organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4,6-Di­methyl­pyrimidin-2-ylsulfan­yl)-N-phenyl­acetamide

aSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114002, People's Republic of China
*Correspondence e-mail: tju_chemistry@yahoo.com.cn

(Received 11 March 2008; accepted 24 March 2008; online 29 March 2008)

In the title compound, C14H15N3OS, the phenyl ring is almost perpendicular to the dimethyl­pyrimidine group, with a dihedral angle of 88.1 (3)°. The Csp2—S bond of 1.759 (3) Å is significantly shorter than the Csp3—S bond of 1.795 (3) Å due to the pπ conjugation.

Related literature

For related literature, see: Koike et al. (1999[Koike, K., Jia, Z., Nikaido, T., Liu, Y., Zhao, Y. & Guo, D. (1999). Org. Lett. 1, 197-198.]); Liang et al. (2008[Liang, D., Gao, L.-X., Gao, Y., Xu, J. & Wang, W. (2008). Acta Cryst. E64, o201.]); Wang et al. (2004[Wang, W., Liu, H.-M. & Zhang, W.-Q. (2004). Acta Cryst. E60, o1979-o1980.], 2005[Wang, W., Zhao, B., Zheng, P.-W. & Duan, X.-M. (2005). Acta Cryst. E61, o1163-o1164.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15N3OS

  • Mr = 273.35

  • Orthorhombic, P b c a

  • a = 9.1691 (17) Å

  • b = 15.485 (3) Å

  • c = 20.798 (4) Å

  • V = 2952.9 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 571 (2) K

  • 0.28 × 0.24 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.971

  • 14235 measured reflections

  • 2606 independent reflections

  • 1494 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.01

  • 2606 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acetamide is an important class of medical intermidate. Many biologically active compounds are synthesized by using acetamide (Koike et al., 1999). We have reported the synthesis and crystal structure of a acetamide compound, 1,1'-diphenyl-5,5'-[o-phenylenebis(methylenethio)]di-1H-tetrazole (Liang et al., 2008). Now, a new acetamide derivative, namely 2-(4,6-dimethylpyrimidin-2- ylsulfanyl)-N-phenylacetamide (I) are prepared from the reaction of 2-thio-4,6- dimethylpyrimidine with 2-chloro-N-phenylacetamide. We present its crystal structure here.

The title compound contains a benzene ring and a dimethylpyrimidine ring. The two methyl groups attached to the pyrimidine ring don't deviate from the pyrimidine ring, with an r.m.s. of 0.0082 (4) Å. The dihedral angle between the benzene ring and dimethylpyrimidine ring is 91.9 (3)°, which indicates that the two aromatic rings are almost perpendicular. The O1—C8—N3—C9 and C8—N3—C9—C14 torsion angles are 2.5 (4) and 164.3 (3)°, indicating that the acetamide is planar with the benzene ring.

Due to the p-π conjugation, the Csp2—S bond [S1—C1 = 1.759 (3) Å] is significantly shorter than the Csp3—S bond [C7—S1 = 1.795 (3) Å]. These values compare with the values reported in the literatures (Wang et al., 2004, 2005).

Related literature top

For related literature, see: Koike et al. (1999); Liang et al. (2008); Wang et al. (2004, 2005).

Experimental top

The title compound was synthesized by the reaction of 2-thio-4,6-dimethyl- pyrimidine(2 mmol) with 2-chloro-N-phenylacetamide (2 mmol) in refluxing ethanol (40 ml). Single crystals suitable for X-ray analysis were grown by slow evaporation of a chloroform-acetone (1:5 v/v) solution.

Refinement top

All H atoms were positioned geometrically and refined as riding [N—H = 0.86Å and C—H = 0.93–0.97 Å]. For the NH, CH and CH2 groups, Uiso(H) values were set equal to 1.2Ueq(C) and for the methyl groups they were set equal to 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
2-(4,6-dimethylpyrimidin-2-ylsulfanyl)-N-phenylacetamide top
Crystal data top
C14H15N3OSF(000) = 1152
Mr = 273.35Dx = 1.230 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2395 reflections
a = 9.1691 (17) Åθ = 2.8–22.1°
b = 15.485 (3) ŵ = 0.22 mm1
c = 20.798 (4) ÅT = 571 K
V = 2952.9 (9) Å3Block, colourless
Z = 80.28 × 0.24 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2606 independent reflections
Radiation source: fine-focus sealed tube1494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 810
Tmin = 0.942, Tmax = 0.971k = 1818
14235 measured reflectionsl = 2224
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.044P)2 + 0.9487P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2606 reflectionsΔρmax = 0.17 e Å3
175 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0155 (11)
Crystal data top
C14H15N3OSV = 2952.9 (9) Å3
Mr = 273.35Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.1691 (17) ŵ = 0.22 mm1
b = 15.485 (3) ÅT = 571 K
c = 20.798 (4) Å0.28 × 0.24 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2606 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1494 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.971Rint = 0.073
14235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
2606 reflectionsΔρmin = 0.16 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10446 (8)0.82693 (5)0.31856 (3)0.0566 (3)
O10.08455 (18)0.69624 (13)0.20969 (9)0.0658 (6)
N10.1800 (2)0.67674 (14)0.37036 (10)0.0540 (6)
C80.2078 (3)0.70685 (17)0.23078 (12)0.0498 (7)
C10.0880 (3)0.74194 (16)0.37418 (12)0.0480 (7)
N30.3186 (2)0.65184 (14)0.22060 (10)0.0539 (6)
H3A0.40150.66690.23640.065*
C70.2494 (3)0.78653 (16)0.26898 (13)0.0541 (7)
H7A0.27930.83160.23940.065*
H7B0.33240.77280.29610.065*
C90.3164 (3)0.57251 (18)0.18732 (13)0.0538 (7)
N20.0195 (3)0.75292 (15)0.41631 (11)0.0665 (7)
C20.1643 (3)0.61439 (19)0.41447 (15)0.0643 (8)
C140.4321 (4)0.51737 (19)0.19623 (14)0.0703 (9)
H140.50790.53320.22350.084*
C100.2056 (3)0.5472 (2)0.14672 (15)0.0779 (10)
H100.12660.58370.13960.093*
C30.0557 (4)0.6186 (2)0.45961 (14)0.0707 (9)
H30.04400.57480.48980.085*
C40.0353 (4)0.6890 (2)0.45926 (15)0.0774 (10)
C130.4371 (5)0.4388 (2)0.16514 (18)0.0922 (12)
H130.51670.40250.17120.111*
C120.3259 (6)0.4141 (2)0.12546 (18)0.0939 (12)
H120.32890.36080.10480.113*
C60.2714 (4)0.5413 (2)0.41157 (19)0.1032 (13)
H6A0.27490.51880.36860.155*
H6B0.24150.49650.44060.155*
H6C0.36630.56180.42360.155*
C110.2113 (5)0.4679 (3)0.11651 (17)0.0930 (12)
H110.13540.45120.08960.112*
C50.1579 (6)0.6993 (3)0.5073 (2)0.147 (2)
H5A0.15250.75550.52660.221*
H5B0.14910.65590.54000.221*
H5C0.24980.69290.48570.221*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0512 (4)0.0549 (4)0.0636 (5)0.0038 (4)0.0011 (4)0.0005 (4)
O10.0307 (10)0.0895 (15)0.0773 (13)0.0027 (10)0.0043 (9)0.0168 (11)
N10.0526 (14)0.0541 (13)0.0554 (14)0.0043 (12)0.0011 (11)0.0041 (12)
C80.0318 (15)0.0690 (17)0.0486 (16)0.0061 (14)0.0067 (12)0.0041 (14)
C10.0472 (16)0.0529 (16)0.0438 (15)0.0019 (14)0.0039 (13)0.0085 (12)
N30.0309 (12)0.0714 (16)0.0595 (14)0.0028 (11)0.0009 (10)0.0078 (12)
C70.0362 (14)0.0618 (16)0.0641 (18)0.0076 (13)0.0001 (13)0.0049 (14)
C90.0445 (16)0.0656 (18)0.0514 (17)0.0071 (15)0.0112 (14)0.0026 (15)
N20.0706 (17)0.0670 (16)0.0620 (16)0.0121 (14)0.0178 (14)0.0002 (13)
C20.072 (2)0.0547 (18)0.066 (2)0.0035 (16)0.0021 (18)0.0043 (16)
C140.075 (2)0.069 (2)0.067 (2)0.0001 (18)0.0013 (17)0.0073 (16)
C100.059 (2)0.101 (3)0.073 (2)0.0015 (18)0.0026 (17)0.026 (2)
C30.092 (2)0.0622 (19)0.0583 (19)0.0038 (19)0.0064 (18)0.0034 (15)
C40.089 (2)0.078 (2)0.065 (2)0.009 (2)0.0241 (19)0.0003 (18)
C130.124 (4)0.066 (2)0.087 (3)0.019 (2)0.012 (2)0.007 (2)
C120.137 (4)0.071 (2)0.074 (3)0.017 (3)0.028 (3)0.013 (2)
C60.113 (3)0.075 (2)0.122 (3)0.031 (2)0.010 (3)0.016 (2)
C110.091 (3)0.109 (3)0.079 (3)0.018 (3)0.010 (2)0.030 (2)
C50.175 (5)0.138 (4)0.129 (4)0.045 (3)0.100 (3)0.029 (3)
Geometric parameters (Å, º) top
S1—C11.759 (3)C14—H140.9300
S1—C71.795 (3)C10—C111.380 (4)
O1—C81.223 (3)C10—H100.9300
N1—C11.318 (3)C3—C41.373 (4)
N1—C21.340 (3)C3—H30.9300
C8—N31.343 (3)C4—C51.512 (5)
C8—C71.516 (3)C13—C121.367 (5)
C1—N21.330 (3)C13—H130.9300
N3—C91.410 (3)C12—C111.354 (5)
N3—H3A0.8600C12—H120.9300
C7—H7A0.9700C6—H6A0.9600
C7—H7B0.9700C6—H6B0.9600
C9—C141.375 (4)C6—H6C0.9600
C9—C101.378 (4)C11—H110.9300
N2—C41.341 (4)C5—H5A0.9600
C2—C31.370 (4)C5—H5B0.9600
C2—C61.500 (4)C5—H5C0.9600
C14—C131.378 (4)
C1—S1—C7100.40 (13)C11—C10—H10119.9
C1—N1—C2116.2 (2)C2—C3—C4118.4 (3)
O1—C8—N3123.9 (2)C2—C3—H3120.8
O1—C8—C7122.0 (2)C4—C3—H3120.8
N3—C8—C7114.1 (2)N2—C4—C3121.6 (3)
N1—C1—N2127.7 (2)N2—C4—C5116.3 (3)
N1—C1—S1118.6 (2)C3—C4—C5122.1 (3)
N2—C1—S1113.7 (2)C12—C13—C14120.4 (4)
C8—N3—C9128.2 (2)C12—C13—H13119.8
C8—N3—H3A115.9C14—C13—H13119.8
C9—N3—H3A115.9C11—C12—C13119.3 (3)
C8—C7—S1113.47 (17)C11—C12—H12120.4
C8—C7—H7A108.9C13—C12—H12120.4
S1—C7—H7A108.9C2—C6—H6A109.5
C8—C7—H7B108.9C2—C6—H6B109.5
S1—C7—H7B108.9H6A—C6—H6B109.5
H7A—C7—H7B107.7C2—C6—H6C109.5
C14—C9—C10118.4 (3)H6A—C6—H6C109.5
C14—C9—N3117.6 (3)H6B—C6—H6C109.5
C10—C9—N3124.0 (3)C12—C11—C10121.0 (4)
C1—N2—C4115.1 (2)C12—C11—H11119.5
N1—C2—C3120.9 (3)C10—C11—H11119.5
N1—C2—C6116.5 (3)C4—C5—H5A109.5
C3—C2—C6122.6 (3)C4—C5—H5B109.5
C9—C14—C13120.7 (3)H5A—C5—H5B109.5
C9—C14—H14119.6C4—C5—H5C109.5
C13—C14—H14119.6H5A—C5—H5C109.5
C9—C10—C11120.3 (3)H5B—C5—H5C109.5
C9—C10—H10119.9
C2—N1—C1—N20.7 (4)C10—C9—C14—C130.1 (4)
C2—N1—C1—S1178.98 (19)N3—C9—C14—C13179.9 (3)
C7—S1—C1—N13.4 (2)C14—C9—C10—C110.6 (5)
C7—S1—C1—N2176.94 (19)N3—C9—C10—C11179.3 (3)
O1—C8—N3—C92.5 (4)N1—C2—C3—C41.0 (4)
C7—C8—N3—C9179.8 (2)C6—C2—C3—C4178.7 (3)
O1—C8—C7—S134.4 (3)C1—N2—C4—C31.1 (4)
N3—C8—C7—S1147.93 (19)C1—N2—C4—C5179.3 (3)
C1—S1—C7—C866.6 (2)C2—C3—C4—N20.3 (5)
C8—N3—C9—C14164.3 (3)C2—C3—C4—C5179.9 (4)
C8—N3—C9—C1015.6 (4)C9—C14—C13—C120.8 (5)
N1—C1—N2—C40.6 (4)C14—C13—C12—C110.6 (5)
S1—C1—N2—C4179.7 (2)C13—C12—C11—C100.1 (6)
C1—N1—C2—C31.5 (4)C9—C10—C11—C120.8 (5)
C1—N1—C2—C6178.3 (3)

Experimental details

Crystal data
Chemical formulaC14H15N3OS
Mr273.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)571
a, b, c (Å)9.1691 (17), 15.485 (3), 20.798 (4)
V3)2952.9 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.28 × 0.24 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.942, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
14235, 2606, 1494
Rint0.073
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.01
No. of reflections2606
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond angles (º) top
O1—C8—C7122.0 (2)N3—C8—C7114.1 (2)
 

Acknowledgements

We gratefully acknowledge the 05 L003 project supported by the Education Department of LiaoNing Province in China and the 2006 SH03 project supported by Anshan Municipal Science and Technology Commission.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoike, K., Jia, Z., Nikaido, T., Liu, Y., Zhao, Y. & Guo, D. (1999). Org. Lett. 1, 197–198.  Web of Science CrossRef CAS Google Scholar
First citationLiang, D., Gao, L.-X., Gao, Y., Xu, J. & Wang, W. (2008). Acta Cryst. E64, o201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W., Liu, H.-M. & Zhang, W.-Q. (2004). Acta Cryst. E60, o1979–o1980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W., Zhao, B., Zheng, P.-W. & Duan, X.-M. (2005). Acta Cryst. E61, o1163–o1164.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds