organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-4-(Tosyl­oxymeth­yl)cyclo­hexane­carboxylic acid

aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, and bDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
*Correspondence e-mail: wcums416@yahoo.com.cn

(Received 14 December 2007; accepted 28 December 2007; online 9 January 2008)

The title compound, C15H20O5S, is an inter­mediate in the synthesis of a new type of poly(amido­amine) (PAMAM) dendrimer. The cyclo­hexane ring exhibits a chair conformation, with C—C bond lengths in the range 1.518 (3)–1.531 (3) Å and C—C—C angles in the range 110.45 (19)–112.09 (19)°; these agree well with the values in other cyclo­hexane derivatives described in the literature. In the crystal structure, adjacent mol­ecules are linked by O—H⋯·O hydrogen bonds. The H atoms of the methyl group are disordered equally over two positions.

Related literature

For related literature, see: Ahmed et al. (2001[Ahmed, S. M., Budd, P. M., McKeown, N. B., Evans, K. P., Beaumont, G. L., Donaldson, C. & Brennan, C. M. (2001). Polymer, 42, 889-896.]); Bucourt & Hainaut (1965[Bucourt, R. & Hainaut, D. (1965). Bull. Soc. Chim. Fr. 5, 1366-1378.]); Dunitz & Strickler (1966[Dunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 290-291.]); Grabchev et al. (2003[Grabchev, I., Chovelon, J. M., Bojinov, V. & Ivanova, G. (2003). Tetrahedron, 59, 9591-9598.]); Luger et al. (1972[Luger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706-710.]); Wang et al. (2004[Wang, B.-B., Zhang, X., Jia, X.-R., Luo, Y.-F., Sun, Z., Yang, L., Ji, Y. & Wei, Y. (2004). Polymer, 45, 8395-8402.]); van Koningsveld & Jansen (1984[Koningsveld, H. van & Jansen, J. C. (1984). Acta Cryst. B40, 420-424.]).

[Scheme 1]

Experimental

Crystal data
  • C15H20O5S

  • Mr = 312.37

  • Triclinic, [P \overline 1]

  • a = 5.9006 (5) Å

  • b = 7.0880 (9) Å

  • c = 20.2754 (18) Å

  • α = 90.371 (3)°

  • β = 97.479 (2)°

  • γ = 111.222 (2)°

  • V = 782.44 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 (2) K

  • 0.53 × 0.48 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation,Tokyo, Japan.]) Tmin = 0.890, Tmax = 0.974

  • 7685 measured reflections

  • 3562 independent reflections

  • 2442 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.179

  • S = 1.01

  • 3562 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O5i 0.89 (4) 1.76 (4) 2.654 (3) 178 (3)
Symmetry code: (i) -x, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 1997[Sheldrick, G. M. (1997b). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

PAMAM (poly(amidoamine)) dendrimers have attracted much interest for their symmetry, high degree of branching and high density of terminal functional groups, which can participate in different reactions. The modification of the periphery of PAMAM dendrimers, aimed to change their physical or chemical properties, have been reported recently (Grabchev et al.,2003; Ahmed et al.,2001; Wang et al.,2004). To improve the lipophilicity of PAMAM dendrimers and provide a new type of linker with special stereostructure, a series of cyclohexane derivatives were synthesized. In our synthetic work on PAMAM dendrimers, we obtained the title compound, and report here its crystal structure.

The crystal structure shows that molecules are linked by O—H···.O hydrogen bonds and the cyclohexane ring exists in the chair conformation. The mean C—C bond length of the cyclohexane ring is 1.524 (3) Å, which is close to the value in trans-1,4-cyclohexane dicarboxylic acid (1.523 (3) Å; Luger et al., 1972). The mean endocyclic angle is 111.3 (2)°, which is close to the value for an ideal cyclohexane ring, (C—C—C 111.1°; Bucourt & Hainaut, 1965) and the mean value in trans-1,4-cyclohexanedicarboxylic acid (111.4 (4)°; Dunitz & Strickler, 1966; Luger et al., 1972).

Related literature top

For related literature, see: Ahmed et al. (2001); Bucourt & Hainaut (1965); Dunitz & Strickler (1966); Grabchev et al. (2003); Luger et al. (1972); Wang et al. (2004).

Experimental top

trans-4-(Methoxycarbonyl)cyclohexanemethanol (10 mmol), triethylamine (10 mmol) and a small amount of trimethylamine hydrochloride were suspended in dichloromethane (20 ml), and p-toluenesulfonyl chloride (11 mmol) was added dropwise with vigorous stirring at room temperature; after 1 h the reaction was quenched by addition of water. The organic layer which separated was evaporated to give an oil and the oil was hydrolyzed in a methanol and aqueous NaOH (11 mmol) solution for 5 h at 323 K. The title compound was then obtained by acidification with hydrochloric acid and recrystallized from acetone. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation of a cyclohexane and acetone solution at room temperature.

Refinement top

The carboxyl H was located in a difference Fourier map and refined freely to an O—H value of 0.89 (4) Å. The other H atoms were placed in calculated positions and refined in the riding model approximation, with C—H = 0.93, 0.96, 0.97, or 0.98 Å for benzene, methyl, methylene or methine H atoms, respectively. For carbon-bound H atoms, Uiso(H) = 1.2Ueq(C). The H atoms of the methyl group are disordered equally over two positions.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 20% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
trans-4-(Tosyloxymethyl)cyclohexanecarboxylic acid top
Crystal data top
C15H20O5SZ = 2
Mr = 312.37F(000) = 332
Triclinic, P1Dx = 1.326 Mg m3
a = 5.9006 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.0880 (9) ÅCell parameters from 5250 reflections
c = 20.2754 (18) Åθ = 3.1–27.5°
α = 90.371 (3)°µ = 0.23 mm1
β = 97.479 (2)°T = 293 K
γ = 111.222 (2)°Block, colourless
V = 782.44 (14) Å30.53 × 0.48 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3562 independent reflections
Radiation source: Rotating Anode2442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 67
Tmin = 0.890, Tmax = 0.974k = 99
7685 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.1018P)2 + 0.285P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3562 reflectionsΔρmax = 0.30 e Å3
195 parametersΔρmin = 0.48 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.047 (7)
Crystal data top
C15H20O5Sγ = 111.222 (2)°
Mr = 312.37V = 782.44 (14) Å3
Triclinic, P1Z = 2
a = 5.9006 (5) ÅMo Kα radiation
b = 7.0880 (9) ŵ = 0.23 mm1
c = 20.2754 (18) ÅT = 293 K
α = 90.371 (3)°0.53 × 0.48 × 0.12 mm
β = 97.479 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3562 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2442 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.974Rint = 0.024
7685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.30 e Å3
3562 reflectionsΔρmin = 0.48 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.95047 (11)0.96589 (9)0.20554 (3)0.0486 (2)
O10.8978 (3)0.9010 (3)0.27746 (8)0.0470 (4)
O20.8958 (4)1.1432 (3)0.19236 (10)0.0610 (5)
O31.1925 (3)0.9708 (3)0.20334 (10)0.0655 (5)
O40.1018 (4)0.1728 (3)0.44904 (11)0.0642 (6)
O50.2394 (4)0.1042 (3)0.46193 (10)0.0624 (5)
C10.5304 (5)0.5148 (3)0.31242 (13)0.0497 (6)
H1A0.40910.48970.27290.060*
H1B0.68010.51060.29880.060*
C20.4366 (5)0.3497 (4)0.36070 (13)0.0518 (6)
H2A0.39810.21810.33830.062*
H2B0.56460.36660.39800.062*
C30.2093 (4)0.3565 (3)0.38646 (11)0.0431 (5)
H30.07900.32900.34840.052*
C40.2559 (5)0.5666 (3)0.41785 (12)0.0486 (6)
H4A0.10410.56990.43030.058*
H4B0.37420.59240.45800.058*
C50.3526 (5)0.7314 (4)0.36991 (13)0.0514 (6)
H5A0.39150.86290.39240.062*
H5B0.22550.71540.33250.062*
C60.5811 (4)0.7245 (3)0.34417 (11)0.0408 (5)
H60.71220.75160.38200.049*
C70.1191 (4)0.1984 (3)0.43585 (11)0.0425 (5)
C80.6621 (4)0.8906 (3)0.29618 (12)0.0436 (5)
H8A0.53990.86200.25680.052*
H8B0.67941.01950.31710.052*
C90.7391 (4)0.7608 (4)0.15427 (12)0.0478 (6)
C100.7786 (5)0.5806 (4)0.15077 (14)0.0583 (7)
H100.92180.57120.17310.070*
C110.6055 (6)0.4147 (5)0.11411 (15)0.0655 (8)
H110.63340.29400.11160.079*
C120.3903 (6)0.4259 (5)0.08091 (14)0.0629 (7)
C130.3540 (5)0.6067 (5)0.08475 (15)0.0657 (8)
H130.21060.61580.06240.079*
C140.5257 (5)0.7752 (4)0.12102 (14)0.0581 (7)
H140.49850.89630.12310.070*
C150.1990 (7)0.2410 (6)0.04226 (17)0.0855 (11)
H15A0.25580.13000.04510.103*0.50
H15B0.17160.27060.00360.103*0.50
H15C0.04810.20510.06080.103*0.50
H15D0.06120.27380.02310.103*0.50
H15E0.14540.13320.07170.103*0.50
H15F0.26890.19870.00740.103*0.50
H4O0.145 (6)0.081 (5)0.4795 (18)0.085 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0436 (4)0.0492 (4)0.0561 (4)0.0181 (3)0.0138 (3)0.0168 (3)
O10.0410 (8)0.0506 (9)0.0490 (9)0.0158 (7)0.0070 (7)0.0125 (7)
O20.0630 (12)0.0484 (10)0.0761 (12)0.0226 (9)0.0186 (10)0.0222 (9)
O30.0395 (9)0.0834 (14)0.0793 (13)0.0239 (9)0.0234 (9)0.0198 (10)
O40.0575 (11)0.0653 (12)0.0795 (13)0.0268 (10)0.0295 (10)0.0342 (10)
O50.0615 (11)0.0614 (11)0.0751 (12)0.0295 (9)0.0257 (10)0.0298 (9)
C10.0605 (15)0.0417 (12)0.0521 (13)0.0198 (11)0.0224 (11)0.0060 (10)
C20.0639 (15)0.0373 (12)0.0632 (15)0.0235 (11)0.0254 (12)0.0101 (10)
C30.0470 (12)0.0366 (11)0.0454 (12)0.0136 (9)0.0107 (10)0.0065 (9)
C40.0595 (14)0.0382 (12)0.0528 (13)0.0191 (11)0.0206 (11)0.0057 (10)
C50.0641 (15)0.0374 (12)0.0616 (14)0.0237 (11)0.0246 (12)0.0111 (10)
C60.0454 (12)0.0363 (11)0.0419 (11)0.0149 (9)0.0104 (9)0.0093 (8)
C70.0440 (12)0.0367 (11)0.0474 (12)0.0138 (9)0.0117 (10)0.0049 (9)
C80.0446 (12)0.0401 (11)0.0502 (12)0.0178 (10)0.0143 (10)0.0119 (9)
C90.0486 (13)0.0572 (14)0.0464 (12)0.0277 (11)0.0131 (10)0.0120 (10)
C100.0613 (16)0.0627 (16)0.0602 (15)0.0345 (13)0.0065 (13)0.0108 (12)
C110.085 (2)0.0545 (16)0.0618 (16)0.0309 (15)0.0104 (15)0.0065 (12)
C120.0669 (18)0.0685 (18)0.0484 (14)0.0174 (14)0.0123 (13)0.0065 (12)
C130.0554 (16)0.085 (2)0.0592 (16)0.0309 (15)0.0002 (13)0.0036 (14)
C140.0601 (16)0.0658 (17)0.0585 (15)0.0349 (13)0.0078 (12)0.0094 (12)
C150.087 (2)0.082 (2)0.0660 (19)0.0063 (18)0.0072 (17)0.0036 (16)
Geometric parameters (Å, º) top
S1—O31.4226 (18)C5—H5B0.9700
S1—O21.4250 (19)C6—C81.513 (3)
S1—O11.5678 (17)C6—H60.9800
S1—C91.755 (3)C8—H8A0.9700
O1—C81.465 (3)C8—H8B0.9700
O4—C71.313 (3)C9—C101.382 (4)
O4—H4O0.89 (4)C9—C141.387 (4)
O5—C71.216 (3)C10—C111.378 (4)
C1—C21.524 (3)C10—H100.9300
C1—C61.525 (3)C11—C121.387 (4)
C1—H1A0.9700C11—H110.9300
C1—H1B0.9700C12—C131.377 (4)
C2—C31.518 (3)C12—C151.514 (4)
C2—H2A0.9700C13—C141.383 (4)
C2—H2B0.9700C13—H130.9300
C3—C71.505 (3)C14—H140.9300
C3—C41.531 (3)C15—H15A0.9600
C3—H30.9800C15—H15B0.9600
C4—C51.520 (3)C15—H15C0.9600
C4—H4A0.9700C15—H15D0.9600
C4—H4B0.9700C15—H15E0.9600
C5—C61.525 (3)C15—H15F0.9600
C5—H5A0.9700
O3—S1—O2119.63 (12)O4—C7—C3113.7 (2)
O3—S1—O1104.45 (11)O1—C8—C6108.88 (18)
O2—S1—O1109.39 (11)O1—C8—H8A109.9
O3—S1—C9109.50 (12)C6—C8—H8A109.9
O2—S1—C9109.39 (12)O1—C8—H8B109.9
O1—S1—C9103.13 (10)C6—C8—H8B109.9
C8—O1—S1117.51 (13)H8A—C8—H8B108.3
C7—O4—H4O110 (2)C10—C9—C14120.2 (3)
C2—C1—C6111.4 (2)C10—C9—S1119.55 (19)
C2—C1—H1A109.4C14—C9—S1120.1 (2)
C6—C1—H1A109.4C11—C10—C9119.9 (2)
C2—C1—H1B109.4C11—C10—H10120.1
C6—C1—H1B109.4C9—C10—H10120.1
H1A—C1—H1B108.0C10—C11—C12120.7 (3)
C3—C2—C1111.5 (2)C10—C11—H11119.6
C3—C2—H2A109.3C12—C11—H11119.6
C1—C2—H2A109.3C13—C12—C11118.7 (3)
C3—C2—H2B109.3C13—C12—C15121.2 (3)
C1—C2—H2B109.3C11—C12—C15120.1 (3)
H2A—C2—H2B108.0C12—C13—C14121.6 (3)
C7—C3—C2112.18 (19)C12—C13—H13119.2
C7—C3—C4109.70 (19)C14—C13—H13119.2
C2—C3—C4111.24 (19)C13—C14—C9118.9 (3)
C7—C3—H3107.8C13—C14—H14120.5
C2—C3—H3107.8C9—C14—H14120.5
C4—C3—H3107.8C12—C15—H15A109.5
C5—C4—C3111.32 (19)C12—C15—H15B109.5
C5—C4—H4A109.4H15A—C15—H15B109.5
C3—C4—H4A109.4C12—C15—H15C109.5
C5—C4—H4B109.4H15A—C15—H15C109.5
C3—C4—H4B109.4H15B—C15—H15C109.5
H4A—C4—H4B108.0C12—C15—H15D109.5
C4—C5—C6112.09 (19)H15A—C15—H15D141.1
C4—C5—H5A109.2H15B—C15—H15D56.3
C6—C5—H5A109.2H15C—C15—H15D56.3
C4—C5—H5B109.2C12—C15—H15E109.5
C6—C5—H5B109.2H15A—C15—H15E56.3
H5A—C5—H5B107.9H15B—C15—H15E141.1
C8—C6—C5108.55 (18)H15C—C15—H15E56.3
C8—C6—C1112.53 (19)H15D—C15—H15E109.5
C5—C6—C1110.45 (19)C12—C15—H15F109.5
C8—C6—H6108.4H15A—C15—H15F56.3
C5—C6—H6108.4H15B—C15—H15F56.3
C1—C6—H6108.4H15C—C15—H15F141.1
O5—C7—O4122.8 (2)H15D—C15—H15F109.5
O5—C7—C3123.5 (2)H15E—C15—H15F109.5
O3—S1—O1—C8177.44 (16)C5—C6—C8—O1173.23 (17)
O2—S1—O1—C848.24 (18)C1—C6—C8—O164.2 (3)
C9—S1—O1—C868.10 (17)O3—S1—C9—C1037.0 (2)
C6—C1—C2—C356.1 (3)O2—S1—C9—C10169.9 (2)
C1—C2—C3—C7178.2 (2)O1—S1—C9—C1073.7 (2)
C1—C2—C3—C454.9 (3)O3—S1—C9—C14147.2 (2)
C7—C3—C4—C5178.8 (2)O2—S1—C9—C1414.3 (3)
C2—C3—C4—C554.1 (3)O1—S1—C9—C14102.0 (2)
C3—C4—C5—C654.7 (3)C14—C9—C10—C110.0 (4)
C4—C5—C6—C8179.1 (2)S1—C9—C10—C11175.7 (2)
C4—C5—C6—C155.3 (3)C9—C10—C11—C120.5 (4)
C2—C1—C6—C8177.1 (2)C10—C11—C12—C130.7 (5)
C2—C1—C6—C555.6 (3)C10—C11—C12—C15178.4 (3)
C2—C3—C7—O513.6 (3)C11—C12—C13—C140.4 (5)
C4—C3—C7—O5110.5 (3)C15—C12—C13—C14178.7 (3)
C2—C3—C7—O4167.2 (2)C12—C13—C14—C90.1 (4)
C4—C3—C7—O468.6 (3)C10—C9—C14—C130.2 (4)
S1—O1—C8—C6147.88 (16)S1—C9—C14—C13175.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O5i0.89 (4)1.76 (4)2.654 (3)178 (3)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H20O5S
Mr312.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.9006 (5), 7.0880 (9), 20.2754 (18)
α, β, γ (°)90.371 (3), 97.479 (2), 111.222 (2)
V3)782.44 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.53 × 0.48 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.890, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
7685, 3562, 2442
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.179, 1.01
No. of reflections3562
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.48

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O5i0.89 (4)1.76 (4)2.654 (3)178 (3)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank Mr Kai-Bei Yu of the Chengdu Branch of the Chinese Academy of Science for the X-ray measurements.

References

First citationAhmed, S. M., Budd, P. M., McKeown, N. B., Evans, K. P., Beaumont, G. L., Donaldson, C. & Brennan, C. M. (2001). Polymer, 42, 889–896.  Web of Science CrossRef CAS Google Scholar
First citationBucourt, R. & Hainaut, D. (1965). Bull. Soc. Chim. Fr. 5, 1366–1378.  Google Scholar
First citationDunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 290–291.  Google Scholar
First citationGrabchev, I., Chovelon, J. M., Bojinov, V. & Ivanova, G. (2003). Tetrahedron, 59, 9591–9598.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation,Tokyo, Japan.  Google Scholar
First citationKoningsveld, H. van & Jansen, J. C. (1984). Acta Cryst. B40, 420–424.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLuger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706–710.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B.-B., Zhang, X., Jia, X.-R., Luo, Y.-F., Sun, Z., Yang, L., Ji, Y. & Wei, Y. (2004). Polymer, 45, 8395–8402.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds