metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m270-m271

Hexa­aqua­manganese(II) dipicrate dihydrate

aDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and bCollege of Pharmacy, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: xiufshi@yahoo.com.cn

(Received 26 October 2007; accepted 29 November 2007; online 4 January 2008)

In the title compound, [Mn(H2O)6](C6H2N3O7)2·2H2O, the manganese cation, on an inversion centre, is coordinated by six water mol­ecules, but the picrate anion has no coordinative inter­action with the manganese cation. The anions in the stack are linked via short inter­molecular O⋯C (3.013 and 2.973 Å) and C⋯C (3.089 and 3.065 Å) contacts and hydrogen bonds.

Related literature

For related literature, see: Bibal et al. (2003[Bibal, B., Declercq, J. P., Dutasta, J. P., Tinant, B. & Valade, A. G. (2003). Tetrahedron, 59, 5849-5854.]); García et al. (2004[García, M. M. R., Verboom, W., Reinhoudt, D. N., Malinowska, E., Pietrzak, M. & Wojciechowska, D. (2004). Tetrahedron, 60, 11299-11306.]); Harrowfield et al. (1995a[Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995a). Aust. J. Chem. 48, 1311-1331.],b[Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995b). Aust. J. Chem. 48, 1333-1347.]); Honda et al. (2003[Honda, K., Yamawaki, H., Matsukawa, M., Goto, M., Matsunaga, T., Aoki, K., Yoshida, M. & Fujiwara, S. (2003). Acta Cryst. C59, m319-m321.]); Ji & Chen (1996[Ji, B. M. & Chen, H. T. (1996). J. Luoyang Teach. Coll. 15, 44-48.]); Maartmann-Moe (1969[Maartmann-Moe, K. (1969). Acta Cryst. B25, 1452-1460.]); Olsher et al. (1996[Olsher, U., Feinberg, H., Frolow, F. & Shoham, G. (1996). Pure Appl. Chem. 68, 1195-1199.]); Yang et al. (2001[Yang, L., Zhang, T. L., Feng, C. G., Zhang, J. G. & Yu, K. B. (2001). Energ. Mater. 9, 37-39.]); Zhang et al. (2003[Zhang, Y. L., Jiang, W. H., Liu, W. S., Wen, Y. H. & Yu, K. B. (2003). Polyhedron, 22, 1695-1699.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(H2O)6](C6H2N3O7)2·2H2O

  • Mr = 655.28

  • Orthorhombic, P c c n

  • a = 25.344 (6) Å

  • b = 7.1625 (17) Å

  • c = 13.217 (3) Å

  • V = 2399.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 294 (2) K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.835, Tmax = 0.878

  • 11295 measured reflections

  • 2122 independent reflections

  • 1643 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.158

  • S = 1.11

  • 2122 reflections

  • 211 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −1.20 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.120 (3)
Mn1—O3 2.136 (3)
Mn1—O2 2.190 (2)
O1—Mn1—O3 91.52 (11)
O1—Mn1—O3i 88.48 (11)
O1—Mn1—O2i 93.02 (11)
O3i—Mn1—O2i 86.83 (11)
O1—Mn1—O2 86.98 (11)
O3i—Mn1—O2 93.17 (11)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O11ii 0.846 (10) 1.938 (12) 2.780 (4) 173 (4)
O1—H1B⋯O10iii 0.852 (10) 2.10 (2) 2.906 (4) 157 (4)
O2—H2A⋯O10iv 0.848 (10) 2.048 (12) 2.889 (4) 172 (4)
O2—H2A⋯O9iv 0.848 (10) 2.53 (4) 2.986 (4) 115 (3)
O3—H3A⋯O11v 0.832 (10) 1.951 (12) 2.782 (4) 176 (5)
O3—H3B⋯O6vi 0.841 (10) 2.047 (12) 2.884 (4) 174 (5)
O11—H11A⋯O2vii 0.847 (10) 2.213 (19) 3.006 (4) 156 (4)
O11—H11B⋯O10viii 0.846 (10) 2.17 (2) 2.938 (4) 151 (4)
O11—H11B⋯O4viii 0.846 (10) 2.27 (3) 2.913 (4) 133 (4)
O2—H2B⋯O4ix 0.841 (10) 2.143 (19) 2.930 (4) 156 (4)
Symmetry codes: (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x, y-1, z; (vi) [-x+{\script{1\over 2}}, y-1, z+{\script{1\over 2}}]; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (viii) -x+1, -y+2, -z+1; (ix) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Picrate is commonly used as an accompanying ion in many systems involving extraction and transport of metal ions to improve the extractability and selectivity (Zhang et al., 2003; Bibal et al., 2003; García et al., 2004). In many structures, picrate interacts as monodentate, bidentate and tridentate ligand (Olsher et al., 1996). Besides, picrate is a penta-dentate ligand when it coordinates with sodium or potassium cation by chelating pairs of oxygen atoms from p-nitro groups of adjacent picrates, and with successive cation linking the array into two or three-dimensional network (Harrowfield et al., 1995a; Maartmann-Moe, 1969). Furthermore, the picrate interacts as a heptadentate ligand through all its available oxygen donor atoms to coordinate with caesium (Harrowfield et al., 1995a).

Fig. 1 shows the structure and the atomic numbering schemes of the crystal structure of the title manganese picrate complex (I). This situation is similar to the crystal structure of iron (II) picrate (Honda et al., 2003) and Magnesium (II) picrate (Harrowfield et al., 1995b) and the picrate anion adopts a keto form with C6—O10 bond distance of 1.257 (4) Å, C1—C6 and C5—C6 bond distance of 1.447 (5) and 1.456 (5) Å, respectively, which is longer than the other C—C bond lengths (between 1.374 (5) to 1.460 (4) Å) in the benzene ring. The Mn—O distance ranges from 2.120 (2) to 2.190 (2) Å. The bond angle C1—C6—C5 is 111.9 (3)°, which is the case in some picrate complexes, while the corresponding bond angle of picric acid is 116.4 (5)° (Yang et al., 2001). Selected bond lengths and angles are given in Table 1.

In the case of planarity of picrate anion, the ortho nitro group are twisted relative to the plane of the benzene ring, (between 19.01 and 27.69°), while para-positioned nitro group is deviated 13.02° off the benzene ring. The picrate ions are stacked head-to-tail, presumably as a result of charge-transfer interactions. The anion in the stack are linked via short intermolecular O···C and C···C contacts of 3.013, 2.973, 3.089 and 3.065Å for O6···C1x, O7···C5xi, C2···C2x and C4···C4xi [symmetry codes: (x) 1/2 - x, 3/2 - y, z; (xi) 1/2 - x, 5/2 - y, z] respectively (Fig.2). The picrate anions are not parallel to one another, and the dihedral angles between neighbouring benzene planes are 25.01°, 25.25° and 3.48° respectively.

Related literature top

For related literature, see: Bibal et al. (2003); García et al. (2004); Harrowfield et al. (1995a,b); Honda et al. (2003); Ji & Chen (1996); Maartmann-Moe (1969); Olsher et al. (1996); Yang et al. (2001); Zhang et al. (2003).

Experimental top

The title compound (I) was obtained by the reaction of 3.20 g (13.96 mmol) picric acid with 0.80 g (6.98 mmol) manganese carbonate in water (350 ml), according to Ji et al., 1996. Heating has been continued for another 1 h and filtered while it was still hot. The filtrate was partially evaporated and left to stand in open atmosphere for a few days, during which time, yellow crystals suitable for X-Ray determination were obtained. Analysis, calculated for C12H20N6O22Mn: C 21.98, H 3.05, N 12.80, Mn 8.40%; Found: C 22.35, H 3.34, N 12.46, Mn 8.68%.

Refinement top

All H atoms of water were located from difference map and then refined with O—H distances restrained to 0.85 (1) Å. All other H atoms were positioned geometrically and refined using a riding mode with the C—H bond lengths of 0.93 Å and Uiso(H)=1.2Ueq(carrier atom).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level and the atomic labeling scheme.
[Figure 2] Fig. 2. The crystal structure of (I), projected along the c axis. The dashed lines indicate short intermolecular contacts with N···O, C···C and O···C distances less than 3.0, 3.2 and 3.0 Å, respectively. [Symmetry mode: (x) 1/2 - x, 3/2 - y, z; (xi) 1/2 - x, 5/2 - y, z]
Hexaaquamanganese(II) dipicrate dihydrate top
Crystal data top
[Mn(H2O)6](C6H2N3O7)2·2H2OF(000) = 1340
Mr = 655.28Dx = 1.814 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 3819 reflections
a = 25.344 (6) Åθ = 3.0–26.9°
b = 7.1625 (17) ŵ = 0.67 mm1
c = 13.217 (3) ÅT = 294 K
V = 2399.2 (9) Å3Prism, yellow
Z = 40.28 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2122 independent reflections
Radiation source: fine-focus sealed tube1643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3020
Tmin = 0.835, Tmax = 0.878k = 68
11295 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.1031P)2 + 1.8926P]
where P = (Fo2 + 2Fc2)/3
2122 reflections(Δ/σ)max = 0.002
211 parametersΔρmax = 0.50 e Å3
8 restraintsΔρmin = 1.20 e Å3
Crystal data top
[Mn(H2O)6](C6H2N3O7)2·2H2OV = 2399.2 (9) Å3
Mr = 655.28Z = 4
Orthorhombic, PccnMo Kα radiation
a = 25.344 (6) ŵ = 0.67 mm1
b = 7.1625 (17) ÅT = 294 K
c = 13.217 (3) Å0.28 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2122 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1643 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.878Rint = 0.033
11295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0478 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.50 e Å3
2122 reflectionsΔρmin = 1.20 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.00000.50000.0324 (3)
O10.46126 (10)0.2424 (4)0.4457 (2)0.0421 (7)
H1A0.4744 (16)0.322 (5)0.406 (3)0.051*
H1B0.4352 (12)0.300 (6)0.472 (3)0.051*
O20.55826 (9)0.1880 (4)0.56780 (19)0.0330 (6)
H2A0.5744 (14)0.275 (4)0.537 (3)0.040*
H2B0.5784 (12)0.128 (5)0.606 (2)0.040*
O30.45862 (10)0.0148 (5)0.6406 (2)0.0445 (8)
H3A0.4722 (18)0.009 (6)0.6979 (17)0.053*
H3B0.4257 (5)0.002 (6)0.637 (4)0.053*
O40.38727 (10)0.9511 (5)0.2517 (2)0.0513 (8)
O50.31431 (10)0.8379 (4)0.30495 (17)0.0370 (6)
O60.15343 (9)0.9452 (4)0.1363 (2)0.0377 (7)
O70.15241 (9)1.0752 (4)0.0108 (2)0.0394 (7)
O80.31310 (10)1.1774 (4)0.18909 (18)0.0380 (6)
O90.38129 (10)1.0114 (4)0.15080 (19)0.0366 (7)
O100.39594 (9)0.9860 (4)0.05051 (18)0.0341 (6)
N10.34078 (10)0.9135 (4)0.2395 (2)0.0283 (7)
N20.17602 (11)1.0079 (4)0.0613 (2)0.0251 (7)
N30.33772 (10)1.0754 (4)0.1311 (2)0.0258 (6)
C10.31536 (13)0.9605 (5)0.1440 (2)0.0242 (7)
C20.26072 (13)0.9623 (5)0.1463 (3)0.0251 (7)
H20.24280.93700.20620.030*
C30.23318 (13)1.0019 (4)0.0588 (2)0.0235 (7)
C40.25917 (13)1.0386 (4)0.0315 (3)0.0245 (7)
H40.24021.06840.08950.029*
C50.31330 (13)1.0304 (4)0.0340 (2)0.0229 (7)
C60.34639 (13)0.9917 (4)0.0536 (3)0.0246 (7)
O110.50741 (10)0.9801 (4)0.8282 (2)0.0377 (7)
H11A0.4971 (15)0.878 (3)0.854 (3)0.045*
H11B0.5400 (6)0.982 (6)0.842 (3)0.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0302 (5)0.0345 (5)0.0324 (5)0.0018 (3)0.0020 (3)0.0010 (3)
O10.0328 (14)0.0450 (17)0.0486 (17)0.0143 (12)0.0079 (12)0.0177 (13)
O20.0237 (12)0.0355 (14)0.0398 (15)0.0053 (10)0.0081 (10)0.0038 (11)
O30.0233 (14)0.080 (2)0.0299 (15)0.0049 (13)0.0010 (11)0.0035 (14)
O40.0246 (14)0.098 (2)0.0312 (15)0.0061 (14)0.0079 (11)0.0097 (15)
O50.0351 (13)0.0514 (17)0.0247 (13)0.0044 (12)0.0019 (10)0.0052 (12)
O60.0214 (13)0.0518 (17)0.0399 (15)0.0010 (11)0.0062 (11)0.0082 (13)
O70.0202 (13)0.0538 (18)0.0443 (16)0.0023 (12)0.0087 (11)0.0137 (13)
O80.0415 (14)0.0462 (16)0.0263 (13)0.0089 (12)0.0015 (11)0.0059 (12)
O90.0194 (13)0.0578 (18)0.0325 (14)0.0028 (11)0.0030 (10)0.0004 (12)
O100.0160 (12)0.0588 (18)0.0274 (14)0.0035 (10)0.0005 (9)0.0030 (11)
N10.0224 (15)0.0361 (17)0.0265 (15)0.0045 (12)0.0018 (12)0.0022 (13)
N20.0187 (14)0.0231 (15)0.0334 (17)0.0001 (11)0.0012 (12)0.0012 (12)
N30.0235 (14)0.0308 (15)0.0231 (14)0.0023 (12)0.0018 (11)0.0031 (12)
C10.0208 (16)0.0291 (18)0.0226 (16)0.0028 (13)0.0026 (13)0.0010 (14)
C20.0218 (17)0.0265 (18)0.0269 (17)0.0002 (13)0.0015 (13)0.0006 (14)
C30.0180 (16)0.0232 (16)0.0294 (18)0.0012 (12)0.0011 (13)0.0019 (13)
C40.0204 (17)0.0259 (17)0.0271 (17)0.0018 (13)0.0060 (13)0.0009 (14)
C50.0200 (16)0.0263 (18)0.0224 (16)0.0011 (13)0.0000 (13)0.0007 (13)
C60.0208 (17)0.0265 (18)0.0265 (19)0.0016 (13)0.0029 (13)0.0023 (13)
O110.0303 (15)0.0455 (17)0.0374 (16)0.0029 (12)0.0032 (12)0.0069 (12)
Geometric parameters (Å, º) top
Mn1—O12.120 (3)C1—C21.385 (5)
Mn1—O1i2.120 (3)C1—C61.447 (5)
Mn1—O32.136 (3)C2—C31.380 (5)
Mn1—O3i2.136 (3)C3—C41.389 (5)
Mn1—O22.190 (2)C4—C51.374 (5)
Mn1—O22.190 (2)C5—C61.456 (5)
O4—N11.219 (4)C2—H20.931
O5—N11.222 (4)C4—H40.931
O6—N21.229 (4)O1—H1A0.846 (10)
O7—N21.225 (4)O1—H1B0.852 (10)
O8—N31.229 (4)O2—H2A0.848 (10)
O9—N31.224 (4)O2—H2B0.841 (10)
O10—C61.257 (4)O3—H3A0.832 (10)
N1—C11.456 (4)O3—H3B0.841 (10)
N2—C31.450 (4)O11—H11A0.847 (10)
N3—C51.460 (4)O11—H11B0.846 (10)
O1—Mn1—O1i180.0O9—N3—O8123.2 (3)
O1—Mn1—O391.52 (11)O9—N3—C5119.1 (3)
O1i—Mn1—O388.48 (11)O8—N3—C5117.7 (3)
O1—Mn1—O3i88.48 (11)C2—C1—C6124.1 (3)
O1i—Mn1—O3i91.52 (11)C2—C1—N1115.1 (3)
O3—Mn1—O3i180.0C6—C1—N1120.7 (3)
O1—Mn1—O2i93.02 (11)C3—C2—C1119.3 (3)
O1i—Mn1—O2i86.98 (11)C2—C3—C4121.3 (3)
O3—Mn1—O2i93.18 (11)C2—C3—N2119.5 (3)
O3i—Mn1—O2i86.83 (11)C4—C3—N2119.2 (3)
O1—Mn1—O286.98 (11)C5—C4—C3119.1 (3)
O1i—Mn1—O293.02 (11)C4—C5—C6124.4 (3)
O3—Mn1—O286.83 (11)C4—C5—N3115.8 (3)
O3i—Mn1—O293.17 (11)C6—C5—N3119.8 (3)
O2i—Mn1—O2180.0O10—C6—C1124.4 (3)
O4—N1—O5122.3 (3)O10—C6—C5123.8 (3)
O4—N1—C1119.5 (3)C1—C6—C5111.9 (3)
O5—N1—C1118.3 (3)C3—C2—H2120.36
O7—N2—O6123.0 (3)C1—C2—H2120.37
O7—N2—C3118.8 (3)C3—C4—H4120.43
O6—N2—C3118.2 (3)C5—C4—H4120.41
O4—N1—C1—C2162.6 (3)C3—C4—C5—C62.3 (5)
O5—N1—C1—C217.1 (4)C3—C4—C5—N3178.5 (3)
O4—N1—C1—C620.8 (5)O9—N3—C5—C4154.6 (3)
O5—N1—C1—C6159.6 (3)O8—N3—C5—C425.5 (4)
C6—C1—C2—C32.2 (5)O9—N3—C5—C629.0 (4)
N1—C1—C2—C3178.8 (3)O8—N3—C5—C6150.8 (3)
C1—C2—C3—C40.5 (5)C2—C1—C6—O10178.3 (3)
C1—C2—C3—N2178.7 (3)N1—C1—C6—O101.9 (5)
O7—N2—C3—C2167.0 (3)C2—C1—C6—C51.6 (5)
O6—N2—C3—C212.8 (4)N1—C1—C6—C5178.0 (3)
O7—N2—C3—C412.2 (4)C4—C5—C6—O10179.4 (3)
O6—N2—C3—C4168.0 (3)N3—C5—C6—O103.4 (5)
C2—C3—C4—C51.7 (5)C4—C5—C6—C10.7 (4)
N2—C3—C4—C5179.1 (3)N3—C5—C6—C1176.7 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O11ii0.85 (1)1.94 (1)2.780 (4)173 (4)
O1—H1B···O10iii0.85 (1)2.10 (2)2.906 (4)157 (4)
O2—H2A···O10iv0.85 (1)2.05 (1)2.889 (4)172 (4)
O2—H2A···O9iv0.85 (1)2.53 (4)2.986 (4)115 (3)
O3—H3A···O11v0.83 (1)1.95 (1)2.782 (4)176 (5)
O3—H3B···O6vi0.84 (1)2.05 (1)2.884 (4)174 (5)
O11—H11A···O2vii0.85 (1)2.21 (2)3.006 (4)156 (4)
O11—H11B···O10viii0.85 (1)2.17 (2)2.938 (4)151 (4)
O11—H11B···O4viii0.85 (1)2.27 (3)2.913 (4)133 (4)
O2—H2B···O4ix0.84 (1)2.14 (2)2.930 (4)156 (4)
Symmetry codes: (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x, y1, z; (vi) x+1/2, y1, z+1/2; (vii) x+1, y+1/2, z+3/2; (viii) x+1, y+2, z+1; (ix) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(H2O)6](C6H2N3O7)2·2H2O
Mr655.28
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)294
a, b, c (Å)25.344 (6), 7.1625 (17), 13.217 (3)
V3)2399.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.835, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
11295, 2122, 1643
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.158, 1.11
No. of reflections2122
No. of parameters211
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 1.20

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) top
Mn1—O12.120 (3)C1—C21.385 (5)
Mn1—O32.136 (3)C1—C61.447 (5)
Mn1—O22.190 (2)C2—C31.380 (5)
O10—C61.257 (4)C3—C41.389 (5)
N1—C11.456 (4)C4—C51.374 (5)
N2—C31.450 (4)C5—C61.456 (5)
N3—C51.460 (4)
O1—Mn1—O391.52 (11)C2—C3—C4121.3 (3)
O1—Mn1—O3i88.48 (11)C2—C3—N2119.5 (3)
O1—Mn1—O2i93.02 (11)C4—C3—N2119.2 (3)
O3i—Mn1—O2i86.83 (11)C5—C4—C3119.1 (3)
O1—Mn1—O286.98 (11)C4—C5—C6124.4 (3)
O3i—Mn1—O293.17 (11)C4—C5—N3115.8 (3)
C2—C1—C6124.1 (3)C6—C5—N3119.8 (3)
C2—C1—N1115.1 (3)O10—C6—C1124.4 (3)
C6—C1—N1120.7 (3)O10—C6—C5123.8 (3)
C3—C2—C1119.3 (3)C1—C6—C5111.9 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O11ii0.846 (10)1.938 (12)2.780 (4)173 (4)
O1—H1B···O10iii0.852 (10)2.10 (2)2.906 (4)157 (4)
O2—H2A···O10iv0.848 (10)2.048 (12)2.889 (4)172 (4)
O2—H2A···O9iv0.848 (10)2.53 (4)2.986 (4)115 (3)
O3—H3A···O11v0.832 (10)1.951 (12)2.782 (4)176 (5)
O3—H3B···O6vi0.841 (10)2.047 (12)2.884 (4)174 (5)
O11—H11A···O2vii0.847 (10)2.213 (19)3.006 (4)156 (4)
O11—H11B···O10viii0.846 (10)2.17 (2)2.938 (4)151 (4)
O11—H11B···O4viii0.846 (10)2.27 (3)2.913 (4)133 (4)
O2—H2B···O4ix0.841 (10)2.143 (19)2.930 (4)156 (4)
Symmetry codes: (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x, y1, z; (vi) x+1/2, y1, z+1/2; (vii) x+1, y+1/2, z+3/2; (viii) x+1, y+2, z+1; (ix) x+1, y+1, z+1.
 

Acknowledgements

We acknowledge financial support of this study by Zhengzhou University.

References

First citationBibal, B., Declercq, J. P., Dutasta, J. P., Tinant, B. & Valade, A. G. (2003). Tetrahedron, 59, 5849–5854.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarcía, M. M. R., Verboom, W., Reinhoudt, D. N., Malinowska, E., Pietrzak, M. & Wojciechowska, D. (2004). Tetrahedron, 60, 11299–11306.  Google Scholar
First citationHarrowfield, J. M., Skelton, B. W. & White, A. H. (1995a). Aust. J. Chem. 48, 1311–1331.  CSD CrossRef CAS Web of Science Google Scholar
First citationHarrowfield, J. M., Skelton, B. W. & White, A. H. (1995b). Aust. J. Chem. 48, 1333–1347.  CSD CrossRef CAS Web of Science Google Scholar
First citationHonda, K., Yamawaki, H., Matsukawa, M., Goto, M., Matsunaga, T., Aoki, K., Yoshida, M. & Fujiwara, S. (2003). Acta Cryst. C59, m319–m321.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJi, B. M. & Chen, H. T. (1996). J. Luoyang Teach. Coll. 15, 44–48.  Google Scholar
First citationMaartmann-Moe, K. (1969). Acta Cryst. B25, 1452–1460.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOlsher, U., Feinberg, H., Frolow, F. & Shoham, G. (1996). Pure Appl. Chem. 68, 1195–1199.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationYang, L., Zhang, T. L., Feng, C. G., Zhang, J. G. & Yu, K. B. (2001). Energ. Mater. 9, 37–39.  Google Scholar
First citationZhang, Y. L., Jiang, W. H., Liu, W. S., Wen, Y. H. & Yu, K. B. (2003). Polyhedron, 22, 1695–1699.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m270-m271
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds