metal-organic compounds
Hexaaquamanganese(II) dipicrate dihydrate
aDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and bCollege of Pharmacy, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: xiufshi@yahoo.com.cn
In the title compound, [Mn(H2O)6](C6H2N3O7)2·2H2O, the manganese cation, on an inversion centre, is coordinated by six water molecules, but the picrate anion has no coordinative interaction with the manganese cation. The anions in the stack are linked via short intermolecular O⋯C (3.013 and 2.973 Å) and C⋯C (3.089 and 3.065 Å) contacts and hydrogen bonds.
Related literature
For related literature, see: Bibal et al. (2003); García et al. (2004); Harrowfield et al. (1995a,b); Honda et al. (2003); Ji & Chen (1996); Maartmann-Moe (1969); Olsher et al. (1996); Yang et al. (2001); Zhang et al. (2003).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807064276/ww2104sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807064276/ww2104Isup2.hkl
The title compound (I) was obtained by the reaction of 3.20 g (13.96 mmol) picric acid with 0.80 g (6.98 mmol) manganese carbonate in water (350 ml), according to Ji et al., 1996. Heating has been continued for another 1 h and filtered while it was still hot. The filtrate was partially evaporated and left to stand in open atmosphere for a few days, during which time, yellow crystals suitable for X-Ray determination were obtained. Analysis, calculated for C12H20N6O22Mn: C 21.98, H 3.05, N 12.80, Mn 8.40%; Found: C 22.35, H 3.34, N 12.46, Mn 8.68%.
All H atoms of water were located from difference map and then refined with O—H distances restrained to 0.85 (1) Å. All other H atoms were positioned geometrically and refined using a riding mode with the C—H bond lengths of 0.93 Å and Uiso(H)=1.2Ueq(carrier atom).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level and the atomic labeling scheme. | |
Fig. 2. The crystal structure of (I), projected along the c axis. The dashed lines indicate short intermolecular contacts with N···O, C···C and O···C distances less than 3.0, 3.2 and 3.0 Å, respectively. [Symmetry mode: (x) 1/2 - x, 3/2 - y, z; (xi) 1/2 - x, 5/2 - y, z] |
[Mn(H2O)6](C6H2N3O7)2·2H2O | F(000) = 1340 |
Mr = 655.28 | Dx = 1.814 Mg m−3 |
Orthorhombic, Pccn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ab 2ac | Cell parameters from 3819 reflections |
a = 25.344 (6) Å | θ = 3.0–26.9° |
b = 7.1625 (17) Å | µ = 0.67 mm−1 |
c = 13.217 (3) Å | T = 294 K |
V = 2399.2 (9) Å3 | Prism, yellow |
Z = 4 | 0.28 × 0.24 × 0.20 mm |
Bruker SMART CCD area-detector diffractometer | 2122 independent reflections |
Radiation source: fine-focus sealed tube | 1643 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 25.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −30→20 |
Tmin = 0.835, Tmax = 0.878 | k = −6→8 |
11295 measured reflections | l = −14→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.158 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.1031P)2 + 1.8926P] where P = (Fo2 + 2Fc2)/3 |
2122 reflections | (Δ/σ)max = 0.002 |
211 parameters | Δρmax = 0.50 e Å−3 |
8 restraints | Δρmin = −1.20 e Å−3 |
[Mn(H2O)6](C6H2N3O7)2·2H2O | V = 2399.2 (9) Å3 |
Mr = 655.28 | Z = 4 |
Orthorhombic, Pccn | Mo Kα radiation |
a = 25.344 (6) Å | µ = 0.67 mm−1 |
b = 7.1625 (17) Å | T = 294 K |
c = 13.217 (3) Å | 0.28 × 0.24 × 0.20 mm |
Bruker SMART CCD area-detector diffractometer | 2122 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1643 reflections with I > 2σ(I) |
Tmin = 0.835, Tmax = 0.878 | Rint = 0.033 |
11295 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 8 restraints |
wR(F2) = 0.158 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | Δρmax = 0.50 e Å−3 |
2122 reflections | Δρmin = −1.20 e Å−3 |
211 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.5000 | 0.0000 | 0.5000 | 0.0324 (3) | |
O1 | 0.46126 (10) | 0.2424 (4) | 0.4457 (2) | 0.0421 (7) | |
H1A | 0.4744 (16) | 0.322 (5) | 0.406 (3) | 0.051* | |
H1B | 0.4352 (12) | 0.300 (6) | 0.472 (3) | 0.051* | |
O2 | 0.55826 (9) | 0.1880 (4) | 0.56780 (19) | 0.0330 (6) | |
H2A | 0.5744 (14) | 0.275 (4) | 0.537 (3) | 0.040* | |
H2B | 0.5784 (12) | 0.128 (5) | 0.606 (2) | 0.040* | |
O3 | 0.45862 (10) | 0.0148 (5) | 0.6406 (2) | 0.0445 (8) | |
H3A | 0.4722 (18) | 0.009 (6) | 0.6979 (17) | 0.053* | |
H3B | 0.4257 (5) | 0.002 (6) | 0.637 (4) | 0.053* | |
O4 | 0.38727 (10) | 0.9511 (5) | 0.2517 (2) | 0.0513 (8) | |
O5 | 0.31431 (10) | 0.8379 (4) | 0.30495 (17) | 0.0370 (6) | |
O6 | 0.15343 (9) | 0.9452 (4) | 0.1363 (2) | 0.0377 (7) | |
O7 | 0.15241 (9) | 1.0752 (4) | −0.0108 (2) | 0.0394 (7) | |
O8 | 0.31310 (10) | 1.1774 (4) | −0.18909 (18) | 0.0380 (6) | |
O9 | 0.38129 (10) | 1.0114 (4) | −0.15080 (19) | 0.0366 (7) | |
O10 | 0.39594 (9) | 0.9860 (4) | 0.05051 (18) | 0.0341 (6) | |
N1 | 0.34078 (10) | 0.9135 (4) | 0.2395 (2) | 0.0283 (7) | |
N2 | 0.17602 (11) | 1.0079 (4) | 0.0613 (2) | 0.0251 (7) | |
N3 | 0.33772 (10) | 1.0754 (4) | −0.1311 (2) | 0.0258 (6) | |
C1 | 0.31536 (13) | 0.9605 (5) | 0.1440 (2) | 0.0242 (7) | |
C2 | 0.26072 (13) | 0.9623 (5) | 0.1463 (3) | 0.0251 (7) | |
H2 | 0.2428 | 0.9370 | 0.2062 | 0.030* | |
C3 | 0.23318 (13) | 1.0019 (4) | 0.0588 (2) | 0.0235 (7) | |
C4 | 0.25917 (13) | 1.0386 (4) | −0.0315 (3) | 0.0245 (7) | |
H4 | 0.2402 | 1.0684 | −0.0895 | 0.029* | |
C5 | 0.31330 (13) | 1.0304 (4) | −0.0340 (2) | 0.0229 (7) | |
C6 | 0.34639 (13) | 0.9917 (4) | 0.0536 (3) | 0.0246 (7) | |
O11 | 0.50741 (10) | 0.9801 (4) | 0.8282 (2) | 0.0377 (7) | |
H11A | 0.4971 (15) | 0.878 (3) | 0.854 (3) | 0.045* | |
H11B | 0.5400 (6) | 0.982 (6) | 0.842 (3) | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0302 (5) | 0.0345 (5) | 0.0324 (5) | −0.0018 (3) | −0.0020 (3) | 0.0010 (3) |
O1 | 0.0328 (14) | 0.0450 (17) | 0.0486 (17) | 0.0143 (12) | 0.0079 (12) | 0.0177 (13) |
O2 | 0.0237 (12) | 0.0355 (14) | 0.0398 (15) | −0.0053 (10) | −0.0081 (10) | 0.0038 (11) |
O3 | 0.0233 (14) | 0.080 (2) | 0.0299 (15) | −0.0049 (13) | 0.0010 (11) | 0.0035 (14) |
O4 | 0.0246 (14) | 0.098 (2) | 0.0312 (15) | −0.0061 (14) | −0.0079 (11) | 0.0097 (15) |
O5 | 0.0351 (13) | 0.0514 (17) | 0.0247 (13) | 0.0044 (12) | 0.0019 (10) | 0.0052 (12) |
O6 | 0.0214 (13) | 0.0518 (17) | 0.0399 (15) | 0.0010 (11) | 0.0062 (11) | 0.0082 (13) |
O7 | 0.0202 (13) | 0.0538 (18) | 0.0443 (16) | 0.0023 (12) | −0.0087 (11) | 0.0137 (13) |
O8 | 0.0415 (14) | 0.0462 (16) | 0.0263 (13) | 0.0089 (12) | −0.0015 (11) | 0.0059 (12) |
O9 | 0.0194 (13) | 0.0578 (18) | 0.0325 (14) | 0.0028 (11) | 0.0030 (10) | −0.0004 (12) |
O10 | 0.0160 (12) | 0.0588 (18) | 0.0274 (14) | 0.0035 (10) | −0.0005 (9) | 0.0030 (11) |
N1 | 0.0224 (15) | 0.0361 (17) | 0.0265 (15) | 0.0045 (12) | −0.0018 (12) | −0.0022 (13) |
N2 | 0.0187 (14) | 0.0231 (15) | 0.0334 (17) | −0.0001 (11) | −0.0012 (12) | −0.0012 (12) |
N3 | 0.0235 (14) | 0.0308 (15) | 0.0231 (14) | −0.0023 (12) | −0.0018 (11) | −0.0031 (12) |
C1 | 0.0208 (16) | 0.0291 (18) | 0.0226 (16) | 0.0028 (13) | −0.0026 (13) | −0.0010 (14) |
C2 | 0.0218 (17) | 0.0265 (18) | 0.0269 (17) | 0.0002 (13) | 0.0015 (13) | −0.0006 (14) |
C3 | 0.0180 (16) | 0.0232 (16) | 0.0294 (18) | 0.0012 (12) | −0.0011 (13) | −0.0019 (13) |
C4 | 0.0204 (17) | 0.0259 (17) | 0.0271 (17) | 0.0018 (13) | −0.0060 (13) | −0.0009 (14) |
C5 | 0.0200 (16) | 0.0263 (18) | 0.0224 (16) | −0.0011 (13) | 0.0000 (13) | −0.0007 (13) |
C6 | 0.0208 (17) | 0.0265 (18) | 0.0265 (19) | 0.0016 (13) | −0.0029 (13) | −0.0023 (13) |
O11 | 0.0303 (15) | 0.0455 (17) | 0.0374 (16) | −0.0029 (12) | −0.0032 (12) | 0.0069 (12) |
Mn1—O1 | 2.120 (3) | C1—C2 | 1.385 (5) |
Mn1—O1i | 2.120 (3) | C1—C6 | 1.447 (5) |
Mn1—O3 | 2.136 (3) | C2—C3 | 1.380 (5) |
Mn1—O3i | 2.136 (3) | C3—C4 | 1.389 (5) |
Mn1—O2 | 2.190 (2) | C4—C5 | 1.374 (5) |
Mn1—O2 | 2.190 (2) | C5—C6 | 1.456 (5) |
O4—N1 | 1.219 (4) | C2—H2 | 0.931 |
O5—N1 | 1.222 (4) | C4—H4 | 0.931 |
O6—N2 | 1.229 (4) | O1—H1A | 0.846 (10) |
O7—N2 | 1.225 (4) | O1—H1B | 0.852 (10) |
O8—N3 | 1.229 (4) | O2—H2A | 0.848 (10) |
O9—N3 | 1.224 (4) | O2—H2B | 0.841 (10) |
O10—C6 | 1.257 (4) | O3—H3A | 0.832 (10) |
N1—C1 | 1.456 (4) | O3—H3B | 0.841 (10) |
N2—C3 | 1.450 (4) | O11—H11A | 0.847 (10) |
N3—C5 | 1.460 (4) | O11—H11B | 0.846 (10) |
O1—Mn1—O1i | 180.0 | O9—N3—O8 | 123.2 (3) |
O1—Mn1—O3 | 91.52 (11) | O9—N3—C5 | 119.1 (3) |
O1i—Mn1—O3 | 88.48 (11) | O8—N3—C5 | 117.7 (3) |
O1—Mn1—O3i | 88.48 (11) | C2—C1—C6 | 124.1 (3) |
O1i—Mn1—O3i | 91.52 (11) | C2—C1—N1 | 115.1 (3) |
O3—Mn1—O3i | 180.0 | C6—C1—N1 | 120.7 (3) |
O1—Mn1—O2i | 93.02 (11) | C3—C2—C1 | 119.3 (3) |
O1i—Mn1—O2i | 86.98 (11) | C2—C3—C4 | 121.3 (3) |
O3—Mn1—O2i | 93.18 (11) | C2—C3—N2 | 119.5 (3) |
O3i—Mn1—O2i | 86.83 (11) | C4—C3—N2 | 119.2 (3) |
O1—Mn1—O2 | 86.98 (11) | C5—C4—C3 | 119.1 (3) |
O1i—Mn1—O2 | 93.02 (11) | C4—C5—C6 | 124.4 (3) |
O3—Mn1—O2 | 86.83 (11) | C4—C5—N3 | 115.8 (3) |
O3i—Mn1—O2 | 93.17 (11) | C6—C5—N3 | 119.8 (3) |
O2i—Mn1—O2 | 180.0 | O10—C6—C1 | 124.4 (3) |
O4—N1—O5 | 122.3 (3) | O10—C6—C5 | 123.8 (3) |
O4—N1—C1 | 119.5 (3) | C1—C6—C5 | 111.9 (3) |
O5—N1—C1 | 118.3 (3) | C3—C2—H2 | 120.36 |
O7—N2—O6 | 123.0 (3) | C1—C2—H2 | 120.37 |
O7—N2—C3 | 118.8 (3) | C3—C4—H4 | 120.43 |
O6—N2—C3 | 118.2 (3) | C5—C4—H4 | 120.41 |
O4—N1—C1—C2 | −162.6 (3) | C3—C4—C5—C6 | −2.3 (5) |
O5—N1—C1—C2 | 17.1 (4) | C3—C4—C5—N3 | −178.5 (3) |
O4—N1—C1—C6 | 20.8 (5) | O9—N3—C5—C4 | −154.6 (3) |
O5—N1—C1—C6 | −159.6 (3) | O8—N3—C5—C4 | 25.5 (4) |
C6—C1—C2—C3 | −2.2 (5) | O9—N3—C5—C6 | 29.0 (4) |
N1—C1—C2—C3 | −178.8 (3) | O8—N3—C5—C6 | −150.8 (3) |
C1—C2—C3—C4 | 0.5 (5) | C2—C1—C6—O10 | −178.3 (3) |
C1—C2—C3—N2 | −178.7 (3) | N1—C1—C6—O10 | −1.9 (5) |
O7—N2—C3—C2 | 167.0 (3) | C2—C1—C6—C5 | 1.6 (5) |
O6—N2—C3—C2 | −12.8 (4) | N1—C1—C6—C5 | 178.0 (3) |
O7—N2—C3—C4 | −12.2 (4) | C4—C5—C6—O10 | −179.4 (3) |
O6—N2—C3—C4 | 168.0 (3) | N3—C5—C6—O10 | −3.4 (5) |
C2—C3—C4—C5 | 1.7 (5) | C4—C5—C6—C1 | 0.7 (4) |
N2—C3—C4—C5 | −179.1 (3) | N3—C5—C6—C1 | 176.7 (3) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O11ii | 0.85 (1) | 1.94 (1) | 2.780 (4) | 173 (4) |
O1—H1B···O10iii | 0.85 (1) | 2.10 (2) | 2.906 (4) | 157 (4) |
O2—H2A···O10iv | 0.85 (1) | 2.05 (1) | 2.889 (4) | 172 (4) |
O2—H2A···O9iv | 0.85 (1) | 2.53 (4) | 2.986 (4) | 115 (3) |
O3—H3A···O11v | 0.83 (1) | 1.95 (1) | 2.782 (4) | 176 (5) |
O3—H3B···O6vi | 0.84 (1) | 2.05 (1) | 2.884 (4) | 174 (5) |
O11—H11A···O2vii | 0.85 (1) | 2.21 (2) | 3.006 (4) | 156 (4) |
O11—H11B···O10viii | 0.85 (1) | 2.17 (2) | 2.938 (4) | 151 (4) |
O11—H11B···O4viii | 0.85 (1) | 2.27 (3) | 2.913 (4) | 133 (4) |
O2—H2B···O4ix | 0.84 (1) | 2.14 (2) | 2.930 (4) | 156 (4) |
Symmetry codes: (ii) x, −y+3/2, z−1/2; (iii) x, −y+3/2, z+1/2; (iv) −x+1, y−1/2, −z+1/2; (v) x, y−1, z; (vi) −x+1/2, y−1, z+1/2; (vii) −x+1, y+1/2, −z+3/2; (viii) −x+1, −y+2, −z+1; (ix) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mn(H2O)6](C6H2N3O7)2·2H2O |
Mr | 655.28 |
Crystal system, space group | Orthorhombic, Pccn |
Temperature (K) | 294 |
a, b, c (Å) | 25.344 (6), 7.1625 (17), 13.217 (3) |
V (Å3) | 2399.2 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.67 |
Crystal size (mm) | 0.28 × 0.24 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.835, 0.878 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11295, 2122, 1643 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.158, 1.11 |
No. of reflections | 2122 |
No. of parameters | 211 |
No. of restraints | 8 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.50, −1.20 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).
Mn1—O1 | 2.120 (3) | C1—C2 | 1.385 (5) |
Mn1—O3 | 2.136 (3) | C1—C6 | 1.447 (5) |
Mn1—O2 | 2.190 (2) | C2—C3 | 1.380 (5) |
O10—C6 | 1.257 (4) | C3—C4 | 1.389 (5) |
N1—C1 | 1.456 (4) | C4—C5 | 1.374 (5) |
N2—C3 | 1.450 (4) | C5—C6 | 1.456 (5) |
N3—C5 | 1.460 (4) | ||
O1—Mn1—O3 | 91.52 (11) | C2—C3—C4 | 121.3 (3) |
O1—Mn1—O3i | 88.48 (11) | C2—C3—N2 | 119.5 (3) |
O1—Mn1—O2i | 93.02 (11) | C4—C3—N2 | 119.2 (3) |
O3i—Mn1—O2i | 86.83 (11) | C5—C4—C3 | 119.1 (3) |
O1—Mn1—O2 | 86.98 (11) | C4—C5—C6 | 124.4 (3) |
O3i—Mn1—O2 | 93.17 (11) | C4—C5—N3 | 115.8 (3) |
C2—C1—C6 | 124.1 (3) | C6—C5—N3 | 119.8 (3) |
C2—C1—N1 | 115.1 (3) | O10—C6—C1 | 124.4 (3) |
C6—C1—N1 | 120.7 (3) | O10—C6—C5 | 123.8 (3) |
C3—C2—C1 | 119.3 (3) | C1—C6—C5 | 111.9 (3) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O11ii | 0.846 (10) | 1.938 (12) | 2.780 (4) | 173 (4) |
O1—H1B···O10iii | 0.852 (10) | 2.10 (2) | 2.906 (4) | 157 (4) |
O2—H2A···O10iv | 0.848 (10) | 2.048 (12) | 2.889 (4) | 172 (4) |
O2—H2A···O9iv | 0.848 (10) | 2.53 (4) | 2.986 (4) | 115 (3) |
O3—H3A···O11v | 0.832 (10) | 1.951 (12) | 2.782 (4) | 176 (5) |
O3—H3B···O6vi | 0.841 (10) | 2.047 (12) | 2.884 (4) | 174 (5) |
O11—H11A···O2vii | 0.847 (10) | 2.213 (19) | 3.006 (4) | 156 (4) |
O11—H11B···O10viii | 0.846 (10) | 2.17 (2) | 2.938 (4) | 151 (4) |
O11—H11B···O4viii | 0.846 (10) | 2.27 (3) | 2.913 (4) | 133 (4) |
O2—H2B···O4ix | 0.841 (10) | 2.143 (19) | 2.930 (4) | 156 (4) |
Symmetry codes: (ii) x, −y+3/2, z−1/2; (iii) x, −y+3/2, z+1/2; (iv) −x+1, y−1/2, −z+1/2; (v) x, y−1, z; (vi) −x+1/2, y−1, z+1/2; (vii) −x+1, y+1/2, −z+3/2; (viii) −x+1, −y+2, −z+1; (ix) −x+1, −y+1, −z+1. |
Acknowledgements
We acknowledge financial support of this study by Zhengzhou University.
References
Bibal, B., Declercq, J. P., Dutasta, J. P., Tinant, B. & Valade, A. G. (2003). Tetrahedron, 59, 5849–5854. Web of Science CSD CrossRef CAS Google Scholar
Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
García, M. M. R., Verboom, W., Reinhoudt, D. N., Malinowska, E., Pietrzak, M. & Wojciechowska, D. (2004). Tetrahedron, 60, 11299–11306. Google Scholar
Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995a). Aust. J. Chem. 48, 1311–1331. CSD CrossRef CAS Web of Science Google Scholar
Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995b). Aust. J. Chem. 48, 1333–1347. CSD CrossRef CAS Web of Science Google Scholar
Honda, K., Yamawaki, H., Matsukawa, M., Goto, M., Matsunaga, T., Aoki, K., Yoshida, M. & Fujiwara, S. (2003). Acta Cryst. C59, m319–m321. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ji, B. M. & Chen, H. T. (1996). J. Luoyang Teach. Coll. 15, 44–48. Google Scholar
Maartmann-Moe, K. (1969). Acta Cryst. B25, 1452–1460. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Olsher, U., Feinberg, H., Frolow, F. & Shoham, G. (1996). Pure Appl. Chem. 68, 1195–1199. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Yang, L., Zhang, T. L., Feng, C. G., Zhang, J. G. & Yu, K. B. (2001). Energ. Mater. 9, 37–39. Google Scholar
Zhang, Y. L., Jiang, W. H., Liu, W. S., Wen, Y. H. & Yu, K. B. (2003). Polyhedron, 22, 1695–1699. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Picrate is commonly used as an accompanying ion in many systems involving extraction and transport of metal ions to improve the extractability and selectivity (Zhang et al., 2003; Bibal et al., 2003; García et al., 2004). In many structures, picrate interacts as monodentate, bidentate and tridentate ligand (Olsher et al., 1996). Besides, picrate is a penta-dentate ligand when it coordinates with sodium or potassium cation by chelating pairs of oxygen atoms from p-nitro groups of adjacent picrates, and with successive cation linking the array into two or three-dimensional network (Harrowfield et al., 1995a; Maartmann-Moe, 1969). Furthermore, the picrate interacts as a heptadentate ligand through all its available oxygen donor atoms to coordinate with caesium (Harrowfield et al., 1995a).
Fig. 1 shows the structure and the atomic numbering schemes of the crystal structure of the title manganese picrate complex (I). This situation is similar to the crystal structure of iron (II) picrate (Honda et al., 2003) and Magnesium (II) picrate (Harrowfield et al., 1995b) and the picrate anion adopts a keto form with C6—O10 bond distance of 1.257 (4) Å, C1—C6 and C5—C6 bond distance of 1.447 (5) and 1.456 (5) Å, respectively, which is longer than the other C—C bond lengths (between 1.374 (5) to 1.460 (4) Å) in the benzene ring. The Mn—O distance ranges from 2.120 (2) to 2.190 (2) Å. The bond angle C1—C6—C5 is 111.9 (3)°, which is the case in some picrate complexes, while the corresponding bond angle of picric acid is 116.4 (5)° (Yang et al., 2001). Selected bond lengths and angles are given in Table 1.
In the case of planarity of picrate anion, the ortho nitro group are twisted relative to the plane of the benzene ring, (between 19.01 and 27.69°), while para-positioned nitro group is deviated 13.02° off the benzene ring. The picrate ions are stacked head-to-tail, presumably as a result of charge-transfer interactions. The anion in the stack are linked via short intermolecular O···C and C···C contacts of 3.013, 2.973, 3.089 and 3.065Å for O6···C1x, O7···C5xi, C2···C2x and C4···C4xi [symmetry codes: (x) 1/2 - x, 3/2 - y, z; (xi) 1/2 - x, 5/2 - y, z] respectively (Fig.2). The picrate anions are not parallel to one another, and the dihedral angles between neighbouring benzene planes are 25.01°, 25.25° and 3.48° respectively.