metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis(2-sulfido­pyridine N-oxide)platinum(II)

aDepartment of Chemistry, Popes College, Sawyerpuram, Tamilnadu, India, bDepartment of Physics, Karunya University, Coimbatore 641 114, India, and cInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 13 December 2007; accepted 18 January 2008; online 25 January 2008)

In the crystal structure of the title complex, [Pt(C5H4NOS)2], the Pt atom is coordinated by two O atoms and two S atoms in a cis configuration, forming a distorted square-planar coordination geometry. The mol­ecule exhibits pseudo-C2v symmetry and is essentially planar, with a maximum deviation from planarity of 0.0124 (2) Å. The dihedral angle between the two pyridine rings is 5.85 (2)°.

Related literature

For related literature, see: Bovin et al. (1992[Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr. 129, 145-150.]); Chen et al. (1991[Chen, X., Hu, Y., Wu, D., Weng, L. & Kang, B. (1991). Polyhedron, 10, 2651-2657.]); Dyksterhouse et al. (2000[Dyksterhouse, R. M., Howell, B. A. & Squattrito, P. J. (2000). Acta Cryst. C56, 64-66.]); Katsuyuki et al. (1991[Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099-5100.]); Leonard et al. (1955[Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261-264.]); Lobana & Bhatia (1989[Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394-401.]); Lydon et al. (1982[Lydon, J. D., Elder, R. C. & Deutch, E. (1982). Inorg. Chem. 21, 3168-3197.]); Ohms et al. (1982[Ohms, U., Guth, H., Kutoglu, A. & Scheringer, C. (1982). Acta Cryst. B38, 831-834.]); Symons & West (1985[Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379-381.]); Zhou et al. (2005[Zhou, J.-H., Li, Y.-Z., Lui, Z. & Chen, X.-T. (2005). Acta Cryst. E61, m195-m197.]); Shi et al. (1997[Shi, J. C., Wen, T. B., Zheng, Y., Zhong, S. J., Wu, D. X., Liu, Q. T., Kang, B. S., Wu, B. M. & Mak, T. C. W. (1997). Polyhedron, 16, 369-375.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C5H4NOS)2]

  • Mr = 447.39

  • Monoclinic, P 21 /n

  • a = 6.9832 (3) Å

  • b = 22.3897 (11) Å

  • c = 8.1495 (4) Å

  • β = 113.572 (3)°

  • V = 1167.87 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.36 mm−1

  • T = 193 (2) K

  • 0.27 × 0.22 × 0.08 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.051, Tmax = 0.372

  • 25638 measured reflections

  • 2778 independent reflections

  • 2610 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.114

  • S = 1.32

  • 2778 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.73 e Å−3

  • Δρmin = −3.87 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—O15 2.045 (7)
Pt1—O7 2.052 (7)
Pt1—S16 2.234 (3)
Pt1—S8 2.239 (3)
O15—Pt1—O7 90.0 (3)
O15—Pt1—S16 86.4 (2)
O7—Pt1—S16 176.3 (2)
O15—Pt1—S8 176.4 (2)
O7—Pt1—S8 86.4 (2)
S16—Pt1—S8 97.13 (10)

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Version 2.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP2 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibiotic activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al.; 1992). Pyridine N-oxides bearing a sulfur group at the 2-position display significant antimicrobial activity (Leonard et al., 1955). The crystal structure of the title compound in the trans configuration has already been reported (Zhou et al., 2005). The crystal structures of cis-bis(2-mercaptopyridine N-oxide)palladium and cis-bis(2-mercaptopyridine N-oxide)nickel have already been reported (Shi et al., 1997; Chen et al., 1991).

In the title compound, the Pt is coordinated by two O atoms and two S atoms from two mercaptopyridine N-oxide ligands in a cis configuration. The coordination geometry is distorted square-planar. The whole molecule exhibits pseudo-C2v symmetry, with a pseudo-C2 axis passing through the platinum atom. The average Pt—O and Pt—S distances of 2.048 (7) and 2.236 (3) Å of the title compound are comparable with the values reported in the literature (Dyksterhouse et al., 2000). The mean Pt—S bond length (2.236 (3) Å,) is shorter while the mean Pt—O bond length (2.048 (7) Å) is longer than those reported for the trans isomer (Pt—S 2.270 Å; Pt—O 2.007 Å) (Zhou et al., 2005). The C—S bond distances [1.725 (11) and 1.730 (11) Å] are slightly longer than those reported for the uncoordinated thione molecule [1.692 (2)–1.698 (2) Å; Ohms et al., 1982]. The mean C—S bond length (1.727 Å) shows partial double bond character; it is shorter than the normal covalent bond distance of 1.81 (2) Å, for a C—S single bond (Lydon et al., 1982). This further results in the fact that complexes with mercaptopyridine oxide (mpo) ligands have little ability to bridge another metal ion through a sulfur atom to form polynuclear complexes (Shi et al., 1997). The entire molecule is essentially planar, with a maximum deviation from planarity of 0.0124 (2) Å for atom C3. The dihedral angle between the two pyridine rings is 5.85 (2)°.

Related literature top

For related literature, see: Bovin et al. (1992); Chen et al. (1991); Dyksterhouse et al. (2000); Katsuyuki et al. (1991); Leonard et al. (1955); Lobana & Bhatia (1989); Lydon et al. (1982); Ohms et al. (1982); Symons & West (1985); Zhou et al. (2005); Shi et al. (1997).

Experimental top

By heating a mixture of dichlorido(ethane1,2–diamine)platinum(II), Pt(en)Cl2 (0.326 g,1 mmol) and 1-hydroxypyridine-2- thione sodium salt (0.298 g, 2 mmol) in 20 ml of water at 338 K with magnetic stirring for 1 h, a red-orange compound was obtained. This was filtered and dried (0.32 g, 80% yield). The compound was dissolved in methanol and allowed to undergo slow evaporation. Fine red crystals were obtained after a week.

Refinement top

H atoms were placed in calculated positions [C—H = 0.95 Å] and refined in the riding model approximation; Uiso(H) = 1.2Ueq (C). The highest residual electron density peak is 1.724 Å from C13 and the deepest hole lies 1.688 Å from N1.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP2 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 50% probability level.
cis-Bis(2-sulfidopyridine N-oxide)platinum(II) top
Crystal data top
[Pt(C5H4NOS)2]F(000) = 832
Mr = 447.39Dx = 2.545 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 9973 reflections
a = 6.9832 (3) Åθ = 2.8–28°
b = 22.3897 (11) ŵ = 12.36 mm1
c = 8.1495 (4) ÅT = 193 K
β = 113.572 (3)°Block, orange
V = 1167.87 (10) Å30.27 × 0.22 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII Kappa-CCD
diffractometer
2610 reflections with I > 2σ(I)
CCD scanRint = 0.068
Absorption correction: multi-scan
(SADABS; Blessing, 1995, 1997)
θmax = 27.9°, θmin = 1.8°
Tmin = 0.051, Tmax = 0.372h = 99
25638 measured reflectionsk = 2929
2778 independent reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0153P)2 + 17.8973P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.001
S = 1.32Δρmax = 1.73 e Å3
2778 reflectionsΔρmin = 3.87 e Å3
154 parameters
Crystal data top
[Pt(C5H4NOS)2]V = 1167.87 (10) Å3
Mr = 447.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9832 (3) ŵ = 12.36 mm1
b = 22.3897 (11) ÅT = 193 K
c = 8.1495 (4) Å0.27 × 0.22 × 0.08 mm
β = 113.572 (3)°
Data collection top
Bruker APEXII Kappa-CCD
diffractometer
2778 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995, 1997)
2610 reflections with I > 2σ(I)
Tmin = 0.051, Tmax = 0.372Rint = 0.068
25638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.32 w = 1/[σ2(Fo2) + (0.0153P)2 + 17.8973P]
where P = (Fo2 + 2Fc2)/3
2778 reflectionsΔρmax = 1.73 e Å3
154 parametersΔρmin = 3.87 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.75198 (6)0.117494 (18)0.60862 (6)0.03763 (14)
N10.5870 (13)0.1570 (4)0.2386 (12)0.0373 (18)
C20.5399 (16)0.1976 (5)0.1045 (15)0.042 (2)
H20.57740.23840.13080.05*
C30.4376 (18)0.1791 (6)0.0694 (17)0.050 (3)
H30.40970.20660.1650.059*
C40.3746 (18)0.1195 (6)0.1053 (16)0.048 (3)
H40.30070.10640.22510.058*
C50.4207 (16)0.0803 (5)0.0340 (15)0.042 (2)
H50.37720.03990.01020.05*
C60.5318 (17)0.0990 (5)0.2124 (15)0.039 (2)
O70.6952 (11)0.1788 (3)0.4073 (10)0.0380 (15)
S80.5946 (4)0.05080 (12)0.3916 (4)0.0413 (6)
N90.9639 (13)0.1639 (4)0.9685 (12)0.0378 (19)
C101.0646 (17)0.2052 (5)1.0962 (16)0.042 (2)
H101.08850.24411.06170.051*
C111.1311 (17)0.1915 (5)1.2724 (16)0.044 (2)
H111.19860.22081.36120.053*
C121.0994 (17)0.1342 (5)1.3215 (15)0.043 (2)
H121.1470.12391.44450.051*
C130.9994 (17)0.0921 (5)1.1923 (15)0.042 (2)
H130.97630.0531.22630.051*
C140.9315 (16)0.1069 (5)1.0105 (14)0.038 (2)
O150.8948 (11)0.1822 (3)0.7947 (9)0.0381 (16)
S160.8174 (4)0.05572 (12)0.8401 (4)0.0394 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0364 (2)0.0382 (2)0.0391 (2)0.00055 (17)0.01591 (17)0.00058 (17)
N10.032 (4)0.039 (5)0.042 (5)0.002 (3)0.017 (4)0.001 (4)
C20.033 (5)0.049 (6)0.039 (6)0.006 (4)0.009 (4)0.011 (5)
C30.043 (6)0.063 (7)0.046 (7)0.003 (5)0.021 (5)0.013 (6)
C40.040 (6)0.062 (7)0.041 (6)0.001 (5)0.014 (5)0.000 (5)
C50.031 (5)0.056 (7)0.041 (6)0.003 (5)0.016 (4)0.003 (5)
C60.037 (5)0.041 (5)0.045 (6)0.001 (4)0.023 (5)0.000 (4)
O70.035 (4)0.043 (4)0.036 (4)0.003 (3)0.016 (3)0.002 (3)
S80.0440 (14)0.0404 (13)0.0391 (14)0.0015 (11)0.0164 (12)0.0009 (11)
N90.032 (4)0.041 (5)0.044 (5)0.002 (3)0.020 (4)0.000 (4)
C100.039 (6)0.039 (5)0.050 (7)0.001 (4)0.019 (5)0.003 (5)
C110.037 (6)0.050 (6)0.044 (6)0.000 (5)0.016 (5)0.009 (5)
C120.039 (6)0.052 (6)0.038 (6)0.003 (5)0.016 (5)0.001 (5)
C130.042 (6)0.047 (6)0.043 (6)0.004 (5)0.024 (5)0.007 (5)
C140.032 (5)0.044 (6)0.040 (6)0.001 (4)0.017 (4)0.001 (4)
O150.038 (4)0.042 (4)0.034 (4)0.000 (3)0.014 (3)0.005 (3)
S160.0399 (14)0.0399 (13)0.0381 (14)0.0016 (10)0.0154 (11)0.0001 (10)
Geometric parameters (Å, º) top
Pt1—O152.045 (7)N9—C141.364 (13)
Pt1—O72.052 (7)C10—C111.356 (16)
Pt1—S162.234 (3)C11—C121.389 (16)
Pt1—S82.239 (3)C12—C131.376 (16)
N1—C61.348 (13)C13—C141.403 (15)
N1—C21.357 (13)C14—S161.730 (11)
N1—O71.367 (11)C2—H20.9500
C2—C31.372 (16)C3—H30.9500
C3—C41.399 (17)C4—H40.9500
C4—C51.367 (16)C5—H50.9500
C5—C61.410 (15)C10—H100.9500
C6—S81.725 (11)C11—H110.9500
N9—C101.359 (14)C12—H120.9500
N9—O151.363 (11)C13—H130.9500
O15—Pt1—O790.0 (3)C10—N9—C14122.1 (10)
O15—Pt1—S1686.4 (2)O15—N9—C14121.0 (9)
O7—Pt1—S16176.3 (2)C11—C10—N9120.6 (10)
O15—Pt1—S8176.4 (2)C10—C11—C12119.2 (11)
O7—Pt1—S886.4 (2)C13—C12—C11120.2 (11)
S16—Pt1—S897.13 (10)C12—C13—C14120.0 (10)
C6—N1—C2123.8 (10)N9—C14—C13117.8 (10)
C6—N1—O7120.7 (9)N9—C14—S16119.2 (8)
C2—N1—O7115.4 (9)C13—C14—S16122.9 (9)
N1—C2—C3119.2 (11)N9—O15—Pt1115.1 (6)
C2—C3—C4119.6 (11)C14—S16—Pt198.1 (4)
C5—C4—C3119.3 (11)N1—C2—H2120.0
C4—C5—C6121.0 (11)C3—C2—H2120.0
N1—C6—C5117.0 (10)C2—C3—H3120.0
N1—C6—S8120.6 (8)C4—C3—H3120.0
C5—C6—S8122.4 (9)C3—C4—H4120.0
N1—O7—Pt1114.7 (6)C5—C4—H4120.0
C6—S8—Pt197.5 (4)C4—C5—H5119.0
C10—N9—O15116.8 (9)C6—C5—H5120.0

Experimental details

Crystal data
Chemical formula[Pt(C5H4NOS)2]
Mr447.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)6.9832 (3), 22.3897 (11), 8.1495 (4)
β (°) 113.572 (3)
V3)1167.87 (10)
Z4
Radiation typeMo Kα
µ (mm1)12.36
Crystal size (mm)0.27 × 0.22 × 0.08
Data collection
DiffractometerBruker APEXII Kappa-CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995, 1997)
Tmin, Tmax0.051, 0.372
No. of measured, independent and
observed [I > 2σ(I)] reflections
25638, 2778, 2610
Rint0.068
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.114, 1.32
No. of reflections2778
No. of parameters154
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0153P)2 + 17.8973P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.73, 3.87

Computer programs: APEX2 (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP2 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Pt1—O152.045 (7)Pt1—S162.234 (3)
Pt1—O72.052 (7)Pt1—S82.239 (3)
O15—Pt1—O790.0 (3)O15—Pt1—S8176.4 (2)
O15—Pt1—S1686.4 (2)O7—Pt1—S886.4 (2)
O7—Pt1—S16176.3 (2)S16—Pt1—S897.13 (10)
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr. 129, 145–150.  Google Scholar
First citationBruker (2006). APEX2. Version 2.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X., Hu, Y., Wu, D., Weng, L. & Kang, B. (1991). Polyhedron, 10, 2651–2657.  CSD CrossRef CAS Web of Science Google Scholar
First citationDyksterhouse, R. M., Howell, B. A. & Squattrito, P. J. (2000). Acta Cryst. C56, 64–66.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKatsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099–5100.  Google Scholar
First citationLeonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.  Google Scholar
First citationLobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394–401.  CAS Google Scholar
First citationLydon, J. D., Elder, R. C. & Deutch, E. (1982). Inorg. Chem. 21, 3168–3197.  Google Scholar
First citationOhms, U., Guth, H., Kutoglu, A. & Scheringer, C. (1982). Acta Cryst. B38, 831–834.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. C., Wen, T. B., Zheng, Y., Zhong, S. J., Wu, D. X., Liu, Q. T., Kang, B. S., Wu, B. M. & Mak, T. C. W. (1997). Polyhedron, 16, 369–375.  CSD CrossRef CAS Google Scholar
First citationSymons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379–381.  CrossRef Web of Science Google Scholar
First citationZhou, J.-H., Li, Y.-Z., Lui, Z. & Chen, X.-T. (2005). Acta Cryst. E61, m195–m197.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds