organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Furoyl-3-methyl-3-phenyl­thio­urea

aDepartamento de Química Inorgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba, bInstituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, cInstituto de Ciencia y Tecnología de Materiales, Universidad de la Habana, Habana 10400, Cuba, and dLaboratório de Física, Universidade Federal do Tocantins, CEP 77020-120, Palmas, Tocantins, Brazil
*Correspondence e-mail: hperez@fq.uh.cu

(Received 19 December 2007; accepted 29 December 2007; online 25 January 2008)

The title compound, C13H12N2O2S, crystallizes with two independent mol­ecules in the asymmetric unit. The two mol­ecules differ in the conformation of the thio­carbonyl and carbonyl groups, and show the typical geometric parameters of substituted thio­urea derivatives. The crystal structure is mainly stabilized by inter­molecular N—H⋯O hydrogen bonding.

Related literature

For general background, see: Estévez-Hernández et al. (2007[Estévez-Hernández, O., Hidalgo, J. L., Reguera, E. & Naranjo, I. (2007). Sens. Actuators B, 120, 766-772.]); Otazo et al. (2001[Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]). For related structures, see: Koch et al. (1995[Koch, K. R., Sacht, C. & Bourne, S. (1995). Inorg. Chim. Acta, 232, 109-115.]); Morales et al. (1997[Morales, A. D., García-Granda, S., Esteva, J. R., Stevens, A. P. & Crespo, G. A. A. (1997). Acta Cryst. C53, IUC9700019.]). For synthesis, see: Otazo et al. (2001[Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O2S

  • Mr = 260.31

  • Monoclinic, P 21 /c

  • a = 10.242 (1) Å

  • b = 13.525 (1) Å

  • c = 18.432 (2) Å

  • β = 96.115 (4)°

  • V = 2538.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 150 (2) K

  • 0.12 × 0.08 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 23939 measured reflections

  • 4440 independent reflections

  • 2828 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.117

  • S = 1.01

  • 4440 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.88 2.54 3.331 (3) 149
N4—H4⋯O1ii 0.88 2.17 3.010 (2) 159
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Substituted N-acylthioureas have been a subject of investigations, due to their ability to form stable metal complexes and as ionophores in potenciometric and amperometric sensors for Cd(II), Hg(II) and Pb(II) (Otazo et al., 2001; Estévez-Hernández et al., 2007). The title compound, (I) (Fig. 1), is another example of our newly synthesized furoylthiourea derivatives, which shows outstanding complexation properties.

The main bond lengths and angles are given in Table 1, and are within the ranges obtained for similar compounds (Koch et al., 1995; Morales et al., 1997). The C—S and C3—O1, C16—O3 bonds show typical double-bond character. However, the C—N bond lengths, C2—N1, C2—N2, C3—N2, and the corresponding lengths for the other molecule are shorter than the normal C—N single-bond length of about 1.48 Å. These results can be explained by the existence of resonance in this part of the molecule. The crystal structure is stabilized by intermolecular N2—H2···O3 and N4—H4···O1 hydrogen-bonds (Table 2) between asymmetric units (Fig. 2).

The dihedral angles of two independent molecules between the furan and benzene ring planes are 67.8 (1)° and 82.8 (1)°, respectively. In addition, the conformation with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the torsion angles O1—C3—N2—C2 and C3—N2—C2—N1 of 0.3 (4) and -66.0 (3)° for one molecule, and O3—C16—N4—C15 and C16—N4—C15—N3 of -21.2 (4) and 61.9 (3)° for the other one.

Related literature top

For general background, see: Estévez-Hernández et al. (2007); Otazo et al. (2001). For related structures, see: Koch et al. (1995); Morales et al. (1997). For synthesis, see: Otazo et al. (2001).

Experimental top

The title compound, (I), was synthesized according to a procedure described by Otazo et al. (2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with the appropriate amine. The resulting solid product was crystallized from a dichlorometane-methanol (1:1) mixture yielding X-ray quality single crystals (m.p. 374.5 K). Elemental analysis for C13H12N2O2S found: C 55.7, H 7.5, N 9.6, S 22.1%; calculated: C 56.34, H 7.43, N 9.4, S 21.5%.

Refinement top

H atoms were placed in calculated positions with N—H = 0.88 Å and C—H = 0.95 Å (aromatic) or 0.98 Å (methyl), and refined in riding model, Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C,N) for others.

Computing details top

Data collection: Collect (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular interaction observed between asymmetric units. Hydrogen-bonding is indicated by a dashed line.
1-Furoyl-3-methyl-3-phenylthiourea top
Crystal data top
C13H12N2O2SF(000) = 1088
Mr = 260.31Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17369 reflections
a = 10.242 (1) Åθ = 2.9–26.0°
b = 13.525 (1) ŵ = 0.25 mm1
c = 18.432 (2) ÅT = 150 K
β = 96.115 (4)°Prism, colourless
V = 2538.7 (4) Å30.12 × 0.08 × 0.06 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.093
CCD scansθmax = 25.0°, θmin = 3.2°
23939 measured reflectionsh = 1212
4440 independent reflectionsk = 1516
2828 reflections with I > 2σ(I)l = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.0231P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max = 0.004
S = 1.01Δρmax = 0.26 e Å3
4440 reflectionsΔρmin = 0.39 e Å3
327 parameters
Crystal data top
C13H12N2O2SV = 2538.7 (4) Å3
Mr = 260.31Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.242 (1) ŵ = 0.25 mm1
b = 13.525 (1) ÅT = 150 K
c = 18.432 (2) Å0.12 × 0.08 × 0.06 mm
β = 96.115 (4)°
Data collection top
Nonius KappaCCD
diffractometer
2828 reflections with I > 2σ(I)
23939 measured reflectionsRint = 0.093
4440 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
4440 reflectionsΔρmin = 0.39 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2294 (3)0.8708 (2)0.23749 (18)0.0532 (8)
H1A0.29260.89390.20490.08*
H1B0.27490.85930.28630.08*
H1C0.16110.9210.24030.08*
C140.2728 (3)0.3832 (2)0.26750 (17)0.0560 (9)
H14A0.34570.42050.25060.084*
H14B0.21450.42850.29030.084*
H14C0.22340.35020.22590.084*
C20.1449 (2)0.76315 (19)0.13688 (16)0.0351 (7)
C150.3838 (2)0.22823 (19)0.29748 (14)0.0339 (6)
C30.1874 (2)0.58628 (18)0.12911 (14)0.0302 (6)
C160.3287 (2)0.10391 (18)0.38668 (14)0.0309 (6)
C40.1288 (2)0.49232 (18)0.10477 (14)0.0298 (6)
C170.3758 (2)0.00693 (18)0.41385 (14)0.0302 (6)
C50.0051 (2)0.4590 (2)0.09248 (17)0.0452 (8)
H50.07260.49630.09570.054*
C180.4789 (2)0.04906 (19)0.40147 (15)0.0355 (7)
H180.5470.03160.37270.043*
C60.0122 (3)0.3574 (2)0.07366 (17)0.0450 (8)
H60.05920.31320.06260.054*
C190.4675 (2)0.13922 (19)0.43928 (16)0.0386 (7)
H190.52660.19350.44130.046*
C70.1390 (3)0.3370 (2)0.07479 (15)0.0398 (7)
H70.1730.2740.06370.048*
C200.3574 (3)0.13276 (19)0.47157 (16)0.0396 (7)
H200.32490.18330.50060.047*
C80.1275 (2)0.70935 (19)0.26202 (15)0.0341 (6)
C210.3303 (2)0.33719 (18)0.39653 (15)0.0341 (6)
C90.2181 (2)0.6730 (2)0.31625 (16)0.0389 (7)
H90.30790.69150.31790.047*
C220.4509 (3)0.34928 (19)0.43744 (17)0.0437 (7)
H220.53030.33390.41750.052*
C100.1775 (3)0.6096 (2)0.36825 (16)0.0463 (8)
H100.23960.58420.40560.056*
C230.4529 (4)0.3848 (2)0.5091 (2)0.0604 (10)
H230.53430.3930.53840.072*
C110.0467 (3)0.5832 (2)0.36605 (17)0.0445 (7)
H110.01910.53940.40170.053*
C240.3370 (4)0.4078 (2)0.53737 (19)0.0632 (10)
H240.33880.43240.58570.076*
C120.0436 (3)0.6203 (2)0.31213 (18)0.0451 (8)
H120.13330.60170.31060.054*
C250.2198 (4)0.3950 (2)0.4957 (2)0.0555 (9)
H250.14030.41110.51520.067*
C130.0042 (2)0.6846 (2)0.26012 (16)0.0415 (7)
H130.06660.71130.22360.05*
C260.2157 (3)0.3593 (2)0.42587 (17)0.0428 (7)
H260.13350.34980.39770.051*
O10.29958 (15)0.59531 (12)0.15853 (10)0.0392 (5)
O30.21895 (15)0.13554 (12)0.39322 (10)0.0390 (5)
O20.21429 (15)0.41764 (12)0.09384 (10)0.0385 (5)
O40.29752 (15)0.04324 (13)0.45720 (10)0.0399 (5)
N10.16896 (19)0.77824 (15)0.20905 (13)0.0362 (5)
N30.32476 (19)0.30851 (16)0.32120 (12)0.0370 (6)
N20.10521 (19)0.66592 (15)0.11680 (12)0.0352 (6)
H20.02510.65620.09570.042*
N40.41900 (18)0.15394 (15)0.35015 (12)0.0324 (5)
H40.50260.1390.360.039*
S10.16001 (7)0.84691 (5)0.07255 (4)0.0453 (2)
S20.41662 (7)0.21011 (6)0.21239 (4)0.0489 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (2)0.0363 (18)0.054 (2)0.0138 (14)0.0010 (16)0.0080 (15)
C140.077 (2)0.052 (2)0.039 (2)0.0213 (16)0.0060 (16)0.0122 (16)
C20.0294 (13)0.0317 (16)0.044 (2)0.0030 (11)0.0016 (12)0.0027 (14)
C150.0277 (13)0.0402 (17)0.0344 (17)0.0004 (11)0.0063 (11)0.0031 (14)
C30.0323 (15)0.0325 (16)0.0268 (16)0.0011 (11)0.0080 (11)0.0008 (12)
C160.0300 (14)0.0341 (16)0.0286 (17)0.0020 (11)0.0037 (11)0.0026 (12)
C40.0317 (14)0.0283 (15)0.0295 (16)0.0059 (11)0.0031 (11)0.0014 (12)
C170.0274 (13)0.0321 (15)0.0308 (17)0.0074 (11)0.0014 (11)0.0004 (12)
C50.0313 (15)0.0412 (18)0.062 (2)0.0021 (12)0.0024 (13)0.0063 (16)
C180.0315 (14)0.0323 (16)0.0444 (18)0.0015 (12)0.0122 (12)0.0007 (14)
C60.0445 (17)0.0326 (17)0.056 (2)0.0088 (12)0.0020 (14)0.0038 (15)
C190.0378 (15)0.0346 (17)0.0436 (19)0.0020 (12)0.0062 (13)0.0012 (14)
C70.0495 (18)0.0266 (16)0.0420 (19)0.0019 (13)0.0013 (13)0.0048 (13)
C200.0490 (17)0.0304 (16)0.0389 (19)0.0007 (12)0.0028 (13)0.0062 (13)
C80.0402 (15)0.0288 (15)0.0334 (17)0.0011 (11)0.0045 (12)0.0053 (13)
C210.0412 (15)0.0284 (15)0.0334 (18)0.0001 (11)0.0070 (12)0.0053 (13)
C90.0358 (15)0.0438 (17)0.0376 (18)0.0029 (12)0.0066 (13)0.0033 (14)
C220.0453 (17)0.0353 (17)0.049 (2)0.0010 (13)0.0010 (14)0.0050 (15)
C100.0451 (17)0.053 (2)0.041 (2)0.0050 (14)0.0053 (14)0.0009 (16)
C230.084 (3)0.0342 (19)0.056 (3)0.0078 (16)0.0251 (19)0.0051 (17)
C110.0477 (17)0.0416 (18)0.047 (2)0.0020 (13)0.0177 (14)0.0003 (15)
C240.123 (3)0.0331 (19)0.035 (2)0.0044 (19)0.012 (2)0.0034 (15)
C120.0379 (16)0.0438 (18)0.055 (2)0.0028 (13)0.0122 (14)0.0054 (16)
C250.081 (2)0.0375 (19)0.052 (2)0.0048 (16)0.0279 (19)0.0048 (17)
C130.0358 (15)0.0379 (17)0.050 (2)0.0019 (12)0.0020 (13)0.0054 (15)
C260.0473 (16)0.0383 (18)0.045 (2)0.0007 (13)0.0127 (14)0.0042 (15)
O10.0276 (10)0.0407 (11)0.0491 (13)0.0014 (8)0.0033 (8)0.0089 (9)
O30.0271 (10)0.0377 (11)0.0534 (14)0.0017 (8)0.0096 (8)0.0049 (9)
O20.0369 (10)0.0320 (11)0.0463 (13)0.0014 (8)0.0033 (8)0.0040 (9)
O40.0359 (10)0.0405 (12)0.0448 (13)0.0017 (8)0.0111 (8)0.0081 (9)
N10.0414 (12)0.0281 (13)0.0381 (16)0.0031 (9)0.0002 (10)0.0016 (11)
N30.0417 (12)0.0370 (14)0.0327 (15)0.0092 (10)0.0060 (10)0.0061 (11)
N20.0304 (11)0.0299 (13)0.0431 (15)0.0005 (9)0.0060 (9)0.0039 (11)
N40.0249 (11)0.0361 (13)0.0367 (15)0.0017 (9)0.0051 (9)0.0079 (11)
S10.0509 (4)0.0379 (4)0.0480 (5)0.0009 (3)0.0090 (3)0.0061 (4)
S20.0498 (4)0.0634 (6)0.0351 (5)0.0115 (4)0.0115 (3)0.0031 (4)
Geometric parameters (Å, º) top
C1—N11.468 (3)C19—H190.95
C1—H1A0.98C7—O21.360 (3)
C1—H1B0.98C7—H70.95
C1—H1C0.98C20—O41.370 (3)
C14—N31.473 (3)C20—H200.95
C14—H14A0.98C8—C91.380 (4)
C14—H14B0.98C8—C131.386 (3)
C14—H14C0.98C8—N11.446 (3)
C2—N11.342 (3)C21—C261.376 (4)
C2—N21.414 (3)C21—C221.387 (4)
C2—S11.659 (3)C21—N31.437 (3)
C15—N31.339 (3)C9—C101.383 (4)
C15—N41.417 (3)C9—H90.95
C15—S21.657 (3)C22—C231.404 (5)
C3—O11.223 (3)C22—H220.95
C3—N21.371 (3)C10—C111.383 (4)
C3—C41.456 (3)C10—H100.95
C16—O31.221 (3)C23—C241.381 (5)
C16—N41.378 (3)C23—H230.95
C16—C171.467 (3)C11—C121.378 (4)
C4—C51.341 (3)C11—H110.95
C4—O21.366 (3)C24—C251.365 (5)
C17—C181.338 (3)C24—H240.95
C17—O41.371 (3)C12—C131.386 (4)
C5—C61.421 (4)C12—H120.95
C5—H50.95C25—C261.371 (4)
C18—C191.416 (4)C25—H250.95
C18—H180.95C13—H130.95
C6—C71.326 (3)C26—H260.95
C6—H60.95N2—H20.88
C19—C201.333 (4)N4—H40.88
N1—C1—H1A109.5C9—C8—N1119.7 (2)
N1—C1—H1B109.5C13—C8—N1119.6 (2)
H1A—C1—H1B109.5C26—C21—C22120.5 (3)
N1—C1—H1C109.5C26—C21—N3119.4 (2)
H1A—C1—H1C109.5C22—C21—N3119.9 (2)
H1B—C1—H1C109.5C8—C9—C10119.6 (2)
N3—C14—H14A109.5C8—C9—H9120.2
N3—C14—H14B109.5C10—C9—H9120.2
H14A—C14—H14B109.5C21—C22—C23118.3 (3)
N3—C14—H14C109.5C21—C22—H22120.8
H14A—C14—H14C109.5C23—C22—H22120.8
H14B—C14—H14C109.5C9—C10—C11120.1 (3)
N1—C2—N2114.7 (2)C9—C10—H10119.9
N1—C2—S1125.7 (2)C11—C10—H10119.9
N2—C2—S1119.6 (2)C24—C23—C22120.3 (3)
N3—C15—N4116.2 (2)C24—C23—H23119.8
N3—C15—S2125.0 (2)C22—C23—H23119.8
N4—C15—S2118.77 (19)C12—C11—C10120.0 (3)
O1—C3—N2121.7 (2)C12—C11—H11120
O1—C3—C4124.1 (2)C10—C11—H11120
N2—C3—C4114.2 (2)C25—C24—C23119.9 (3)
O3—C16—N4123.3 (2)C25—C24—H24120
O3—C16—C17123.5 (2)C23—C24—H24120
N4—C16—C17113.1 (2)C11—C12—C13120.3 (3)
C5—C4—O2109.6 (2)C11—C12—H12119.9
C5—C4—C3134.1 (2)C13—C12—H12119.9
O2—C4—C3116.2 (2)C24—C25—C26120.7 (3)
C18—C17—O4109.9 (2)C24—C25—H25119.7
C18—C17—C16133.2 (2)C26—C25—H25119.7
O4—C17—C16116.7 (2)C12—C13—C8119.3 (3)
C4—C5—C6107.1 (2)C12—C13—H13120.4
C4—C5—H5126.4C8—C13—H13120.4
C6—C5—H5126.4C25—C26—C21120.2 (3)
C17—C18—C19107.2 (2)C25—C26—H26119.9
C17—C18—H18126.4C21—C26—H26119.9
C19—C18—H18126.4C7—O2—C4106.06 (19)
C7—C6—C5105.8 (2)C20—O4—C17105.79 (19)
C7—C6—H6127.1C2—N1—C8122.3 (2)
C5—C6—H6127.1C2—N1—C1120.6 (2)
C20—C19—C18106.3 (2)C8—N1—C1116.8 (2)
C20—C19—H19126.8C15—N3—C21124.2 (2)
C18—C19—H19126.8C15—N3—C14118.7 (2)
C6—C7—O2111.4 (2)C21—N3—C14116.0 (2)
C6—C7—H7124.3C3—N2—C2122.2 (2)
O2—C7—H7124.3C3—N2—H2118.9
C19—C20—O4110.8 (2)C2—N2—H2118.9
C19—C20—H20124.6C16—N4—C15123.24 (19)
O4—C20—H20124.6C16—N4—H4118.4
C9—C8—C13120.6 (3)C15—N4—H4118.4
O1—C3—C4—C5156.2 (3)N3—C21—C26—C25174.3 (2)
N2—C3—C4—C523.3 (4)C6—C7—O2—C40.3 (3)
O1—C3—C4—O220.7 (4)C5—C4—O2—C70.3 (3)
N2—C3—C4—O2159.7 (2)C3—C4—O2—C7177.3 (2)
O3—C16—C17—C18165.5 (3)C19—C20—O4—C170.0 (3)
N4—C16—C17—C1811.8 (4)C18—C17—O4—C200.4 (3)
O3—C16—C17—O49.2 (4)C16—C17—O4—C20176.3 (2)
N4—C16—C17—O4173.5 (2)N2—C2—N1—C814.4 (3)
O2—C4—C5—C60.8 (3)S1—C2—N1—C8166.46 (18)
C3—C4—C5—C6176.3 (3)N2—C2—N1—C1170.9 (2)
O4—C17—C18—C190.7 (3)S1—C2—N1—C18.2 (3)
C16—C17—C18—C19175.7 (3)C9—C8—N1—C2126.6 (3)
C4—C5—C6—C70.9 (3)C13—C8—N1—C256.9 (3)
C17—C18—C19—C200.7 (3)C9—C8—N1—C158.6 (3)
C5—C6—C7—O20.8 (3)C13—C8—N1—C1118.0 (3)
C18—C19—C20—O40.4 (3)N4—C15—N3—C2119.3 (3)
C13—C8—C9—C101.4 (4)S2—C15—N3—C21161.15 (19)
N1—C8—C9—C10177.9 (2)N4—C15—N3—C14173.3 (2)
C26—C21—C22—C230.2 (4)S2—C15—N3—C146.2 (3)
N3—C21—C22—C23175.1 (2)C26—C21—N3—C15129.9 (3)
C8—C9—C10—C110.3 (4)C22—C21—N3—C1554.7 (3)
C21—C22—C23—C240.7 (4)C26—C21—N3—C1462.4 (3)
C9—C10—C11—C120.2 (4)C22—C21—N3—C14112.9 (3)
C22—C23—C24—C250.7 (5)O1—C3—N2—C20.3 (4)
C10—C11—C12—C130.4 (4)C4—C3—N2—C2179.9 (2)
C23—C24—C25—C260.1 (5)N1—C2—N2—C366.0 (3)
C11—C12—C13—C81.4 (4)S1—C2—N2—C3113.1 (2)
C9—C8—C13—C122.0 (4)O3—C16—N4—C1521.2 (4)
N1—C8—C13—C12178.5 (2)C17—C16—N4—C15156.1 (2)
C24—C25—C26—C211.0 (4)N3—C15—N4—C1661.9 (3)
C22—C21—C26—C251.0 (4)S2—C15—N4—C16117.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.882.543.331 (3)149
N4—H4···O1ii0.882.173.010 (2)159
C5—H5···O3i0.952.433.341 (3)161
C5—H5···O4i0.952.463.137 (3)128
C14—H14C···O20.982.593.227 (4)123
C18—H18···O1ii0.952.443.274 (3)147
C18—H18···O2ii0.952.553.167 (3)123
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H12N2O2S
Mr260.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)10.242 (1), 13.525 (1), 18.432 (2)
β (°) 96.115 (4)
V3)2538.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.12 × 0.08 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23939, 4440, 2828
Rint0.093
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 1.01
No. of reflections4440
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.39

Computer programs: Collect (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
C2—N11.342 (3)C15—S21.657 (3)
C2—N21.414 (3)C3—O11.223 (3)
C2—S11.659 (3)C3—N21.371 (3)
C15—N31.339 (3)C16—O31.221 (3)
C15—N41.417 (3)C16—N41.378 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.882.543.331 (3)149.00
N4—H4···O1ii0.882.173.010 (2)159.00
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, Brazil, for allowing X-ray data collection. The authors acknowledge financial support from the Brazilian agency CAPES (project 018/05).

References

First citationEstévez-Hernández, O., Hidalgo, J. L., Reguera, E. & Naranjo, I. (2007). Sens. Actuators B, 120, 766–772.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKoch, K. R., Sacht, C. & Bourne, S. (1995). Inorg. Chim. Acta, 232, 109–115.  CSD CrossRef CAS Web of Science Google Scholar
First citationMorales, A. D., García-Granda, S., Esteva, J. R., Stevens, A. P. & Crespo, G. A. A. (1997). Acta Cryst. C53, IUC9700019.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds