metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(benzoato-κ2O,O′)(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)cobalt(II)

aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: pz_zhao@hotmail.com

(Received 14 November 2007; accepted 21 December 2007; online 9 January 2008)

In the title compound, [Co(C7H5O2)2(C14H12N2)], the CoII ion is located on a twofold rotation axis and is chelated by a 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand and two benzoate anions in a distorted octa­hedral geometry. The crystal packing is stabilized by ππ inter­actions between parallel dmphen ligands of neighbouring mol­ecules, with a face-to-face distance of 3.411 (2) Å.

Related literature

For background information on cobalt coordination chemistry, see: Wang et al. (1996[Wang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M. & Dontha, N. (1996). Anal. Chem. 68, 2629-2634.]); Wall et al. (1999[Wall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710-4711.]); Naing et al. (1995[Naing, K., Taniguchi, M., Takahashi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350-356.]). For related structures, see: Wu et al. (2003[Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809-m811.]); Su et al. (2005[Su, J.-R., Gu, J.-M. & Xu, D.-J. (2005). Acta Cryst. E61, m1033-m1035.]); Ding et al. (2006[Ding, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, m2540-m2542.]); Ren et al. (2007[Ren, Y.-L., Liu, Y.-J. & Song, W.-D. (2007). Acta Cryst. E63, m1191-m1193.]); Zhong et al. (2006[Zhong, H., Zeng, X.-R. & Luo, Q.-Y. (2006). Acta Cryst. E62, m3330-m3332.]); Li et al. (2007[Li, Z.-G., Wang, G.-H., Niu, J.-J., Xu, J.-W. & Hu, N.-H. (2007). Acta Cryst. C63, m94-m96.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H5O2)2(C14H12N2)]

  • Mr = 509.41

  • Monoclinic, C 2/c

  • a = 17.632 (3) Å

  • b = 14.410 (2) Å

  • c = 9.5282 (15) Å

  • β = 90.796 (2)°

  • V = 2420.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 293 (2) K

  • 0.30 × 0.22 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.805, Tmax = 0.856

  • 8882 measured reflections

  • 2253 independent reflections

  • 1840 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.06

  • 2253 reflections

  • 180 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1 2.114 (2)
Co1—O1 2.159 (2)
Co1—O2 2.154 (2)

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART (Version 5.624) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART (Version 5.624) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-phenanthroline complexes and their detivatives have attracted much attention because of their peculiar features during recent decades (Wang et al., 1996; Wall et al., 1999; Naing et al., 1995). A number of Co(II) complexes have been synthesized and structures determined (Wu et al., 2003; Su et al., 2005; Ding et al., 2006; Ren et al., 2007; Zhong et al., 2006; Li et al., 2007). The title complex, (I), was recently prepared and its crystal structure is reported here.

Each CoII ion is located on a twofold rotation axis and six-coordinated by two N atoms from a dmphen ligand and four carbonyl O atoms from two benzoate ligands (Fig. 1) with a distorted octahedral geometry (Table 1).

In the crystal structure, molecules are linked into a one dimensional network by π-π interactions between the dmphen ring systems (Fig. 2). These intermolecular interaction occur between the parallel rings within offset face-to-face packing. The face-to-face distance of neighboring parallel rings is 3.411 (2) Å.

Related literature top

For background information on cobalt coordination chemistry, see: Wang et al. (1996); Wall et al. (1999); Naing et al. (1995). For related structures, see: Wu et al. (2003); Su et al. (2005); Ding et al. (2006); Ren et al. (2007); Zhong et al. (2006); Li et al. (2007).

Experimental top

Sodium benzoate (0.1455 g, 1 mmol) and Co(NO3)2.6H2O (0.1456 g, 0.5 mmol) were dissolved in distilled water (15 ml). This solution was added to a solution of 2,9-dimethyl-1,10-phenanthroline hemihydrate (C14H12N2.0.5H2O, 0.1090 g, 0.5 mmol) in ethanol (10 ml). The mixture was refluxed for 4 h. After cooling to room temperature the mixture was filtered. Brown single crystals were obtained by slow evaporation at room temperature after 1 d.

Refinement top

The benzene ring of benzoate ligand is disordered over two positions, site occupancy factors were refined and converged to 0.452 (14) and 0.548 (14), respectively. H atoms were placed in calculated positions and refined in riding model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, and 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with 30% probability displacement ellipsoids, one disordered component has been omitted for clarity. Symmetry code: (A) -x + 1, y, -z + 3/2.
[Figure 2] Fig. 2. The π-π interaction between the dmphen rings of neighboring molecules in the crystal structure.
Bis(benzoato-κ2O,O')(2,9-dimethyl-1,10-phenanthroline-κ2N,N')cobalt(II) top
Crystal data top
[Co(C7H5O2)2(C14H12N2)]F(000) = 1052
Mr = 509.41Dx = 1.398 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2433 reflections
a = 17.632 (3) Åθ = 2.3–22.5°
b = 14.410 (2) ŵ = 0.75 mm1
c = 9.5282 (15) ÅT = 293 K
β = 90.796 (2)°Block, brown
V = 2420.6 (7) Å30.30 × 0.22 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2253 independent reflections
Radiation source: fine-focus sealed tube1840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2121
Tmin = 0.805, Tmax = 0.856k = 1717
8882 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0507P)2 + 2.0726P]
where P = (Fo2 + 2Fc2)/3
2253 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Co(C7H5O2)2(C14H12N2)]V = 2420.6 (7) Å3
Mr = 509.41Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.632 (3) ŵ = 0.75 mm1
b = 14.410 (2) ÅT = 293 K
c = 9.5282 (15) Å0.30 × 0.22 × 0.22 mm
β = 90.796 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2253 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1840 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.856Rint = 0.026
8882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
2253 reflectionsΔρmin = 0.37 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50000.76395 (3)0.75000.0542 (2)
C10.63842 (19)0.7820 (2)0.9976 (4)0.0839 (10)
H1A0.59750.74721.03730.126*
H1B0.67760.79061.06730.126*
H1C0.65850.74880.91910.126*
C20.60968 (14)0.8746 (2)0.9496 (3)0.0593 (7)
C30.63991 (16)0.9577 (2)1.0038 (3)0.0678 (8)
H30.67820.95521.07190.081*
C40.61443 (17)1.0410 (2)0.9589 (3)0.0651 (8)
H40.63451.09530.99660.078*
C50.55731 (15)1.04513 (18)0.8547 (3)0.0560 (6)
C60.52910 (13)0.96006 (17)0.8040 (2)0.0471 (6)
C70.52756 (18)1.1299 (2)0.8001 (3)0.0693 (8)
H70.54631.18610.83380.083*
C80.57021 (17)0.68233 (18)0.5604 (3)0.0602 (7)
C90.6070 (2)0.6373 (2)0.4415 (3)0.054 (4)0.452 (14)
C100.68276 (16)0.6552 (3)0.4177 (4)0.066 (3)0.452 (14)
H100.70950.69540.47660.079*0.452 (14)
C110.71880 (15)0.6135 (3)0.3065 (4)0.078 (6)0.452 (14)
H110.76980.62550.29050.094*0.452 (14)
C120.6791 (3)0.5537 (4)0.2190 (5)0.096 (4)0.452 (14)
H120.70340.52560.14410.115*0.452 (14)
C130.6034 (3)0.5358 (6)0.2427 (7)0.111 (4)0.452 (14)
H130.57670.49560.18380.133*0.452 (14)
C140.5674 (3)0.5776 (6)0.3540 (6)0.084 (3)0.452 (14)
H140.51640.56550.37000.100*0.452 (14)
C9'0.6177 (2)0.63122 (19)0.4495 (3)0.056 (3)0.548 (14)
C10'0.68099 (17)0.6701 (2)0.3936 (5)0.064 (3)0.548 (14)
H10'0.69700.72840.42360.077*0.548 (14)
C11'0.72124 (15)0.6236 (2)0.2934 (4)0.083 (5)0.548 (14)
H11'0.76430.65050.25530.100*0.548 (14)
C12'0.6981 (3)0.5377 (2)0.2495 (5)0.084 (3)0.548 (14)
H12'0.72570.50590.18230.101*0.548 (14)
C13'0.6347 (5)0.4987 (3)0.3043 (9)0.090 (3)0.548 (14)
H13'0.61850.44070.27340.108*0.548 (14)
C14'0.5949 (4)0.5449 (3)0.4048 (7)0.072 (2)0.548 (14)
H14'0.55210.51770.44310.087*0.548 (14)
N10.55395 (11)0.87653 (14)0.8526 (2)0.0496 (5)
O10.60107 (14)0.74637 (15)0.6274 (3)0.0847 (5)
O20.50361 (13)0.65984 (16)0.5879 (2)0.0847 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0625 (3)0.0494 (3)0.0509 (3)0.0000.0041 (2)0.000
C10.076 (2)0.098 (3)0.077 (2)0.0292 (18)0.0178 (17)0.0002 (18)
C20.0486 (14)0.0791 (19)0.0502 (15)0.0093 (13)0.0026 (11)0.0044 (13)
C30.0521 (16)0.098 (2)0.0530 (16)0.0035 (15)0.0033 (12)0.0160 (15)
C40.0679 (18)0.075 (2)0.0522 (16)0.0159 (15)0.0081 (13)0.0161 (14)
C50.0638 (16)0.0613 (16)0.0433 (13)0.0074 (12)0.0138 (12)0.0070 (11)
C60.0506 (14)0.0547 (14)0.0363 (12)0.0007 (11)0.0101 (10)0.0017 (10)
C70.099 (2)0.0540 (16)0.0549 (17)0.0078 (14)0.0167 (14)0.0058 (12)
C80.0749 (18)0.0479 (15)0.0579 (16)0.0033 (13)0.0010 (14)0.0031 (12)
C90.059 (5)0.049 (7)0.055 (7)0.002 (5)0.015 (5)0.007 (5)
C100.066 (8)0.075 (6)0.056 (5)0.008 (5)0.008 (5)0.001 (4)
C110.051 (9)0.105 (12)0.079 (10)0.001 (8)0.001 (7)0.006 (10)
C120.096 (7)0.120 (9)0.072 (6)0.012 (6)0.010 (5)0.035 (5)
C130.103 (7)0.129 (9)0.103 (7)0.024 (7)0.017 (6)0.059 (7)
C140.074 (5)0.089 (6)0.088 (6)0.014 (5)0.013 (5)0.034 (5)
C9'0.062 (5)0.058 (6)0.047 (6)0.003 (4)0.004 (4)0.006 (4)
C10'0.062 (6)0.059 (4)0.073 (4)0.000 (4)0.004 (4)0.009 (4)
C11'0.071 (9)0.099 (9)0.080 (9)0.007 (7)0.028 (7)0.012 (8)
C12'0.076 (4)0.110 (6)0.067 (4)0.015 (5)0.016 (4)0.010 (5)
C13'0.097 (6)0.086 (5)0.086 (5)0.018 (4)0.010 (4)0.039 (4)
C14'0.068 (4)0.073 (4)0.077 (4)0.020 (3)0.016 (4)0.014 (3)
N10.0488 (12)0.0589 (13)0.0412 (11)0.0050 (9)0.0029 (9)0.0033 (9)
O10.0876 (11)0.0800 (11)0.0870 (11)0.0088 (8)0.0221 (9)0.0209 (8)
O20.0876 (11)0.0800 (11)0.0870 (11)0.0088 (8)0.0221 (9)0.0209 (8)
Geometric parameters (Å, º) top
Co1—N12.114 (2)C8—C91.465 (4)
Co1—N1i2.114 (2)C8—C9'1.544 (4)
Co1—O12.159 (2)C9—C101.3816 (16)
Co1—O1i2.159 (2)C9—C141.3816 (16)
Co1—O2i2.154 (2)C10—C111.3815 (16)
Co1—O22.154 (2)C10—H100.9300
Co1—C8i2.498 (3)C11—C121.3816 (16)
C1—C21.497 (4)C11—H110.9300
C1—H1A0.9600C12—C131.3816 (16)
C1—H1B0.9600C12—H120.9300
C1—H1C0.9600C13—C141.3816 (16)
C2—N11.339 (3)C13—H130.9300
C2—C31.406 (4)C14—H140.9300
C3—C41.349 (4)C9'—C10'1.3643 (16)
C3—H30.9300C9'—C14'1.3726 (16)
C4—C51.406 (4)C10'—C11'1.3726 (16)
C4—H40.9300C10'—H10'0.9300
C5—C61.406 (3)C11'—C12'1.3660 (16)
C5—C71.425 (4)C11'—H11'0.9300
C6—N11.360 (3)C12'—C13'1.3619 (15)
C6—C6i1.444 (5)C12'—H12'0.9300
C7—C7i1.353 (6)C13'—C14'1.3685 (16)
C7—H70.9300C13'—H13'0.9300
C8—O11.243 (3)C14'—H14'0.9300
C8—O21.249 (3)
N1—Co1—N1i79.73 (11)O1—C8—C9122.0 (3)
N1—Co1—O2i102.73 (9)O2—C8—C9118.4 (3)
N1i—Co1—O2i148.05 (8)O1—C8—C9'117.9 (3)
N1—Co1—O2148.05 (8)O2—C8—C9'122.7 (3)
N1i—Co1—O2102.73 (9)C10—C9—C14120.0
O2i—Co1—O291.74 (13)C10—C9—C8118.9 (2)
N1—Co1—O188.33 (8)C14—C9—C8121.1 (2)
N1i—Co1—O1102.08 (9)C11—C10—C9120.0
O2i—Co1—O1109.81 (9)C11—C10—H10120.0
O2—Co1—O159.85 (8)C9—C10—H10120.0
N1—Co1—O1i102.08 (9)C10—C11—C12120.0
N1i—Co1—O1i88.33 (8)C10—C11—H11120.0
O2i—Co1—O1i59.85 (8)C12—C11—H11120.0
O2—Co1—O1i109.81 (9)C11—C12—C13120.0
O1—Co1—O1i166.53 (12)C11—C12—H12120.0
N1—Co1—C8i104.54 (8)C13—C12—H12120.0
N1i—Co1—C8i118.14 (8)C12—C13—C14120.0
O2i—Co1—C8i30.01 (8)C12—C13—H13120.0
O2—Co1—C8i102.14 (9)C14—C13—H13120.0
O1—Co1—C8i139.20 (10)C9—C14—C13120.0
O1i—Co1—C8i29.84 (8)C9—C14—H14120.0
C2—C1—H1A109.5C13—C14—H14120.0
C2—C1—H1B109.5C10'—C9'—C14'119.2
H1A—C1—H1B109.5C10'—C9'—C8121.72 (19)
C2—C1—H1C109.5C14'—C9'—C8119.06 (19)
H1A—C1—H1C109.5C9'—C10'—C11'120.3
H1B—C1—H1C109.5C9'—C10'—H10'119.8
N1—C2—C3120.4 (3)C11'—C10'—H10'119.8
N1—C2—C1118.1 (3)C12'—C11'—C10'120.0
C3—C2—C1121.4 (3)C12'—C11'—H11'120.0
C4—C3—C2121.2 (3)C10'—C11'—H11'120.0
C4—C3—H3119.4C13'—C12'—C11'120.0
C2—C3—H3119.4C13'—C12'—H12'120.0
C3—C4—C5119.6 (3)C11'—C12'—H12'120.0
C3—C4—H4120.2C12'—C13'—C14'119.9
C5—C4—H4120.2C12'—C13'—H13'120.0
C4—C5—C6116.9 (3)C14'—C13'—H13'120.0
C4—C5—C7123.4 (3)C13'—C14'—C9'120.5
C6—C5—C7119.7 (2)C13'—C14'—H14'119.8
N1—C6—C5123.0 (2)C9'—C14'—H14'119.8
N1—C6—C6i117.74 (13)C2—N1—C6118.9 (2)
C5—C6—C6i119.30 (15)C2—N1—Co1128.61 (18)
C7i—C7—C5120.99 (16)C6—N1—Co1112.39 (15)
C7i—C7—H7119.5C8—O1—Co190.36 (19)
C5—C7—H7119.5C8—O2—Co190.41 (17)
O1—C8—O2119.4 (3)
N1—C2—C3—C40.8 (4)C3—C2—N1—C62.3 (4)
C1—C2—C3—C4179.2 (3)C1—C2—N1—C6177.6 (2)
C2—C3—C4—C50.8 (4)C3—C2—N1—Co1178.41 (18)
C3—C4—C5—C60.8 (4)C1—C2—N1—Co11.5 (4)
C3—C4—C5—C7179.4 (3)C5—C6—N1—C22.4 (3)
C4—C5—C6—N10.9 (4)C6i—C6—N1—C2177.8 (2)
C7—C5—C6—N1179.0 (2)C5—C6—N1—Co1179.10 (18)
C4—C5—C6—C6i179.4 (2)C6i—C6—N1—Co11.2 (3)
C7—C5—C6—C6i0.8 (4)N1i—Co1—N1—C2176.7 (3)
C4—C5—C7—C7i179.9 (3)O2i—Co1—N1—C235.9 (2)
C6—C5—C7—C7i0.0 (5)O2—Co1—N1—C279.0 (3)
O1—C8—C9—C1011.2 (5)O1—Co1—N1—C274.1 (2)
O2—C8—C9—C10174.2 (4)O1i—Co1—N1—C297.3 (2)
C9'—C8—C9—C1049.13 (12)C8i—Co1—N1—C266.7 (2)
O1—C8—C9—C14169.0 (5)N1i—Co1—N1—C60.41 (11)
O2—C8—C9—C145.7 (5)O2i—Co1—N1—C6147.88 (16)
C9'—C8—C9—C14130.70 (19)O2—Co1—N1—C697.2 (2)
C14—C9—C10—C110.0O1—Co1—N1—C6102.19 (17)
C8—C9—C10—C11179.8 (3)O1i—Co1—N1—C686.45 (17)
C9—C10—C11—C120.0C8i—Co1—N1—C6117.03 (16)
C10—C11—C12—C130.0O2—C8—O1—Co10.7 (3)
C11—C12—C13—C140.0C9—C8—O1—Co1175.3 (3)
C10—C9—C14—C130.0C9'—C8—O1—Co1177.0 (2)
C8—C9—C14—C13179.8 (3)N1—Co1—O1—C8177.35 (18)
C12—C13—C14—C90.0N1i—Co1—O1—C898.22 (18)
O1—C8—C9'—C10'20.3 (5)O2i—Co1—O1—C879.71 (19)
O2—C8—C9'—C10'162.1 (4)O2—Co1—O1—C80.39 (17)
C9—C8—C9'—C10'103.27 (16)O1i—Co1—O1—C841.69 (17)
O1—C8—C9'—C14'160.6 (4)C8i—Co1—O1—C872.1 (3)
O2—C8—C9'—C14'17.0 (5)O1—C8—O2—Co10.7 (3)
C9—C8—C9'—C14'75.85 (18)C9—C8—O2—Co1175.5 (3)
C14'—C9'—C10'—C11'0.3C9'—C8—O2—Co1176.9 (3)
C8—C9'—C10'—C11'178.9 (3)N1—Co1—O2—C86.1 (3)
C9'—C10'—C11'—C12'0.3N1i—Co1—O2—C897.09 (18)
C10'—C11'—C12'—C13'0.6O2i—Co1—O2—C8111.61 (19)
C11'—C12'—C13'—C14'1.0O1—Co1—O2—C80.38 (17)
C12'—C13'—C14'—C9'1.0O1i—Co1—O2—C8170.06 (17)
C10'—C9'—C14'—C13'0.6C8i—Co1—O2—C8140.01 (16)
C8—C9'—C14'—C13'178.5 (3)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C7H5O2)2(C14H12N2)]
Mr509.41
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.632 (3), 14.410 (2), 9.5282 (15)
β (°) 90.796 (2)
V3)2420.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.30 × 0.22 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.805, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
8882, 2253, 1840
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.06
No. of reflections2253
No. of parameters180
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.37

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Bruker, 2001).

Selected bond lengths (Å) top
Co1—N12.114 (2)Co1—O22.154 (2)
Co1—O12.159 (2)
 

Acknowledgements

Financial support from the Science Fund of Henan Province for Distinguished Young Scholars (grant No. 074100510005) is gratefully acknowledged.

References

First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SMART (Version 5.624) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, m2540–m2542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z.-G., Wang, G.-H., Niu, J.-J., Xu, J.-W. & Hu, N.-H. (2007). Acta Cryst. C63, m94–m96.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaing, K., Taniguchi, M., Takahashi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350–356.  CrossRef CAS Web of Science Google Scholar
First citationRen, Y.-L., Liu, Y.-J. & Song, W.-D. (2007). Acta Cryst. E63, m1191–m1193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSu, J.-R., Gu, J.-M. & Xu, D.-J. (2005). Acta Cryst. E61, m1033–m1035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710–4711.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M. & Dontha, N. (1996). Anal. Chem. 68, 2629–2634.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809–m811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, H., Zeng, X.-R. & Luo, Q.-Y. (2006). Acta Cryst. E62, m3330–m3332.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds