metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(ethane-1,2-di­amine)copper(II) bis­­(tri­fluoro­acetate)

aInorganic Chemistry Division, Chemistry Department, Moscow State University, 119991 Leninskie Gory 1-3, Moscow, Russian Federation, and bGeneral Chemistry Division, Chemistry Department, Moscow State University, 119991 Leninskie Gory 1-3, Moscow, Russian Federation
*Correspondence e-mail: rybakov20021@yandex.ru

(Received 18 December 2007; accepted 14 January 2008; online 18 January 2008)

In the title complex, [Cu(H2NCH2CH2NH2)3](CF3COO)2, the environment of the Cu atom is distorted octa­hedral, formed by six N atoms from three chelating ethane-1,2-diamine ligands. The Cu—N distances range from 2.050 (2) to 2.300 (2) Å. This complex cation and the two trifluoro­acetate anions are connected by weak N—H⋯O and N—H⋯F hydrogen bonds, forming a three-dimensional framework. In both anions, the F atoms are disordered over two positions; in one the site-occupancy factors are 0.55 and 0.45, in the other the values are 0.69 and 0.31.

Related literature

For other carboxyl­ate complexes, see: Karpova et al. (1998[Karpova, E. V., Boltalin, A. I., Zakharov, M. A., Sorokina, N. I., Korenev, Yu. M. & Troyanov, S. I. (1998). Z. Anorg. Allg. Chem. B624, 741-744.]); Karpova et al. (2001[Karpova, E. V., Boltalin, A. I., Korenev, Yu. M., Zakharov, M. A. & Troyanov, S. I. (2001). Russ. J. Coord. Chem. 27, 286-291.]); Gutnikov et al. (2006[Gutnikov, S. I., Karpova, E. V., Zakharov, M. A. & Boltalin, A. I. (2006). Russ. J. Inorg. Chem. 51, 541-548.]); Karpova et al. (2007[Karpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Boltalin, A. I. (2007). Acta Cryst. E63, m658-m659.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H8N2)3](C2F3O2)2

  • Mr = 469.90

  • Triclinic, [P \overline 1]

  • a = 8.582 (6) Å

  • b = 9.316 (6) Å

  • c = 12.859 (7) Å

  • α = 74.73 (3)°

  • β = 84.69 (4)°

  • γ = 69.56 (3)°

  • V = 929.3 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 293 (2) K

  • 0.15 × 0.1 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 5406 independent reflections

  • 4277 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.092

  • S = 0.94

  • 5406 reflections

  • 300 parameters

  • 45 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯F1A 0.90 2.54 3.248 (17) 136
N2—H2B⋯F3B 0.90 2.55 3.41 (2) 161
N6—H6B⋯O1 0.90 2.15 3.048 (3) 179
N1—H1A⋯O2i 0.90 2.35 3.141 (3) 147
N1—H1A⋯O1i 0.90 2.53 3.377 (4) 156
N4—H4A⋯O2i 0.90 2.34 3.175 (3) 154
N6—H6A⋯O1i 0.90 2.56 3.326 (3) 143
N1—H1B⋯O2ii 0.90 2.11 3.002 (3) 173
N2—H2A⋯F4Aii 0.90 2.47 3.267 (15) 148
N3—H3A⋯O3ii 0.90 2.09 2.958 (3) 162
N5—H5A⋯O3ii 0.90 2.36 3.126 (3) 143
N2—H2A⋯O4iii 0.90 2.41 3.037 (3) 127
N4—H4B⋯O4iv 0.90 2.11 2.997 (3) 168
N5—H5B⋯O3iv 0.90 2.13 3.013 (3) 167
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The present investigation is a continuation of experimental work to study the structure and properties of different carboxylate complexes (Karpova et al., 1998; Karpova et al., 2001; Gutnikov et al., 2006; Karpova et al., 2007). In the title compound, Cu(H2NCH2CH2NH2)3.(CF3COO)2, the asymmetric unit consists of a complex cation and two crystallographically independent anions. The environment of the Cu atom is distorted octahedral, formed by six N atoms from three chelate ethylenediamine groups. The two trifluoroacetate anions form N—H···O and N—H···F hydrogen bonds with NH2 groups of the cation, forming a three-dimensional framework.

Related literature top

For other carboxylate complexes, see: Karpova et al. (1998); Karpova et al. (2001); Gutnikov et al. (2006); Karpova et al. (2007).

Experimental top

An ethanol solution of [Cu(CF3COO)2(CH3CN)]2(CH3CN)2 was mixed with ethylenediamine in a 1:4 molar ratio. After several days blue prism-shaped crystals were formed in a desiccator over P4O10.

Refinement top

All H atoms were positioned geometrically and refined using a riding model (including free rotation about C—C or C—N bonds) with C—H = 0.97 Å, N—H = 0.90 Å and with Uiso(H) = 1.2Ueq(C,N). The DELU option in SHELXL97 was used with parameters 0.0001, 0.0001 for all bonds Cu1—N; for all C—O and C—F bonds. The MERG option with parameter 2 was used before refinement. The F atoms are disordered over two positions, with site occupancy ratios 0.55 (3)/0.45 (3) and 0.69 (2)/0.31 (2).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound, with the atom numbering scheme. Displacment ellipsoids are shown at the 50% probability level. H atoms are drawn as small spheres of arbitrary radius. Only the major disorder components are shown.
Tris(ethane-1,2-diamine)copper(II) bis(trifluoroacetate) top
Crystal data top
[Cu(C2H8N2)3](C2F3O2)2Z = 2
Mr = 469.90F(000) = 482
Triclinic, P1Dx = 1.679 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.582 (6) ÅCell parameters from 250 reflections
b = 9.316 (6) Åθ = 18–24°
c = 12.859 (7) ŵ = 1.26 mm1
α = 74.73 (3)°T = 293 K
β = 84.69 (4)°Prism, blue
γ = 69.56 (3)°0.15 × 0.1 × 0.08 mm
V = 929.3 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4277 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeθmax = 30.0°, θmin = 1.6°
Graphite monochromatorh = 1112
Detector resolution: 0.1 pixels mm-1k = 013
ϕ and ω scansl = 1718
5406 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0567P)2]
where P = (Fo2 + 2Fc2)/3
5406 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.24 e Å3
45 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Cu(C2H8N2)3](C2F3O2)2γ = 69.56 (3)°
Mr = 469.90V = 929.3 (10) Å3
Triclinic, P1Z = 2
a = 8.582 (6) ÅMo Kα radiation
b = 9.316 (6) ŵ = 1.26 mm1
c = 12.859 (7) ÅT = 293 K
α = 74.73 (3)°0.15 × 0.1 × 0.08 mm
β = 84.69 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4277 reflections with I > 2σ(I)
5406 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03945 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.94Δρmax = 0.24 e Å3
5406 reflectionsΔρmin = 0.25 e Å3
300 parameters
Special details top

Experimental. The original HKL file was deleted and the present study was conducted using the merged data set.

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.94303 (3)0.85236 (3)0.778785 (18)0.03254 (8)
N10.8821 (2)0.8734 (2)0.93404 (13)0.0444 (3)
H1A0.96940.81310.97770.053*
H1B0.85870.97450.93620.053*
C10.7376 (3)0.8237 (3)0.97256 (17)0.0486 (5)
H1C0.69210.86101.03630.058*
H1D0.77260.70920.99230.058*
C20.6060 (3)0.8885 (3)0.88718 (19)0.0503 (5)
H2C0.51390.85050.91210.060*
H2D0.56411.00310.87080.060*
N20.6812 (2)0.8352 (2)0.79038 (16)0.0495 (4)
H2A0.62120.89770.73140.059*
H2B0.68660.73500.79680.059*
N30.8604 (2)1.1007 (2)0.71134 (15)0.0471 (4)
H3A0.80041.12440.65150.057*
H3B0.79481.15050.75890.057*
C31.0036 (3)1.1543 (3)0.68450 (19)0.0539 (5)
H3C0.96721.26810.67390.065*
H3D1.05311.12920.61770.065*
C41.1308 (3)1.0764 (3)0.77268 (19)0.0510 (5)
H4C1.22661.11020.75230.061*
H4D1.08431.10790.83820.061*
N41.1826 (2)0.9040 (2)0.79228 (15)0.0457 (4)
H4A1.22770.85640.85830.055*
H4B1.25770.86950.74280.055*
N50.9835 (2)0.8096 (2)0.62842 (13)0.0453 (4)
H5A0.89230.86580.58730.054*
H5B1.06880.83960.59650.054*
C51.0217 (3)0.6405 (3)0.6384 (2)0.0540 (5)
H5C1.07120.61340.57210.065*
H5D0.92080.61390.65220.065*
C61.1414 (3)0.5510 (3)0.7304 (2)0.0541 (5)
H6C1.16490.43820.74200.065*
H6D1.24510.57210.71440.065*
N61.0652 (2)0.6024 (2)0.82682 (15)0.0482 (4)
H6A1.14350.57830.87660.058*
H6B0.99140.55390.85550.058*
C70.7420 (3)0.3504 (3)0.91576 (18)0.0494 (4)
C80.5826 (4)0.4304 (4)0.8472 (3)0.0722 (6)
C90.5876 (3)0.1740 (3)0.4611 (2)0.0526 (5)
C100.4415 (4)0.2533 (4)0.5269 (3)0.0749 (6)
O10.8137 (3)0.4407 (2)0.92515 (17)0.0722 (5)
O20.7776 (3)0.2083 (2)0.95315 (17)0.0721 (5)
O30.7270 (2)0.1248 (2)0.50104 (16)0.0693 (5)
O40.5502 (3)0.1706 (3)0.37227 (17)0.0780 (6)
F1A0.495 (2)0.5750 (14)0.8639 (12)0.087 (2)0.55 (3)
F2A0.4769 (16)0.3531 (13)0.8668 (13)0.089 (3)0.55 (3)
F3A0.6064 (18)0.4591 (14)0.7404 (6)0.093 (3)0.55 (3)
F1B0.471 (2)0.537 (2)0.8865 (14)0.083 (2)0.45 (3)
F2B0.5182 (17)0.3267 (11)0.8290 (14)0.088 (2)0.45 (3)
F3B0.6454 (13)0.4960 (16)0.7584 (10)0.084 (3)0.45 (3)
F4A0.4601 (19)0.166 (3)0.6294 (12)0.095 (4)0.31 (2)
F5A0.2886 (15)0.281 (3)0.4998 (12)0.090 (4)0.31 (2)
F6A0.460 (3)0.3837 (19)0.529 (2)0.110 (5)0.31 (2)
F4B0.4729 (10)0.2254 (9)0.6304 (5)0.0850 (12)0.69 (2)
F5B0.3116 (8)0.2068 (10)0.5228 (6)0.0872 (13)0.69 (2)
F6B0.3834 (11)0.4109 (4)0.4916 (4)0.0858 (16)0.69 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03390 (11)0.03383 (12)0.03075 (11)0.01198 (8)0.00040 (7)0.00858 (8)
N10.0453 (9)0.0514 (10)0.0380 (6)0.0172 (8)0.0030 (6)0.0134 (6)
C10.0495 (12)0.0522 (12)0.0418 (11)0.0159 (10)0.0017 (9)0.0102 (9)
C20.0459 (11)0.0535 (12)0.0534 (12)0.0178 (10)0.0004 (9)0.0151 (10)
N20.0431 (7)0.0582 (10)0.0527 (10)0.0214 (8)0.0005 (7)0.0173 (9)
N30.0516 (9)0.0419 (7)0.0458 (9)0.0141 (6)0.0022 (7)0.0090 (6)
C30.0558 (13)0.0551 (13)0.0501 (12)0.0207 (11)0.0030 (10)0.0082 (10)
C40.0567 (13)0.0513 (12)0.0484 (12)0.0217 (10)0.0007 (10)0.0126 (10)
N40.0435 (7)0.0539 (10)0.0436 (9)0.0214 (7)0.0008 (6)0.0122 (8)
N50.0497 (9)0.0504 (9)0.0371 (7)0.0169 (8)0.0005 (6)0.0130 (7)
C50.0562 (13)0.0536 (13)0.0544 (13)0.0187 (10)0.0003 (10)0.0168 (11)
C60.0556 (13)0.0511 (12)0.0564 (13)0.0160 (10)0.0011 (10)0.0178 (11)
N60.0492 (10)0.0468 (10)0.0468 (10)0.0151 (8)0.0046 (8)0.0085 (8)
C70.0437 (11)0.0599 (10)0.0441 (11)0.0142 (9)0.0010 (8)0.0166 (9)
C80.0540 (14)0.0761 (15)0.0748 (13)0.0134 (9)0.0125 (11)0.0069 (13)
C90.0515 (10)0.0506 (12)0.0544 (11)0.0160 (10)0.0046 (9)0.0141 (10)
C100.0646 (14)0.0808 (12)0.0766 (12)0.0185 (13)0.0130 (13)0.0279 (14)
O10.0695 (12)0.0765 (11)0.0789 (13)0.0323 (10)0.0057 (10)0.0208 (10)
O20.0746 (12)0.0622 (9)0.0781 (13)0.0197 (9)0.0112 (10)0.0157 (9)
O30.0593 (10)0.0788 (13)0.0688 (11)0.0210 (9)0.0023 (8)0.0191 (10)
O40.0763 (13)0.0897 (15)0.0685 (11)0.0219 (11)0.0079 (9)0.0262 (11)
F1A0.094 (5)0.078 (3)0.086 (5)0.026 (2)0.003 (3)0.018 (4)
F2A0.085 (4)0.089 (3)0.097 (5)0.036 (3)0.012 (3)0.018 (3)
F3A0.099 (5)0.099 (4)0.0789 (16)0.032 (3)0.003 (2)0.0216 (19)
F1B0.077 (4)0.089 (6)0.085 (6)0.026 (4)0.004 (3)0.025 (5)
F2B0.086 (5)0.093 (3)0.089 (6)0.033 (3)0.006 (4)0.029 (3)
F3B0.078 (4)0.102 (5)0.075 (3)0.033 (3)0.001 (2)0.022 (3)
F4A0.070 (4)0.113 (10)0.093 (4)0.038 (6)0.005 (3)0.000 (6)
F5A0.078 (3)0.116 (11)0.083 (5)0.038 (6)0.005 (3)0.029 (6)
F6A0.097 (9)0.098 (5)0.144 (12)0.056 (6)0.016 (8)0.020 (7)
F4B0.085 (3)0.091 (3)0.0800 (15)0.033 (2)0.0010 (16)0.0179 (17)
F5B0.080 (2)0.091 (3)0.090 (3)0.030 (3)0.0023 (18)0.020 (3)
F6B0.082 (4)0.0829 (12)0.090 (2)0.0239 (16)0.0062 (19)0.0192 (13)
Geometric parameters (Å, º) top
Cu1—N52.050 (2)N5—H5A0.9000
Cu1—N12.059 (2)N5—H5B0.9000
Cu1—N32.126 (2)C5—C61.503 (3)
Cu1—N62.136 (2)C5—H5C0.9700
Cu1—N22.297 (2)C5—H5D0.9700
Cu1—N42.300 (2)C6—N61.462 (3)
N1—C11.471 (3)C6—H6C0.9700
N1—H1A0.9000C6—H6D0.9700
N1—H1B0.9000N6—H6A0.9000
C1—C21.500 (3)N6—H6B0.9000
C1—H1C0.9700C7—O21.219 (3)
C1—H1D0.9700C7—O11.237 (3)
C2—N21.471 (3)C7—C81.539 (4)
C2—H2C0.9700C8—F1B1.291 (11)
C2—H2D0.9700C8—F3B1.311 (7)
N2—H2A0.9000C8—F2A1.312 (7)
N2—H2B0.9000C8—F3A1.338 (7)
N3—C31.462 (3)C8—F2B1.345 (9)
N3—H3A0.9000C8—F1A1.357 (9)
N3—H3B0.9000C9—O41.225 (3)
C3—C41.499 (3)C9—O31.230 (3)
C3—H3C0.9700C9—C101.524 (4)
C3—H3D0.9700C10—F6A1.286 (10)
C4—N41.466 (3)C10—F5A1.308 (11)
C4—H4C0.9700C10—F4B1.322 (6)
C4—H4D0.9700C10—F5B1.338 (5)
N4—H4A0.9000C10—F6B1.338 (5)
N4—H4B0.9000C10—F4A1.343 (11)
N5—C51.464 (3)
N5—Cu1—N1171.52 (7)H5A—N5—H5B108.3
N5—Cu1—N391.32 (8)N5—C5—C6107.7 (2)
N1—Cu1—N393.88 (8)N5—C5—H5C110.2
N5—Cu1—N681.82 (8)C6—C5—H5C110.2
N1—Cu1—N693.95 (8)N5—C5—H5D110.2
N3—Cu1—N6169.22 (7)C6—C5—H5D110.2
N5—Cu1—N292.91 (8)H5C—C5—H5D108.5
N1—Cu1—N280.03 (8)N6—C6—C5108.1 (2)
N3—Cu1—N294.49 (8)N6—C6—H6C110.1
N6—Cu1—N294.15 (9)C5—C6—H6C110.1
N5—Cu1—N498.13 (8)N6—C6—H6D110.1
N1—Cu1—N489.38 (8)C5—C6—H6D110.1
N3—Cu1—N479.81 (8)H6C—C6—H6D108.4
N6—Cu1—N492.88 (8)C6—N6—Cu1107.29 (14)
N2—Cu1—N4167.65 (7)C6—N6—H6A110.3
C1—N1—Cu1110.81 (14)Cu1—N6—H6A110.3
C1—N1—H1A109.5C6—N6—H6B110.3
Cu1—N1—H1A109.5Cu1—N6—H6B110.3
C1—N1—H1B109.5H6A—N6—H6B108.5
Cu1—N1—H1B109.5O2—C7—O1129.9 (2)
H1A—N1—H1B108.1O2—C7—C8115.2 (2)
N1—C1—C2110.86 (18)O1—C7—C8114.9 (2)
N1—C1—H1C109.5F1B—C8—F3B110.6 (7)
C2—C1—H1C109.5F1B—C8—F2A86.2 (6)
N1—C1—H1D109.5F3B—C8—F2A133.3 (5)
C2—C1—H1D109.5F1B—C8—F3A118.9 (10)
H1C—C1—H1D108.1F3B—C8—F3A28.3 (3)
N2—C2—C1107.94 (19)F2A—C8—F3A105.2 (5)
N2—C2—H2C110.1F1B—C8—F2B110.6 (7)
C1—C2—H2C110.1F3B—C8—F2B110.6 (5)
N2—C2—H2D110.1F2A—C8—F2B27.2 (3)
C1—C2—H2D110.1F3A—C8—F2B82.7 (5)
H2C—C2—H2D108.4F1B—C8—F1A21.0 (6)
C2—N2—Cu1105.49 (14)F3B—C8—F1A90.5 (6)
C2—N2—H2A110.6F2A—C8—F1A104.9 (5)
Cu1—N2—H2A110.6F3A—C8—F1A103.9 (6)
C2—N2—H2B110.6F2B—C8—F1A126.1 (7)
Cu1—N2—H2B110.6F1B—C8—C7112.6 (9)
H2A—N2—H2B108.8F3B—C8—C798.8 (7)
C3—N3—Cu1109.77 (15)F2A—C8—C7114.9 (4)
C3—N3—H3A109.7F3A—C8—C7115.3 (7)
Cu1—N3—H3A109.7F2B—C8—C7113.1 (5)
C3—N3—H3B109.7F1A—C8—C7111.6 (7)
Cu1—N3—H3B109.7O4—C9—O3128.0 (3)
H3A—N3—H3B108.2O4—C9—C10114.6 (3)
N3—C3—C4110.8 (2)O3—C9—C10117.4 (3)
N3—C3—H3C109.5F6A—C10—F5A109.5 (6)
C4—C3—H3C109.5F6A—C10—F4B79.6 (10)
N3—C3—H3D109.5F5A—C10—F4B117.5 (7)
C4—C3—H3D109.5F6A—C10—F5B135.3 (9)
H3C—C3—H3D108.1F5A—C10—F5B28.1 (8)
N4—C4—C3110.08 (19)F4B—C10—F5B105.9 (4)
N4—C4—H4C109.6F6A—C10—F6B34.5 (11)
C3—C4—H4C109.6F5A—C10—F6B77.3 (8)
N4—C4—H4D109.6F4B—C10—F6B105.2 (4)
C3—C4—H4D109.6F5B—C10—F6B105.2 (3)
H4C—C4—H4D108.2F6A—C10—F4A105.5 (7)
C4—N4—Cu1105.13 (14)F5A—C10—F4A106.4 (8)
C4—N4—H4A110.7F4B—C10—F4A26.0 (9)
Cu1—N4—H4A110.7F5B—C10—F4A86.2 (7)
C4—N4—H4B110.7F6B—C10—F4A128.0 (12)
Cu1—N4—H4B110.7F6A—C10—C9105.3 (6)
H4A—N4—H4B108.8F5A—C10—C9120.7 (7)
C5—N5—Cu1109.29 (14)F4B—C10—C9114.9 (4)
C5—N5—H5A109.8F5B—C10—C9111.5 (4)
Cu1—N5—H5A109.8F6B—C10—C9113.3 (3)
C5—N5—H5B109.8F4A—C10—C9108.5 (9)
Cu1—N5—H5B109.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···F1A0.902.543.248 (17)136
N2—H2B···F3B0.902.553.41 (2)161
N6—H6B···O10.902.153.048 (3)179
N1—H1A···O2i0.902.353.141 (3)147
N1—H1A···O1i0.902.533.377 (4)156
N4—H4A···O2i0.902.343.175 (3)154
N6—H6A···O1i0.902.563.326 (3)143
N1—H1B···O2ii0.902.113.002 (3)173
N2—H2A···F4Aii0.902.473.267 (15)148
N3—H3A···O3ii0.902.092.958 (3)162
N5—H5A···O3ii0.902.363.126 (3)143
N2—H2A···O4iii0.902.413.037 (3)127
N4—H4B···O4iv0.902.112.997 (3)168
N5—H5B···O3iv0.902.133.013 (3)167
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2H8N2)3](C2F3O2)2
Mr469.90
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.582 (6), 9.316 (6), 12.859 (7)
α, β, γ (°)74.73 (3), 84.69 (4), 69.56 (3)
V3)929.3 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.15 × 0.1 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
?, 5406, 4277
Rint?
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 0.94
No. of reflections5406
No. of parameters300
No. of restraints45
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···F1A0.902.543.248 (17)136.0
N2—H2B···F3B0.902.553.41 (2)161.0
N6—H6B···O10.902.153.048 (3)179.2
N1—H1A···O2i0.902.353.141 (3)147.2
N1—H1A···O1i0.902.533.377 (4)156.4
N4—H4A···O2i0.902.343.175 (3)154.4
N6—H6A···O1i0.902.563.326 (3)143.3
N1—H1B···O2ii0.902.113.002 (3)172.8
N2—H2A···F4Aii0.902.473.267 (15)148.3
N3—H3A···O3ii0.902.092.958 (3)162.1
N5—H5A···O3ii0.902.363.126 (3)143.3
N2—H2A···O4iii0.902.413.037 (3)127.0
N4—H4B···O4iv0.902.112.997 (3)167.8
N5—H5B···O3iv0.902.133.013 (3)167.0
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge Zoja A. Starikova for the X-ray data collection. This investigation was supported by the Russian Fund of Basic Research (project No. 05–03–33038-a).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGutnikov, S. I., Karpova, E. V., Zakharov, M. A. & Boltalin, A. I. (2006). Russ. J. Inorg. Chem. 51, 541–548.  Web of Science CrossRef Google Scholar
First citationKarpova, E. V., Boltalin, A. I., Korenev, Yu. M., Zakharov, M. A. & Troyanov, S. I. (2001). Russ. J. Coord. Chem. 27, 286–291.  Web of Science CrossRef CAS Google Scholar
First citationKarpova, E. V., Boltalin, A. I., Zakharov, M. A., Sorokina, N. I., Korenev, Yu. M. & Troyanov, S. I. (1998). Z. Anorg. Allg. Chem. B624, 741–744.  CrossRef Google Scholar
First citationKarpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Boltalin, A. I. (2007). Acta Cryst. E63, m658–m659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds