organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis[5-(2,2′-di­cyano­vinyl)-2-n-pentyl-3-thien­yl]-3,3,4,4,5,5-hexa­fluoro­cyclo­pent-1-ene: a new photochromic di­aryl­ethene compound

aKey Laboratory of Nuclear Resources and Environment of the Ministry of Education, East China Institute of Technology, Fuzhou 344000, People's Republic of China, and bJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: pushouzhi@tsinghua.org.cn

(Received 24 December 2007; accepted 19 January 2008; online 25 January 2008)

The title compound, C31H26F6N4S2, is a new photochromic dithienylethene with dicyano­vinyl subsitituents. In the crystal structure, the mol­ecule adopts a photoactive anti­parallel conformation, with two n-pentyl groups located on opposite sides of the cyclo­pentene ring. The cyclo­pentene ring assumes an envelope conformation. The distance between the two reactive C atoms on the thio­phene rings is 3.834 (7) Å. One of the n-pentyl groups is disordered over two positions; the site occupancy factors are ca 0.7 and 0.3.

Related literature

For general background, see: Gilat et al. (1993[Gilat, S. L., Kawai, S. H. & Lehn, J.-M. (1993). J. Chem. Soc. Chem. Commun., pp. 1685-1716.], 1995[Gilat, S. L., Kawai, S. H. & Lehn, J.-M. (1995). Chem. Eur. J. pp. 275-284.]); Irie (2000[Irie, M. (2000). Chem. Rev. 100, 1685-1716.]); Pu et al. (2003[Pu, S.-Z., Zhang, F.-S., Fan, S., Wang, R.-J., Zhou, X.-H. & Chan, S.-K. (2003). Tetrahedron Lett. 44, 1011-1015.], 2005[Pu, S.-Z., Yang, T.-S., Wang, R.-J. & Xu, J.-K. (2005). Acta Cryst. E61, o4077-o4079.]); Tian & Yang (2004[Tian, H. & Yang, S.-J. (2004). Chem. Soc. Rev. 33, 85-97.]); Yamaguchi & Irie (2006[Yamaguchi, T. & Irie, M. (2006). Bull. Chem. Soc. Jpn, 79, 951-1100.]); Zheng et al. (2007[Zheng, C.-H., Pu, S.-Z., Le, Z.-G., Luo, M.-B. & Huang, D.-C. (2007). Acta Cryst. E63, o2578.]). For related structures, see: Kobatake et al. (2004[Kobatake, S., Kuma, S. & Irie, M. (2004). Bull. Chem. Soc. Jpn, 77, 945-951.]); Woodward & Hoffmann (1970[Woodward, R. B. & Hoffmann, R. (1970). The Conservation of Orbital Symmetry, pp. 98-100. Weinheim: Verlag Chemie GmbH.]).

[Scheme 1]

Experimental

Crystal data
  • C31H26F6N4S2

  • Mr = 632.68

  • Triclinic, [P \overline 1]

  • a = 9.2500 (12) Å

  • b = 12.3670 (16) Å

  • c = 15.596 (2) Å

  • α = 67.730 (2)°

  • β = 85.482 (2)°

  • γ = 72.804 (2)°

  • V = 1576.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 291 (2) K

  • 0.29 × 0.21 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.963

  • 12153 measured reflections

  • 5828 independent reflections

  • 3782 reflections with I > 2s˘I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.142

  • S = 1.03

  • 5828 reflections

  • 384 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Photochromism has attracted considerable attention because of its potential application to photonic devices, such as optical memories and optical switches (Yamaguchi & Irie, 2006). Among various types of photochromic compounds, diarylethenes bearing two thiophene-derived groups have received the most attention because of their excellent fatigue resistant and outstanding thermally irreversible photochromic performance (Irie, 2000; Tian & Yang, 2004). From the viewpoint of applications to optical memory media and full color diaplays, it is desired to develop photochromic compounds that have sensitivity in the wavelength region of 650–830 nm (Irie, 2000; Gilat et al., 1993, 1995). We have previously reported three dithienylethenes with dicyano subsitituent: 1,2-bis[2-methyl-5-(2,2'-dicyanovinyl)-3-thienyl]-3,3,4,4,5,5- hexafluorocyclopent-1-ene, 2-ethyl analog and 2-butyl analog (Pu et al., 2003, 2005; Zheng et al., 2007), which have relatively long wavelength absorption spectrum (> 700 nm). In order to investigate systematically the substituent effect at the 2-position of the thiophene rings of diarylethenes on their photochemical properties, we have now synthesized the title photochromic diarylethene, (Ia) (Scheme 1), and its structure is presented here.

The molecular structure of the title compound (Ia) (Fig. 1) shows a photoactive anti-parallel conformation. The two n-pentyl groups are trans directed with respect to the central cyclopentene ring. Such a configuration is crucial for the compound to exhibit photochromic and photoinduced properties (Woodward & Hoffmann, 1970). The central cyclopentene ring assumes an envelope conformation. The distance between the two reactive C atoms (C4 and C19) is 3.834 (7) Å. This distance indicates the crystal can undergo photochromism to generate the closed isomer of diarylethene (Ib), because photochromic reactivity usually appears when the distance between the reactive C atoms is less than 4.2 Å (Kobatake et al., 2004). Crystal of (Ia) showed photochromic reaction coincident with the theoretical analysis. The colorless crystal of (Ia) turned to green upon irradiation with 365 nm UV light. When the green crystal were dissolved in hexane, the solution turned to green, and the absorption maximum was observed at 750 nm, which is the identical with that found in its closed-ring tautomer (Ib) (Scheme 2). The green color disappeared upon irradiation with appropriate wavelength visible light and the absorption spectrum of the solution containing the colorless crystal were the same as that found for the open-ring tautomer (Ia) with the absorption maximum at 356 nm.

Related literature top

For general background, see: Gilat et al. (1993, 1995); Irie (2000); Pu et al. (2003, 2005); Tian & Yang (2004); Yamaguchi & Irie (2006); Zheng et al. (2007). For related structures, see: Kobatake et al. (2004); Woodward & Hoffmann (1970).

Experimental top

The title compound, (Ia), was synthesized by the Knoevenagel condensation reaction of diarylethene 1,2-bis(2-n-heptyl-5-formyl-3-thienyl)perfluorocyclopentene (1) (Scheme 3). First, compound (1) was prepared according to the procedure described in the previous paper (Zheng et al., 2007). Then to a stirred solution of compound (1) (0.1 g, 0.19 mmol) and malonodinitrile (0.025 g, 0.35 mmol) in anhydrous ethanol (5 ml), a very small quantity of piperidine was added dropwise at room temperature. The reaction mixture was stirred overnight at 323 K. Finally, the title compound was produced in 75.0% yield.

Refinement top

One of n-pentyl groups is disordered over two distinct conformations. The site occupancies were refined and converged to 0.656:0.344. The H atoms were positioned theoretically and allowed to ride on their parent atoms in the final refinement, with C—H = 0.93–0.97 Å and Uiso(H) =1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were treated as rigid groups and allowed to rotate about the C—C bond. Atomic displacement parameters for the disordered components were restrained.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (Ia) with 35% probability ellipsoids, showing the atomic numbering scheme. The minor disordered component has been omitted for clarity.
[Figure 2] Fig. 2. The tautomerism of the title compound and the closed-ring tautomer (Ib).
[Figure 3] Fig. 3. The formation of the title compound.
1,2-Bis[5-(2,2'-dicyanovinyl)-2-n-pentyl-3-thienyl]-3,3,4,4,5,5- hexafluorocyclopent-1-ene top
Crystal data top
C31H26F6N4S2Z = 2
Mr = 632.68F(000) = 652
Triclinic, P1Dx = 1.333 Mg m3
Hall symbol: -p 1Melting point: 404.2 K
a = 9.2500 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.3670 (16) ÅCell parameters from 2550 reflections
c = 15.596 (2) Åθ = 2.5–21.8°
α = 67.730 (2)°µ = 0.23 mm1
β = 85.482 (2)°T = 291 K
γ = 72.804 (2)°Block, colourless
V = 1576.1 (4) Å30.29 × 0.21 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5828 independent reflections
Radiation source: fine-focus sealed tube3782 reflections with I > 2s˘I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.932, Tmax = 0.963k = 1414
12153 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.4466P]
where P = (Fo2 + 2Fc2)/3
5828 reflections(Δ/σ)max < 0.001
384 parametersΔρmax = 0.41 e Å3
14 restraintsΔρmin = 0.26 e Å3
Crystal data top
C31H26F6N4S2γ = 72.804 (2)°
Mr = 632.68V = 1576.1 (4) Å3
Triclinic, P1Z = 2
a = 9.2500 (12) ÅMo Kα radiation
b = 12.3670 (16) ŵ = 0.23 mm1
c = 15.596 (2) ÅT = 291 K
α = 67.730 (2)°0.29 × 0.21 × 0.16 mm
β = 85.482 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5828 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3782 reflections with I > 2s˘I)
Tmin = 0.932, Tmax = 0.963Rint = 0.026
12153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04914 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
5828 reflectionsΔρmin = 0.26 e Å3
384 parameters
Special details top

Experimental. The structure of (Ia) was confirmed by melting point, NMR, MS, IR, elemental analysis. (m.p.: 404.2 K). 1H NMR (400 MHz, CDCl3): δ 0.87 (t, 6H, J=7.0 Hz), δ 1.23 (m, 4H), δ 1.43 (m, 4H), δ 2.34 (t, 4H, J=7.8 Hz), δ 7.64 (s, 2H), δ 7.79 (s, 2H). 13C NMR (100 MHz,CDCl3): δ 113.82, 22.24, 29.91, 30.82, 31.34, 79.87, 112.47, 113.15, 125.31, 133.80, 137.42, 149.55, 159.50. MS m/z (M+) 631.0 (–H). IR (KBr, cm-1): 746, 929, 1139, 1276, 1436, 1575, 2225, 2931. Anal. Calcd for C31H26F6N4S2 (%): Calcd C, 58.85; H, 4.14; N, 8.86. Found C, 58.92; H, 3.72; N, 8.53.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C270.0741 (4)0.5366 (3)0.1942 (2)0.0749 (11)0.656 (4)
H27A0.01840.57620.15590.090*0.656 (4)
H27B0.04690.51930.25840.090*0.656 (4)
C280.1730 (4)0.6205 (3)0.1681 (3)0.0867 (15)0.656 (4)
H28A0.19660.64090.10320.104*0.656 (4)
H28B0.26730.57990.20470.104*0.656 (4)
C290.0917 (4)0.7363 (3)0.1854 (3)0.131 (3)0.656 (4)
H29A0.00130.78090.14540.158*0.656 (4)
H29B0.06220.71630.24940.158*0.656 (4)
C300.2013 (6)0.8128 (4)0.1645 (4)0.167 (4)0.656 (4)
H30A0.29680.76520.19870.201*0.656 (4)
H30B0.22030.84240.09880.201*0.656 (4)
C310.1251 (9)0.9181 (5)0.1947 (5)0.194 (4)0.656 (4)
H31A0.08510.99040.14110.291*0.656 (4)
H31B0.19760.93130.22750.291*0.656 (4)
H31C0.04410.89940.23460.291*0.656 (4)
C27'0.1072 (4)0.5322 (3)0.2057 (2)0.0749 (11)0.344 (4)
H27C0.01930.52940.24390.090*0.344 (4)
H27D0.18820.53050.24250.090*0.344 (4)
C28'0.0690 (7)0.6517 (3)0.1229 (2)0.0867 (15)0.344 (4)
H28C0.00120.64810.08030.104*0.344 (4)
H28D0.16110.66200.09090.104*0.344 (4)
C29'0.0053 (5)0.7624 (3)0.1489 (5)0.131 (3)0.344 (4)
H29C0.06610.82720.09620.158*0.344 (4)
H29D0.07250.74060.19940.158*0.344 (4)
C30'0.1095 (5)0.8093 (4)0.1779 (3)0.167 (4)0.344 (4)
H30C0.20390.74490.19880.201*0.344 (4)
H30D0.07160.83610.22850.201*0.344 (4)
C31'0.1362 (10)0.9185 (5)0.0923 (4)0.194 (4)0.344 (4)
H31D0.20240.88760.05090.291*0.344 (4)
H31E0.18140.96540.11280.291*0.344 (4)
H31F0.04100.96930.06040.291*0.344 (4)
S10.54961 (8)0.43367 (6)0.36166 (5)0.0514 (2)
S20.20704 (10)0.42399 (7)0.07217 (5)0.0710 (3)
F10.0147 (2)0.34601 (17)0.51006 (14)0.0894 (6)
F20.2160 (2)0.19831 (18)0.57122 (12)0.0842 (6)
F30.0882 (2)0.16734 (18)0.52584 (13)0.0860 (6)
F40.1357 (2)0.04837 (16)0.52485 (12)0.0781 (5)
F50.10646 (19)0.26982 (19)0.34769 (14)0.0889 (6)
F60.0564 (2)0.10029 (17)0.35752 (12)0.0806 (6)
N10.4135 (3)0.9211 (3)0.3802 (2)0.0910 (9)
N20.7517 (4)0.6262 (3)0.3236 (2)0.0990 (11)
N30.3212 (8)0.4646 (4)0.1383 (3)0.196 (3)
N40.4655 (6)0.0932 (4)0.1258 (3)0.1448 (17)
C10.3935 (3)0.5249 (2)0.39481 (17)0.0466 (6)
C20.2763 (3)0.4737 (2)0.41302 (18)0.0500 (6)
H20.18350.50820.43360.060*
C30.3096 (3)0.3639 (2)0.39761 (17)0.0437 (6)
C40.4564 (3)0.3291 (2)0.37081 (17)0.0465 (6)
C50.3828 (3)0.6419 (2)0.39756 (18)0.0526 (7)
H50.29160.67920.41800.063*
C60.4850 (3)0.7060 (2)0.37493 (19)0.0539 (7)
C70.4460 (4)0.8257 (3)0.3782 (2)0.0650 (8)
C80.6336 (4)0.6618 (3)0.3462 (2)0.0644 (8)
C90.5377 (3)0.2175 (2)0.35038 (19)0.0522 (7)
H9A0.46960.16810.35910.063*
H9B0.62280.16950.39430.063*
C100.5954 (3)0.2476 (3)0.2522 (2)0.0571 (7)
H10A0.51060.29770.20850.069*
H10B0.66570.29500.24420.069*
C110.6736 (4)0.1358 (3)0.2297 (2)0.0733 (9)
H11A0.60250.08940.23630.088*
H11B0.75690.08470.27430.088*
C120.7343 (4)0.1656 (4)0.1326 (3)0.1010 (13)
H12A0.65300.22250.08810.121*
H12B0.76810.09160.11950.121*
C130.8651 (5)0.2208 (5)0.1202 (3)0.1263 (17)
H13A0.82920.29930.12520.190*
H13B0.90610.22980.06020.190*
H13C0.94250.16810.16730.190*
C140.1988 (3)0.2956 (2)0.40680 (18)0.0445 (6)
C150.1214 (3)0.2522 (3)0.4965 (2)0.0559 (7)
C160.0456 (3)0.1631 (3)0.4854 (2)0.0574 (7)
C170.0347 (3)0.1976 (3)0.3810 (2)0.0544 (7)
C180.1484 (3)0.2668 (2)0.34216 (18)0.0464 (6)
C190.1554 (3)0.4183 (3)0.1815 (2)0.0598 (7)
C200.1843 (3)0.2997 (2)0.24345 (18)0.0469 (6)
C210.2443 (3)0.2151 (3)0.20115 (19)0.0535 (7)
H210.26750.13120.23330.064*
C220.2660 (3)0.2670 (3)0.10778 (19)0.0556 (7)
C230.3278 (4)0.2002 (3)0.0501 (2)0.0680 (8)
H230.34860.11590.07920.082*
C240.3606 (4)0.2403 (3)0.0400 (2)0.0749 (9)
C250.3391 (6)0.3645 (5)0.0945 (3)0.1073 (15)
C260.4192 (5)0.1571 (4)0.0867 (3)0.1014 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C270.087 (3)0.0505 (19)0.069 (2)0.0050 (18)0.001 (2)0.0136 (17)
C280.114 (5)0.063 (3)0.075 (4)0.030 (3)0.000 (3)0.013 (3)
C290.144 (7)0.054 (3)0.185 (7)0.022 (4)0.012 (5)0.034 (4)
C300.185 (10)0.104 (4)0.209 (7)0.039 (5)0.068 (7)0.043 (4)
C310.251 (10)0.113 (6)0.232 (10)0.054 (6)0.027 (9)0.071 (6)
C27'0.087 (3)0.0505 (19)0.069 (2)0.0050 (18)0.001 (2)0.0136 (17)
C28'0.114 (5)0.063 (3)0.075 (4)0.030 (3)0.000 (3)0.013 (3)
C29'0.144 (7)0.054 (3)0.185 (7)0.022 (4)0.012 (5)0.034 (4)
C30'0.185 (10)0.104 (4)0.209 (7)0.039 (5)0.068 (7)0.043 (4)
C31'0.251 (10)0.113 (6)0.232 (10)0.054 (6)0.027 (9)0.071 (6)
S10.0473 (4)0.0541 (4)0.0602 (4)0.0221 (3)0.0138 (3)0.0261 (3)
S20.0899 (6)0.0579 (5)0.0512 (5)0.0162 (4)0.0068 (4)0.0101 (4)
F10.0933 (14)0.0817 (13)0.1140 (16)0.0381 (11)0.0594 (12)0.0601 (12)
F20.1018 (14)0.1093 (15)0.0517 (11)0.0604 (12)0.0066 (10)0.0190 (10)
F30.0751 (12)0.1088 (15)0.0979 (14)0.0552 (11)0.0483 (11)0.0512 (12)
F40.0929 (14)0.0567 (11)0.0743 (12)0.0259 (10)0.0056 (10)0.0104 (9)
F50.0490 (10)0.1086 (16)0.0957 (14)0.0291 (11)0.0027 (10)0.0177 (12)
F60.1067 (15)0.0806 (13)0.0835 (13)0.0619 (11)0.0303 (11)0.0410 (11)
N10.095 (2)0.0611 (19)0.126 (3)0.0279 (17)0.0086 (19)0.0414 (18)
N20.087 (2)0.115 (3)0.134 (3)0.057 (2)0.047 (2)0.076 (2)
N30.404 (9)0.111 (3)0.085 (3)0.110 (5)0.091 (4)0.040 (3)
N40.207 (5)0.112 (3)0.085 (3)0.006 (3)0.019 (3)0.045 (2)
C10.0509 (15)0.0456 (15)0.0456 (15)0.0158 (12)0.0087 (12)0.0194 (12)
C20.0470 (15)0.0519 (16)0.0545 (16)0.0164 (13)0.0133 (12)0.0241 (13)
C30.0435 (14)0.0443 (14)0.0449 (14)0.0172 (12)0.0094 (11)0.0163 (12)
C40.0473 (15)0.0478 (15)0.0453 (15)0.0180 (12)0.0088 (12)0.0166 (12)
C50.0564 (17)0.0524 (16)0.0495 (16)0.0170 (14)0.0057 (13)0.0194 (13)
C60.0642 (18)0.0518 (17)0.0502 (16)0.0238 (15)0.0040 (14)0.0189 (13)
C70.069 (2)0.056 (2)0.073 (2)0.0264 (16)0.0053 (16)0.0214 (16)
C80.075 (2)0.067 (2)0.069 (2)0.0396 (18)0.0200 (17)0.0336 (17)
C90.0472 (15)0.0509 (16)0.0614 (17)0.0162 (13)0.0104 (13)0.0240 (14)
C100.0470 (16)0.0665 (19)0.0635 (18)0.0164 (14)0.0082 (13)0.0315 (15)
C110.0623 (19)0.083 (2)0.093 (2)0.0200 (17)0.0190 (18)0.056 (2)
C120.073 (2)0.154 (4)0.098 (3)0.020 (3)0.015 (2)0.081 (3)
C130.120 (4)0.169 (5)0.098 (3)0.049 (3)0.045 (3)0.061 (3)
C140.0406 (14)0.0417 (14)0.0501 (15)0.0137 (11)0.0121 (11)0.0165 (12)
C150.0564 (17)0.0581 (18)0.0546 (17)0.0215 (15)0.0159 (14)0.0216 (14)
C160.0505 (17)0.0591 (19)0.0659 (19)0.0257 (15)0.0185 (14)0.0224 (15)
C170.0479 (16)0.0557 (17)0.0636 (18)0.0227 (14)0.0120 (14)0.0225 (15)
C180.0398 (14)0.0421 (14)0.0556 (16)0.0130 (12)0.0082 (12)0.0166 (13)
C190.0637 (18)0.0515 (17)0.0560 (17)0.0141 (14)0.0057 (14)0.0136 (14)
C200.0442 (14)0.0505 (16)0.0474 (15)0.0171 (12)0.0048 (12)0.0178 (13)
C210.0552 (17)0.0506 (16)0.0534 (17)0.0189 (13)0.0037 (13)0.0157 (13)
C220.0589 (17)0.0581 (18)0.0500 (17)0.0190 (14)0.0046 (13)0.0193 (14)
C230.077 (2)0.064 (2)0.059 (2)0.0168 (17)0.0060 (16)0.0230 (16)
C240.089 (2)0.073 (2)0.058 (2)0.0186 (19)0.0077 (18)0.0249 (18)
C250.177 (5)0.097 (3)0.061 (2)0.059 (3)0.040 (3)0.037 (2)
C260.136 (4)0.092 (3)0.060 (2)0.011 (3)0.012 (2)0.028 (2)
Geometric parameters (Å, º) top
C27—C281.504 (2)N3—C251.133 (5)
C27—C191.513 (4)N4—C261.142 (5)
C27—H27A0.9700C1—C21.370 (4)
C27—H27B0.9700C1—C51.438 (3)
C28—C291.520 (2)C2—C31.410 (3)
C28—H28A0.9700C2—H20.9300
C28—H28B0.9700C3—C41.380 (3)
C29—C301.520 (2)C3—C141.477 (3)
C29—H29A0.9700C4—C91.501 (3)
C29—H29B0.9700C5—C61.350 (4)
C30—C311.510 (2)C5—H50.9300
C30—H30A0.9700C6—C81.426 (4)
C30—H30B0.9700C6—C71.437 (4)
C31—H31A0.9600C9—C101.524 (4)
C31—H31B0.9600C9—H9A0.9700
C31—H31C0.9600C9—H9B0.9700
C27'—C28'1.514 (2)C10—C111.514 (4)
C27'—C191.527 (4)C10—H10A0.9700
C27'—H27C0.9700C10—H10B0.9700
C27'—H27D0.9700C11—C121.520 (5)
C28'—C29'1.527 (2)C11—H11A0.9700
C28'—H28C0.9700C11—H11B0.9700
C28'—H28D0.9700C12—C131.523 (6)
C29'—C30'1.519 (2)C12—H12A0.9700
C29'—H29C0.9700C12—H12B0.9700
C29'—H29D0.9700C13—H13A0.9600
C30'—C31'1.564 (2)C13—H13B0.9600
C30'—H30C0.9700C13—H13C0.9600
C30'—H30D0.9700C14—C181.344 (4)
C31'—H31D0.9600C14—C151.503 (3)
C31'—H31E0.9600C15—C161.536 (4)
C31'—H31F0.9600C16—C171.521 (4)
S1—C41.714 (3)C17—C181.498 (3)
S1—C11.728 (3)C18—C201.473 (4)
S2—C191.715 (3)C19—C201.376 (4)
S2—C221.727 (3)C20—C211.399 (4)
F1—C151.357 (3)C21—C221.376 (4)
F2—C151.340 (3)C21—H210.9300
F3—C161.341 (3)C22—C231.421 (4)
F4—C161.344 (3)C23—C241.345 (4)
F5—C171.356 (3)C23—H230.9300
F6—C171.343 (3)C24—C251.406 (5)
N1—C71.140 (4)C24—C261.435 (5)
N2—C81.133 (4)
C28—C27—C19110.7 (2)C4—C9—C10112.9 (2)
C28—C27—H27A109.5C4—C9—H9A109.0
C19—C27—H27A109.5C10—C9—H9A109.0
C28—C27—H27B109.5C4—C9—H9B109.0
C19—C27—H27B109.5C10—C9—H9B109.0
H27A—C27—H27B108.1H9A—C9—H9B107.8
C27—C28—C29109.8C11—C10—C9113.5 (2)
C27—C28—H28A109.7C11—C10—H10A108.9
C29—C28—H28A109.7C9—C10—H10A108.9
C27—C28—H28B109.7C11—C10—H10B108.9
C29—C28—H28B109.7C9—C10—H10B108.9
H28A—C28—H28B108.2H10A—C10—H10B107.7
C30—C29—C28107.2C10—C11—C12113.6 (3)
C30—C29—H29A110.3C10—C11—H11A108.8
C28—C29—H29A110.3C12—C11—H11A108.8
C30—C29—H29B110.3C10—C11—H11B108.8
C28—C29—H29B110.3C12—C11—H11B108.8
H29A—C29—H29B108.5H11A—C11—H11B107.7
C31—C30—C29105.7C11—C12—C13112.8 (3)
C31—C30—H30A110.6C11—C12—H12A109.0
C29—C30—H30A110.6C13—C12—H12A109.0
C31—C30—H30B110.6C11—C12—H12B109.0
C29—C30—H30B110.6C13—C12—H12B109.0
H30A—C30—H30B108.7H12A—C12—H12B107.8
C28'—C27'—C19114.7 (3)C12—C13—H13A109.5
C28'—C27'—H27C108.6C12—C13—H13B109.5
C19—C27'—H27C108.6H13A—C13—H13B109.5
C28'—C27'—H27D108.6C12—C13—H13C109.5
C19—C27'—H27D108.6H13A—C13—H13C109.5
H27C—C27'—H27D107.6H13B—C13—H13C109.5
C27'—C28'—C29'113.3C18—C14—C3128.6 (2)
C27'—C28'—H28C108.9C18—C14—C15110.7 (2)
C29'—C28'—H28C108.9C3—C14—C15120.6 (2)
C27'—C28'—H28D108.9F2—C15—F1106.4 (2)
C29'—C28'—H28D108.9F2—C15—C14113.5 (2)
H28C—C28'—H28D107.7F1—C15—C14111.3 (2)
C30'—C29'—C28'112.6F2—C15—C16111.3 (2)
C30'—C29'—H29C109.1F1—C15—C16109.8 (2)
C28'—C29'—H29C109.1C14—C15—C16104.5 (2)
C30'—C29'—H29D109.1F3—C16—F4107.2 (2)
C28'—C29'—H29D109.1F3—C16—C17113.5 (2)
H29C—C29'—H29D107.8F4—C16—C17109.5 (2)
C29'—C30'—C31'108.2F3—C16—C15113.1 (2)
C29'—C30'—H30C110.1F4—C16—C15109.4 (2)
C31'—C30'—H30C110.1C17—C16—C15104.1 (2)
C29'—C30'—H30D110.1F6—C17—F5105.5 (2)
C31'—C30'—H30D110.1F6—C17—C18113.5 (2)
H30C—C30'—H30D108.4F5—C17—C18110.2 (2)
C30'—C31'—H31D109.5F6—C17—C16112.6 (2)
C30'—C31'—H31E109.5F5—C17—C16110.0 (2)
H31D—C31'—H31E109.5C18—C17—C16105.2 (2)
C30'—C31'—H31F109.5C14—C18—C20128.9 (2)
H31D—C31'—H31F109.5C14—C18—C17110.9 (2)
H31E—C31'—H31F109.5C20—C18—C17120.0 (2)
C4—S1—C192.33 (12)C20—C19—C27130.1 (3)
C19—S2—C2292.55 (14)C20—C19—C27'126.0 (3)
C2—C1—C5124.0 (2)C20—C19—S2111.1 (2)
C2—C1—S1110.45 (19)C27—C19—S2118.4 (2)
C5—C1—S1125.4 (2)C27'—C19—S2122.2 (2)
C1—C2—C3113.6 (2)C19—C20—C21112.4 (2)
C1—C2—H2123.2C19—C20—C18123.2 (2)
C3—C2—H2123.2C21—C20—C18124.3 (2)
C4—C3—C2112.3 (2)C22—C21—C20114.1 (3)
C4—C3—C14123.9 (2)C22—C21—H21122.9
C2—C3—C14123.8 (2)C20—C21—H21122.9
C3—C4—C9129.2 (2)C21—C22—C23124.6 (3)
C3—C4—S1111.28 (19)C21—C22—S2109.7 (2)
C9—C4—S1119.51 (18)C23—C22—S2125.6 (2)
C6—C5—C1129.8 (3)C24—C23—C22129.8 (3)
C6—C5—H5115.1C24—C23—H23115.1
C1—C5—H5115.1C22—C23—H23115.1
C5—C6—C8123.4 (3)C23—C24—C25123.0 (3)
C5—C6—C7120.1 (3)C23—C24—C26121.2 (3)
C8—C6—C7116.4 (3)C25—C24—C26115.8 (3)
N1—C7—C6179.1 (4)N3—C25—C24179.7 (6)
N2—C8—C6179.7 (4)N4—C26—C24178.4 (4)
C19—C27—C28—C29177.6 (3)F4—C16—C17—F627.0 (3)
C27—C28—C29—C30176.0C15—C16—C17—F6143.8 (2)
C28—C29—C30—C31172.5F3—C16—C17—F524.5 (3)
C19—C27'—C28'—C29'169.7 (3)F4—C16—C17—F5144.2 (2)
C27'—C28'—C29'—C30'84.1C15—C16—C17—F598.9 (3)
C28'—C29'—C30'—C31'97.4F3—C16—C17—C18143.1 (2)
C4—S1—C1—C20.8 (2)F4—C16—C17—C1897.1 (2)
C4—S1—C1—C5175.5 (2)C15—C16—C17—C1819.7 (3)
C5—C1—C2—C3174.4 (2)C3—C14—C18—C203.0 (5)
S1—C1—C2—C31.9 (3)C15—C14—C18—C20174.8 (2)
C1—C2—C3—C42.4 (3)C3—C14—C18—C17179.4 (2)
C1—C2—C3—C14176.1 (2)C15—C14—C18—C171.6 (3)
C2—C3—C4—C9178.2 (3)F6—C17—C18—C14135.4 (3)
C14—C3—C4—C93.3 (4)F5—C17—C18—C14106.6 (3)
C2—C3—C4—S11.7 (3)C16—C17—C18—C1411.9 (3)
C14—C3—C4—S1176.8 (2)F6—C17—C18—C2047.8 (3)
C1—S1—C4—C30.6 (2)F5—C17—C18—C2070.2 (3)
C1—S1—C4—C9179.3 (2)C16—C17—C18—C20171.3 (2)
C2—C1—C5—C6174.7 (3)C28—C27—C19—C20124.9 (4)
S1—C1—C5—C61.1 (4)C28—C27—C19—C27'47.96 (12)
C1—C5—C6—C82.9 (5)C28—C27—C19—S262.4 (3)
C1—C5—C6—C7176.4 (3)C28'—C27'—C19—C20174.6 (3)
C3—C4—C9—C10121.1 (3)C28'—C27'—C19—C2761.76 (13)
S1—C4—C9—C1059.0 (3)C28'—C27'—C19—S215.3 (4)
C4—C9—C10—C11178.3 (2)C22—S2—C19—C200.7 (2)
C9—C10—C11—C12178.7 (3)C22—S2—C19—C27173.3 (3)
C10—C11—C12—C1367.7 (4)C22—S2—C19—C27'172.2 (3)
C4—C3—C14—C1858.3 (4)C27—C19—C20—C21171.7 (3)
C2—C3—C14—C18120.1 (3)C27'—C19—C20—C21172.5 (3)
C4—C3—C14—C15124.1 (3)S2—C19—C20—C211.4 (3)
C2—C3—C14—C1557.5 (4)C27—C19—C20—C185.5 (5)
C18—C14—C15—F2135.8 (3)C27'—C19—C20—C1810.3 (5)
C3—C14—C15—F246.2 (3)S2—C19—C20—C18178.6 (2)
C18—C14—C15—F1104.1 (3)C14—C18—C20—C1959.7 (4)
C3—C14—C15—F173.9 (3)C17—C18—C20—C19116.5 (3)
C18—C14—C15—C1614.3 (3)C14—C18—C20—C21123.5 (3)
C3—C14—C15—C16167.7 (2)C17—C18—C20—C2160.3 (4)
F2—C15—C16—F392.8 (3)C19—C20—C21—C221.7 (3)
F1—C15—C16—F324.7 (3)C18—C20—C21—C22178.8 (2)
C14—C15—C16—F3144.2 (2)C20—C21—C22—C23178.9 (3)
F2—C15—C16—F426.5 (3)C20—C21—C22—S21.1 (3)
F1—C15—C16—F4144.1 (2)C19—S2—C22—C210.2 (2)
C14—C15—C16—F496.4 (3)C19—S2—C22—C23179.8 (3)
F2—C15—C16—C17143.4 (2)C21—C22—C23—C24176.5 (3)
F1—C15—C16—C1799.0 (3)S2—C22—C23—C243.6 (5)
C14—C15—C16—C1720.5 (3)C22—C23—C24—C251.2 (6)
F3—C16—C17—F692.8 (3)C22—C23—C24—C26178.3 (4)

Experimental details

Crystal data
Chemical formulaC31H26F6N4S2
Mr632.68
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.2500 (12), 12.3670 (16), 15.596 (2)
α, β, γ (°)67.730 (2), 85.482 (2), 72.804 (2)
V3)1576.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.29 × 0.21 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.932, 0.963
No. of measured, independent and
observed [I > 2s˘I)] reflections
12153, 5828, 3782
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.142, 1.03
No. of reflections5828
No. of parameters384
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was financially supported by the fund of the Key Laboratory of Nuclear Resources and Environment, East China Institute of Technology, Ministry of Education, China (No. 060607).

References

First citationBruker (1997). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGilat, S. L., Kawai, S. H. & Lehn, J.-M. (1993). J. Chem. Soc. Chem. Commun., pp. 1685–1716.  Google Scholar
First citationGilat, S. L., Kawai, S. H. & Lehn, J.-M. (1995). Chem. Eur. J. pp. 275–284.  CrossRef Web of Science Google Scholar
First citationIrie, M. (2000). Chem. Rev. 100, 1685–1716.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKobatake, S., Kuma, S. & Irie, M. (2004). Bull. Chem. Soc. Jpn, 77, 945–951.  Web of Science CSD CrossRef CAS Google Scholar
First citationPu, S.-Z., Yang, T.-S., Wang, R.-J. & Xu, J.-K. (2005). Acta Cryst. E61, o4077–o4079.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPu, S.-Z., Zhang, F.-S., Fan, S., Wang, R.-J., Zhou, X.-H. & Chan, S.-K. (2003). Tetrahedron Lett. 44, 1011–1015.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, H. & Yang, S.-J. (2004). Chem. Soc. Rev. 33, 85–97.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWoodward, R. B. & Hoffmann, R. (1970). The Conservation of Orbital Symmetry, pp. 98–100. Weinheim: Verlag Chemie GmbH.  Google Scholar
First citationYamaguchi, T. & Irie, M. (2006). Bull. Chem. Soc. Jpn, 79, 951–1100.  Google Scholar
First citationZheng, C.-H., Pu, S.-Z., Le, Z.-G., Luo, M.-B. & Huang, D.-C. (2007). Acta Cryst. E63, o2578.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds