metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(6-Oxido-2-oxo-1,2-di­hydro­pyrimidine-5-carboxylato-κ2O5,O6)(4-oxido-2-oxo-1,2-di­hydropyrimidin-3-ium-5-carboxyl­ato-κ2O4,O5)bis­(1,10-phenanthroline-κ2N,N′)erbium(III) dihydrate

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Gulin 541004, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 January 2008; accepted 15 January 2008; online 25 January 2008)

The erbium(III) atom in the title compound, [Er(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2O, is located on a twofold rotation axis and chelated by two 1,10-phenanthroline heterocycles as well as by a 2,4-dihydroxy­pyrimidine-5-car­box­yl­ate monoanion and a 2,4-dihydroxy­pyrimidine-5-car­box­yl­ate dianion in a square-anti­prismatic coordination geometry.

Related literature

For the structure of 2,4-dihydroxy­pyridimine-5-carboxylic acid, see: Law et al. (2004[Law, G.-L., Szeto, L. & Wong, W.-T. (2004). Acta Cryst. E60, o1072-o1074.]). This erbium compound is isostructural with the europium, terbium and ytterbium analogs; see Sun & Jin (2004[Sun, C.-Y. & Jin, L. P. (2004). Polyhedron, 23, 2085-2093.]) for their detailed description.

[Scheme 1]

Experimental

Crystal data
  • [Er(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2O

  • Mr = 872.88

  • Monoclinic, C 2/c

  • a = 17.1602 (7) Å

  • b = 14.4170 (6) Å

  • c = 13.2433 (5) Å

  • β = 101.159 (1)°

  • V = 3214.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 295 (2) K

  • 0.18 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.645, Tmax = 0.814

  • 13567 measured reflections

  • 3680 independent reflections

  • 3495 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.061

  • S = 1.05

  • 3680 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected geometric parameters (Å, °)

Er1—O2 2.297 (2)
Er1—O3 2.238 (2)
Er1—N3 2.558 (2)
Er1—N4 2.538 (2)
O2—Er1—O2i 146.6 (1)
O2—Er1—O3 74.8 (1)
O2—Er1—O3i 81.6 (1)
O2—Er1—N3 74.5 (1)
O2—Er1—N3i 122.3 (1)
O2—Er1—N4 135.5 (1)
O2—Er1—N4i 74.6 (1)
O3—Er1—O3i 89.2 (1)
O3—Er1—N3 148.4 (1)
O3—Er1—N3i 79.0 (1)
O3—Er1—N4 147.2 (1)
O3—Er1—N4i 105.5 (1)
N3—Er1—N3i 124.7 (1)
N3—Er1—N4 64.4 (1)
N3—Er1—N4i 73.2 (1)
N4—Er1—N4i 77.9 (1)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 (Version 1.22A) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Winconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 (Version 1.22A) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Winconsin, USA.]); data reduction: SAINT; method used to solve structure: atomic coordinates taken from published analogs (Sun & Jin, 2004[Sun, C.-Y. & Jin, L. P. (2004). Polyhedron, 23, 2085-2093.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem., 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

2,4-Dihydroxypyrimidine-5-carboxylic acid (uracil-5-carboxylic acid, isoorotic acid) in the form of the singly-, doubly- and triply-deprotonated ion furnishes a number of compounds with both main group and transition metals in which the anion functions in a variety of binding modes. The acid itself exists as hydrated molecules held together by extensive hydrogen bonds (Law et al., 2004). The anion typically uses the 5-carboxylate and the 4-oxo/hydroxy oxygen atoms to chelate as this furnishes a six-membered chelate ring that confers stability.

The 1,10-phenanthroline-chelated rare-earth compounds, Ln(C12H8N2)2(C5H3N2O4)(C5H2N2O4).2H2O (Ln = Eu, Tb and Yb) represent the first examples of mononuclear lanthanum derivatives of the acid (Sun & Jin, 2004). The present erbium analog is isostructural with these, whose structures have been described in detail.

Related literature top

For the structure of 2,4-dihydroxypyridimine-5-carboxylic acid, see: Law et al. (2004). This erbium compound is isostructural with the europium, terbium and ytterbium analogs; see Sun & Jin (2004) for their detailed description.

Experimental top

2,4-Dihydroxypyrimidine-5-carboxylic acid (0.044 g, 0.25 mmol), erbium trichloride hexahydrate (0.096 g, 0.25 mmol), 1,10-phenanthroline (0.050 g, 0.25 mmol), sodium hydroxide (0.010 g, 0.25 mmol) and water (15 ml) was sealed in a 25-ml, Teflon-lined, stainless-steel Parr bomb. The bomb was heated to 383 K for 120 h. It was then cooled over 48 h to give red crystals in 90% yield. CH&N elemental analysis. Found/Calc. for C34H25ErN8O10: C 46.01; H 2.81, N 13.49% (46.78, 2.89, 12.84%).

Refinement top

Carbon-bound hydrogen atoms were generated geometrically, and were included in the refinements in the riding model approximation, as well the nitrogen-bound ones. The oxygen-bound ones were placed in chemically sensible positions on the basis of hydrogen bonding interactions. The final difference Fourier map had a large peak near Er1.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: Atomic coordinates taken from published analogs (Sun & Jin, 2004); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of Er(C12H8N2)2(C5H3N2O4)(C5H2N2O4).2H2O drawn at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. Square antiprismatic coordination geometry of Er.
(6-Oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylato- κ2O5,O6)(4-oxido-2-oxo-1,2-dihydropyrimidin-3-ium-5- carboxylato-κ2O4,O5)bis(1,10-phenanthroline- κ2N,N')erbium(III) dihydrate top
Crystal data top
[Er(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2OF(000) = 1732
Mr = 872.88Dx = 1.804 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8216 reflections
a = 17.1602 (7) Åθ = 2.3–28.5°
b = 14.4170 (6) ŵ = 2.69 mm1
c = 13.2433 (5) ÅT = 295 K
β = 101.159 (1)°Prism, red
V = 3214.4 (2) Å30.18 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3680 independent reflections
Radiation source: fine-focus sealed tube3495 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.645, Tmax = 0.814k = 1818
13567 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0387P)2 + 2.1981P]
where P = (Fo2 + 2Fc2)/3
3680 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Er(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2OV = 3214.4 (2) Å3
Mr = 872.88Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.1602 (7) ŵ = 2.69 mm1
b = 14.4170 (6) ÅT = 295 K
c = 13.2433 (5) Å0.18 × 0.10 × 0.08 mm
β = 101.159 (1)°
Data collection top
Bruker APEXII
diffractometer
3680 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3495 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.814Rint = 0.024
13567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.05Δρmax = 1.13 e Å3
3680 reflectionsΔρmin = 0.38 e Å3
240 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Er10.50000.612675 (9)0.75000.02099 (6)
O10.26939 (16)0.37986 (14)0.36337 (19)0.0436 (6)
O20.40471 (11)0.56690 (12)0.61245 (13)0.0293 (4)
O30.43054 (11)0.50209 (13)0.81183 (13)0.0312 (4)
O40.34769 (14)0.39182 (12)0.84072 (15)0.0341 (5)
O1W0.1905 (2)0.3113 (2)0.1608 (2)0.0912 (11)
H1W10.22540.32530.21460.137*
H1W20.20240.26030.13540.137*
N10.28276 (16)0.33178 (16)0.53134 (18)0.0367 (5)
H1N0.25880.28020.51370.055*0.50
N20.33356 (13)0.47408 (15)0.49382 (16)0.0276 (5)
H2N0.33850.51570.44890.041*
N30.53478 (13)0.69505 (15)0.59349 (17)0.0278 (5)
N40.59394 (13)0.74961 (15)0.78945 (17)0.0289 (5)
C10.29379 (18)0.39350 (17)0.4575 (2)0.0295 (6)
C20.36564 (14)0.49369 (17)0.59430 (18)0.0229 (5)
C30.35025 (15)0.42826 (17)0.66835 (18)0.0248 (5)
C40.30868 (18)0.3506 (2)0.6303 (2)0.0342 (6)
H40.29770.30740.67770.041*
C50.37729 (15)0.44133 (17)0.78069 (18)0.0247 (5)
C60.50987 (17)0.6671 (2)0.4970 (2)0.0346 (6)
H60.49060.60700.48560.042*
C70.5112 (2)0.7236 (3)0.4122 (2)0.0486 (8)
H70.49460.70080.34590.058*
C80.5368 (2)0.8118 (3)0.4271 (3)0.0556 (9)
H80.53520.85110.37100.067*
C90.5659 (2)0.8442 (2)0.5267 (3)0.0438 (7)
C100.56432 (16)0.78248 (18)0.6084 (2)0.0307 (6)
C110.5963 (2)0.9365 (3)0.5497 (3)0.0598 (10)
H110.59500.97870.49630.072*
C120.6260 (2)0.9627 (2)0.6459 (3)0.0586 (10)
H120.64571.02260.65820.070*
C130.6285 (2)0.9006 (2)0.7304 (3)0.0414 (7)
C140.6628 (2)0.9230 (2)0.8322 (3)0.0501 (9)
H140.68460.98160.84750.060*
C150.6646 (2)0.8603 (2)0.9083 (3)0.0464 (8)
H150.68910.87430.97550.056*
C160.62887 (17)0.7737 (2)0.8840 (2)0.0365 (6)
H160.62970.73100.93690.044*
C170.59569 (16)0.81116 (18)0.7125 (2)0.0289 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.02696 (10)0.01677 (9)0.01709 (9)0.0000.00108 (6)0.000
O10.0548 (14)0.0334 (12)0.0366 (12)0.0041 (9)0.0064 (11)0.0014 (8)
O20.0391 (10)0.0236 (9)0.0213 (9)0.0088 (8)0.0037 (7)0.0029 (7)
O30.0431 (11)0.0295 (10)0.0185 (8)0.0109 (8)0.0001 (8)0.0010 (7)
O40.0482 (13)0.0337 (11)0.0205 (10)0.0117 (8)0.0067 (9)0.0007 (7)
O1W0.138 (3)0.0561 (18)0.0636 (19)0.0005 (19)0.020 (2)0.0078 (15)
N10.0543 (15)0.0264 (11)0.0258 (11)0.0119 (11)0.0012 (10)0.0033 (9)
N20.0369 (12)0.0260 (11)0.0170 (10)0.0052 (9)0.0019 (8)0.0019 (8)
N30.0300 (11)0.0262 (11)0.0268 (11)0.0003 (9)0.0044 (9)0.0020 (9)
N40.0279 (11)0.0259 (11)0.0318 (12)0.0052 (9)0.0032 (9)0.0043 (9)
C10.0366 (15)0.0267 (13)0.0216 (13)0.0007 (10)0.0037 (11)0.0030 (9)
C20.0263 (12)0.0213 (11)0.0193 (11)0.0005 (9)0.0001 (9)0.0004 (9)
C30.0339 (13)0.0218 (12)0.0179 (11)0.0048 (10)0.0030 (10)0.0021 (9)
C40.0488 (17)0.0265 (14)0.0258 (13)0.0117 (12)0.0038 (12)0.0025 (11)
C50.0325 (13)0.0224 (12)0.0185 (11)0.0001 (10)0.0033 (9)0.0000 (9)
C60.0353 (14)0.0391 (15)0.0288 (14)0.0033 (12)0.0046 (11)0.0005 (12)
C70.0508 (19)0.069 (2)0.0261 (15)0.0105 (17)0.0074 (13)0.0035 (15)
C80.064 (2)0.065 (2)0.0360 (18)0.0098 (19)0.0076 (16)0.0225 (16)
C90.0465 (18)0.0383 (17)0.0466 (18)0.0032 (14)0.0093 (14)0.0143 (14)
C100.0317 (13)0.0262 (13)0.0349 (14)0.0009 (11)0.0085 (11)0.0053 (11)
C110.073 (3)0.040 (2)0.066 (3)0.0157 (18)0.014 (2)0.0201 (18)
C120.066 (2)0.0325 (18)0.079 (3)0.0160 (16)0.017 (2)0.0063 (17)
C130.0412 (17)0.0255 (14)0.060 (2)0.0080 (12)0.0156 (15)0.0060 (13)
C140.0486 (19)0.0355 (17)0.068 (2)0.0169 (15)0.0155 (17)0.0174 (17)
C150.0415 (17)0.0477 (18)0.049 (2)0.0117 (15)0.0063 (15)0.0215 (16)
C160.0352 (15)0.0401 (16)0.0330 (15)0.0091 (12)0.0036 (12)0.0077 (12)
C170.0269 (13)0.0220 (12)0.0383 (15)0.0022 (10)0.0075 (11)0.0009 (10)
Geometric parameters (Å, º) top
Er1—O22.297 (2)C2—C31.422 (3)
Er1—O2i2.297 (2)C3—C41.371 (4)
Er1—O32.238 (2)C3—C51.482 (3)
Er1—O3i2.238 (2)C4—H40.9300
Er1—N32.558 (2)C6—C71.391 (4)
Er1—N3i2.558 (2)C6—H60.9300
Er1—N42.538 (2)C7—C81.346 (5)
Er1—N4i2.538 (2)C7—H70.9300
O1—C11.252 (4)C8—C91.398 (5)
O2—C21.248 (3)C8—H80.9300
O3—C51.275 (3)C9—C101.405 (4)
O4—C51.247 (3)C9—C111.440 (5)
O1W—H1W10.85C10—C171.441 (4)
O1W—H1W20.85C11—C121.332 (6)
N1—C41.327 (3)C11—H110.9300
N1—C11.362 (4)C12—C131.428 (5)
N1—H1N0.8600C12—H120.9300
N2—C21.368 (3)C13—C141.400 (5)
N2—C11.385 (3)C13—C171.409 (4)
N2—H2N0.8600C14—C151.349 (6)
N3—C61.329 (3)C14—H140.9300
N3—C101.359 (3)C15—C161.401 (4)
N4—C161.326 (4)C15—H150.9300
N4—C171.356 (3)C16—H160.9300
O2—Er1—O2i146.6 (1)N1—C4—H4117.2
O2—Er1—O374.8 (1)C3—C4—H4117.2
O2—Er1—O3i81.6 (1)O4—C5—O3122.8 (2)
O2—Er1—N374.5 (1)O4—C5—C3118.7 (2)
O2—Er1—N3i122.3 (1)O3—C5—C3118.5 (2)
O2—Er1—N4135.5 (1)N3—C6—C7123.1 (3)
O2—Er1—N4i74.6 (1)N3—C6—H6118.5
O3—Er1—O3i89.2 (1)C7—C6—H6118.5
O3—Er1—N3148.4 (1)C8—C7—C6119.4 (3)
O3—Er1—N3i79.0 (1)C8—C7—H7120.3
O3—Er1—N4147.2 (1)C6—C7—H7120.3
O3—Er1—N4i105.5 (1)C7—C8—C9120.0 (3)
N3—Er1—N3i124.7 (1)C7—C8—H8120.0
N3—Er1—N464.4 (1)C9—C8—H8120.0
N3—Er1—N4i73.2 (1)C8—C9—C10117.3 (3)
N4—Er1—N4i77.9 (1)C8—C9—C11123.9 (3)
C2—O2—Er1131.99 (15)C10—C9—C11118.9 (3)
C5—O3—Er1140.34 (16)N3—C10—C9122.6 (3)
H1W1—O1W—H1W2110.3N3—C10—C17117.7 (2)
C4—N1—C1120.6 (2)C9—C10—C17119.7 (3)
C4—N1—H1N119.7C12—C11—C9121.4 (3)
C1—N1—H1N119.7C12—C11—H11119.3
C2—N2—C1126.1 (2)C9—C11—H11119.3
C2—N2—H2N116.9C11—C12—C13121.3 (3)
C1—N2—H2N116.9C11—C12—H12119.3
C6—N3—C10117.5 (2)C13—C12—H12119.3
C6—N3—Er1123.81 (18)C14—C13—C17116.9 (3)
C10—N3—Er1116.89 (17)C14—C13—C12123.6 (3)
C16—N4—C17117.8 (2)C17—C13—C12119.5 (3)
C16—N4—Er1123.46 (19)C15—C14—C13120.6 (3)
C17—N4—Er1117.38 (16)C15—C14—H14119.7
O1—C1—N1123.1 (2)C13—C14—H14119.7
O1—C1—N2121.6 (2)C14—C15—C16118.7 (3)
N1—C1—N2115.2 (2)C14—C15—H15120.7
O2—C2—N2117.5 (2)C16—C15—H15120.7
O2—C2—C3126.3 (2)N4—C16—C15123.2 (3)
N2—C2—C3116.1 (2)N4—C16—H16118.4
C4—C3—C2116.2 (2)C15—C16—H16118.4
C4—C3—C5120.8 (2)N4—C17—C13122.6 (3)
C2—C3—C5123.0 (2)N4—C17—C10118.2 (2)
N1—C4—C3125.5 (3)C13—C17—C10119.2 (3)
O3—Er1—O2—C223.0 (2)O2—C2—C3—C4177.3 (3)
O3i—Er1—O2—C268.4 (2)N2—C2—C3—C43.4 (4)
O2i—Er1—O2—C223.4 (2)O2—C2—C3—C52.4 (4)
N4—Er1—O2—C2172.0 (2)N2—C2—C3—C5176.9 (2)
N4i—Er1—O2—C2134.2 (2)C1—N1—C4—C32.7 (5)
N3i—Er1—O2—C289.1 (2)C2—C3—C4—N10.6 (5)
N3—Er1—O2—C2149.3 (2)C5—C3—C4—N1179.1 (3)
O3i—Er1—O3—C572.0 (3)Er1—O3—C5—O4175.83 (19)
O2—Er1—O3—C59.5 (3)Er1—O3—C5—C35.0 (4)
O2i—Er1—O3—C5146.7 (3)C4—C3—C5—O415.3 (4)
N4—Er1—O3—C5169.9 (2)C2—C3—C5—O4165.0 (3)
N4i—Er1—O3—C578.3 (3)C4—C3—C5—O3163.9 (3)
N3i—Er1—O3—C5137.6 (3)C2—C3—C5—O315.7 (4)
N3—Er1—O3—C54.7 (3)C10—N3—C6—C71.4 (4)
O3—Er1—N3—C66.7 (3)Er1—N3—C6—C7162.9 (2)
O3i—Er1—N3—C663.3 (2)N3—C6—C7—C81.8 (5)
O2—Er1—N3—C620.9 (2)C6—C7—C8—C93.6 (6)
O2i—Er1—N3—C6127.3 (2)C7—C8—C9—C102.2 (5)
N4—Er1—N3—C6176.5 (2)C7—C8—C9—C11178.5 (4)
N4i—Er1—N3—C699.1 (2)C6—N3—C10—C92.9 (4)
N3i—Er1—N3—C6139.7 (2)Er1—N3—C10—C9162.5 (2)
O3—Er1—N3—C10157.69 (17)C6—N3—C10—C17176.4 (2)
O3i—Er1—N3—C10132.33 (19)Er1—N3—C10—C1718.2 (3)
O2—Er1—N3—C10143.5 (2)C8—C9—C10—N31.1 (5)
O2i—Er1—N3—C1068.3 (2)C11—C9—C10—N3178.3 (3)
N4—Er1—N3—C1019.07 (17)C8—C9—C10—C17178.2 (3)
N4i—Er1—N3—C1065.31 (19)C11—C9—C10—C172.4 (5)
N3i—Er1—N3—C1024.68 (17)C8—C9—C11—C12177.4 (4)
O3—Er1—N4—C168.6 (3)C10—C9—C11—C123.2 (6)
O3i—Er1—N4—C16105.1 (2)C9—C11—C12—C130.6 (7)
O2—Er1—N4—C16161.2 (2)C11—C12—C13—C14176.5 (4)
O2i—Er1—N4—C1636.1 (2)C11—C12—C13—C172.7 (6)
N4i—Er1—N4—C16108.5 (2)C17—C13—C14—C150.7 (5)
N3i—Er1—N4—C1641.9 (2)C12—C13—C14—C15178.6 (4)
N3—Er1—N4—C16174.5 (2)C13—C14—C15—C162.3 (5)
O3—Er1—N4—C17157.77 (17)C17—N4—C16—C152.3 (4)
O3i—Er1—N4—C1788.48 (19)Er1—N4—C16—C15164.0 (2)
O2—Er1—N4—C175.2 (2)C14—C15—C16—N40.8 (5)
O2i—Er1—N4—C17157.4 (2)C16—N4—C17—C134.1 (4)
N4i—Er1—N4—C1757.88 (17)Er1—N4—C17—C13163.1 (2)
N3i—Er1—N4—C17124.5 (2)C16—N4—C17—C10174.5 (2)
N3—Er1—N4—C1719.09 (18)Er1—N4—C17—C1018.3 (3)
C4—N1—C1—O1178.8 (3)C14—C13—C17—N42.6 (4)
C4—N1—C1—N20.5 (4)C12—C13—C17—N4178.1 (3)
C2—N2—C1—O1176.8 (3)C14—C13—C17—C10175.9 (3)
C2—N2—C1—N13.9 (4)C12—C13—C17—C103.4 (4)
Er1—O2—C2—N2158.37 (17)N3—C10—C17—N40.1 (4)
Er1—O2—C2—C322.3 (4)C9—C10—C17—N4179.4 (3)
C1—N2—C2—O2174.7 (3)N3—C10—C17—C13178.5 (3)
C1—N2—C2—C35.9 (4)C9—C10—C17—C130.8 (4)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···N1ii0.861.822.675 (5)174
N2—H2n···O4iii0.861.992.846 (3)178
O1w—H1w1···O10.852.122.933 (4)157
O1w—H1w2···O4ii0.852.403.000 (4)128
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Er(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2O
Mr872.88
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)17.1602 (7), 14.4170 (6), 13.2433 (5)
β (°) 101.159 (1)
V3)3214.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.69
Crystal size (mm)0.18 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.645, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
13567, 3680, 3495
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.05
No. of reflections3680
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 0.38

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), Atomic coordinates taken from published analogs (Sun & Jin, 2004), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Er1—O22.297 (2)Er1—N32.558 (2)
Er1—O32.238 (2)Er1—N42.538 (2)
O2—Er1—O2i146.6 (1)O3—Er1—N3148.4 (1)
O2—Er1—O374.8 (1)O3—Er1—N3i79.0 (1)
O2—Er1—O3i81.6 (1)O3—Er1—N4147.2 (1)
O2—Er1—N374.5 (1)O3—Er1—N4i105.5 (1)
O2—Er1—N3i122.3 (1)N3—Er1—N3i124.7 (1)
O2—Er1—N4135.5 (1)N3—Er1—N464.4 (1)
O2—Er1—N4i74.6 (1)N3—Er1—N4i73.2 (1)
O3—Er1—O3i89.2 (1)N4—Er1—N4i77.9 (1)
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

The authors thank the Scientifc Research Foundation of Guangxi Normal University, China, the Science Foundation of Guangxi Province, China (Grant No. 0542021) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem., 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 (Version 1.22A) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Winconsin, USA.  Google Scholar
First citationLaw, G.-L., Szeto, L. & Wong, W.-T. (2004). Acta Cryst. E60, o1072–o1074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C.-Y. & Jin, L. P. (2004). Polyhedron, 23, 2085–2093.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds