Pt1—O7 | 90.0 (3) | C10—N9—C14 | 122.1 (10) |
O15—Pt1—S16 | 86.4 (2) | O15—N9—C14 | 121.0 (9) |
O7—Pt1—S16 | 176.3 (2) | C11—C10—N9 | 120.6 (10) |
O15—Pt1—S8 | 176.4 (2) | C10—C11—C12 | 119.2 (11) |
O7—Pt1—S8 | 86.4 (2) | C13—C12—C11 | 120.2 (11) |
S16—Pt1—S8 | 97.13 (10) | C12—C13—C14 | 120.0 (10) |
C6—N1—C2 | 123.8 (10) | N9—C14—C13 | 117.8 (10) |
C6—N1—O7 | 120.7 (9) | N9—C14—S16 | 119.2 (8) |
C2—N1—O7 | 115.4 (9) | C13—C14—S16 | 122.9 (9) |
N1—C2—C3 | 119.2 (11) | N9—O15—Pt1 | 115.1 (6) |
C2—C3—C4 | 119.6 (11) | C14—S16—Pt1 | 98.1 (4) |
C5—C4—C3 | 119.3 (11) | N1—C2—H2 | 120.0 |
C4—C5—C6 | 121.0 (11) | C3—C2—H2 | 120.0 |
N1—C6—C5 | 117.0 (10) | C2—C3—H3 | 120.0 |
N1—C6—S8 | 120.6 (8) | C4—C3—H3 | 120.0 |
C5—C6—S8 | 122.4 (9) | C3—C4—H4 | 120.0 |
N1—O7—Pt1 | 114.7 (6) | C5—C4—H4 | 120.0 |
C6—S8—Pt1 | 97.5 (4) | C4—C5—H5 | 119.0 |
C10—N9—O15 | 116.8 (9) | C6—C5—H5 | 120.0 |
Experimental details
Crystal data | |
Chemical formula | [Pt(C5H4NOS)2] |
Mr | 447.39 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 193 |
a, b, c (Å) | 6.9832 (3), 22.3897 (11), 8.1495 (4) |
β (°) | 113.572 (3) |
V (Å3) | 1167.87 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 12.36 |
Crystal size (mm) | 0.27 × 0.22 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII Kappa-CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Blessing, 1995, 1997) |
Tmin, Tmax | 0.051, 0.372 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25638, 2778, 2610 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.114, 1.32 |
No. of reflections | 2778 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0153P)2 + 17.8973P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.73, −3.87 |
Computer programs: APEX2 (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP2 (Farrugia, 1997).
Pt1—O15 | 2.045 (7) | Pt1—S16 | 2.234 (3) |
Pt1—O7 | 2.052 (7) | Pt1—S8 | 2.239 (3) |
O15—Pt1—O7 | 90.0 (3) | O15—Pt1—S8 | 176.4 (2) |
O15—Pt1—S16 | 86.4 (2) | O7—Pt1—S8 | 86.4 (2) |
O7—Pt1—S16 | 176.3 (2) | S16—Pt1—S8 | 97.13 (10) |
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr. 129, 145–150. Google Scholar
Bruker (2006). APEX2. Version 2.0. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, X., Hu, Y., Wu, D., Weng, L. & Kang, B. (1991). Polyhedron, 10, 2651–2657. CSD CrossRef CAS Web of Science Google Scholar
Dyksterhouse, R. M., Howell, B. A. & Squattrito, P. J. (2000). Acta Cryst. C56, 64–66. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099–5100. Google Scholar
Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264. Google Scholar
Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394–401. CAS Google Scholar
Lydon, J. D., Elder, R. C. & Deutch, E. (1982). Inorg. Chem. 21, 3168–3197. Google Scholar
Ohms, U., Guth, H., Kutoglu, A. & Scheringer, C. (1982). Acta Cryst. B38, 831–834. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, J. C., Wen, T. B., Zheng, Y., Zhong, S. J., Wu, D. X., Liu, Q. T., Kang, B. S., Wu, B. M. & Mak, T. C. W. (1997). Polyhedron, 16, 369–375. CSD CrossRef CAS Google Scholar
Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379–381. CrossRef Web of Science Google Scholar
Zhou, J.-H., Li, Y.-Z., Lui, Z. & Chen, X.-T. (2005). Acta Cryst. E61, m195–m197. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibiotic activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al.; 1992). Pyridine N-oxides bearing a sulfur group at the 2-position display significant antimicrobial activity (Leonard et al., 1955). The crystal structure of the title compound in the trans configuration has already been reported (Zhou et al., 2005). The crystal structures of cis-bis(2-mercaptopyridine N-oxide)palladium and cis-bis(2-mercaptopyridine N-oxide)nickel have already been reported (Shi et al., 1997; Chen et al., 1991).
In the title compound, the Pt is coordinated by two O atoms and two S atoms from two mercaptopyridine N-oxide ligands in a cis configuration. The coordination geometry is distorted square-planar. The whole molecule exhibits pseudo-C2v symmetry, with a pseudo-C2 axis passing through the platinum atom. The average Pt—O and Pt—S distances of 2.048 (7) and 2.236 (3) Å of the title compound are comparable with the values reported in the literature (Dyksterhouse et al., 2000). The mean Pt—S bond length (2.236 (3) Å,) is shorter while the mean Pt—O bond length (2.048 (7) Å) is longer than those reported for the trans isomer (Pt—S 2.270 Å; Pt—O 2.007 Å) (Zhou et al., 2005). The C—S bond distances [1.725 (11) and 1.730 (11) Å] are slightly longer than those reported for the uncoordinated thione molecule [1.692 (2)–1.698 (2) Å; Ohms et al., 1982]. The mean C—S bond length (1.727 Å) shows partial double bond character; it is shorter than the normal covalent bond distance of 1.81 (2) Å, for a C—S single bond (Lydon et al., 1982). This further results in the fact that complexes with mercaptopyridine oxide (mpo) ligands have little ability to bridge another metal ion through a sulfur atom to form polynuclear complexes (Shi et al., 1997). The entire molecule is essentially planar, with a maximum deviation from planarity of 0.0124 (2) Å for atom C3. The dihedral angle between the two pyridine rings is 5.85 (2)°.