metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m507-m508

Potassium sodium (2R,3R)-tartrate tetra­hydrate: the paraelectric phase of Rochelle salt at 105 K

aDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway, and bDepartment of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway
*Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

(Received 7 February 2008; accepted 25 February 2008; online 5 March 2008)

Rochelle salt, K+·Na+·C4H4O62−·4H2O, is known for its remarkable ferroelectric state between 255 and 297 K. The current investigation, based on data collected at 105 K, provides very accurate structural information for the low-temperature paraelectric form. Unlike the ferroelectric form, there is only one tartrate molecule in the asymmetric unit, and the structure displays no disorder to large anisotropic atomic displacements.

Related literature

For previous and related structures, see: Beevers & Hughes (1941[Beevers, C. A. & Hughes, W. (1941). Proc. R. Soc. London Ser. A, 177, 251-259.]); Iwata et al. (1989[Iwata, Y., Mitani, S. & Shibuya, I. (1989). Ferroelectrics, 96, 215-219.]); Solans et al. (1997[Solans, X., Gonzalez-Silgo, C. & Ruiz-Pérez, C. (1997). J. Solid State Chem. 131, 350-357.]); Ottenz et al. (1998[Ottenz, C., Schurmann, M., Preut, H. & Bleckmann, P. (1998). Z. Kristallogr. New Cryst. Struct. 213, 166.]); Hinazumi & Mitsui (1972[Hinazumi, H. & Mitsui, T. (1972). Acta Cryst. B28, 3299-3305.]); Kay (1978[Kay, M. I. (1978). Ferroelectrics, 19, 159-164.]); Kuroda & Mason (1981[Kuroda, R. & Mason, S. F. (1981). J. Chem. Soc. Dalton Trans. pp. 1261-1273.]); Brożek & Stadnicka (1994[Brożek, Z. & Stadnicka, K. (1994). Acta Cryst. B50, 59-68.]); Suzuki et al. (1996a[Suzuki, E., Muta, T., Nozaki, R. & Shiozaki, Y. (1996a). Acta Cryst. B52, 296-302.],b[Suzuki, E., Kabasawa, H., Honma, T., Nozaki, R. & Shiozaki, Y. (1996b). Acta Cryst. B52, 976-981.]); Ambady & Kartha (1968[Ambady, G. K. & Kartha, G. (1968). Acta Cryst. B24, 1540-1547.]); Boese et al. (1995[Boese, R., Bläser, D., Latz, R. & Piennisch, M. (1995). Acta Cryst. C51, 2227-2229.]). For irradiation studies, see: Suzuki (1974[Suzuki, I. (1974). J. Phys. Soc. Jpn, 37, 1379-1384.]); Treeck, van & Windsch (1977[Treeck, E. van & Windsch, W. (1977). J. Magn. Reson. 25, 15-23.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • K+·Na+·C4H4O62−·4H2O

  • Mr = 282.23

  • Orthorhombic, P 21 21 2

  • a = 11.7859 (6) Å

  • b = 14.1972 (7) Å

  • c = 6.1875 (3) Å

  • V = 1035.33 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 105 (2) K

  • 0.5 mm (radius)

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.398, Tmax = 0.551 (expected range = 0.722–1.000)

  • 33523 measured reflections

  • 10040 independent reflections

  • 8947 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.069

  • S = 1.06

  • 10040 reflections

  • 195 parameters

  • 12 restraints

  • All H-atom parameters refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.73 e Å−3

  • Absolute structure: Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.], 4266 Friedel pairs

  • Flack parameter: 0.044 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2 0.789 (17) 2.031 (16) 2.5946 (6) 128.2 (14)
O6—H6⋯O4Wi 0.861 (16) 1.968 (16) 2.8119 (7) 166.5 (16)
O1W—H11W⋯O6 0.824 (8) 1.960 (8) 2.7832 (6) 176.8 (15)
O1W—H12W⋯O4ii 0.843 (9) 2.010 (9) 2.8500 (7) 174.8 (18)
O2W—H21W⋯O3iii 0.868 (9) 1.830 (9) 2.6941 (7) 173.4 (19)
O2W—H22W⋯O2iv 0.862 (9) 1.890 (9) 2.7505 (7) 175.5 (19)
O3W—H31W⋯O6v 0.843 (9) 2.391 (15) 3.1029 (7) 142.5 (19)
O3W—H31W⋯O2vi 0.843 (9) 2.499 (17) 3.1181 (7) 131.0 (17)
O3W—H31W⋯O3v 0.843 (9) 2.584 (14) 3.1569 (8) 126.2 (15)
O3W—H32W⋯O4vii 0.862 (8) 1.926 (8) 2.7842 (8) 173.8 (16)
O4W—H41W⋯O1viii 0.858 (9) 1.888 (10) 2.7124 (6) 160.4 (19)
O4W—H42W⋯O3Wiv 0.836 (8) 1.939 (9) 2.7532 (8) 164.4 (16)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+2]; (iv) x, y, z+1; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z]; (vii) -x, -y, z-1; (viii) -x, -y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The radiation-induced free radical chemistry of dicarboxylic acids and their salts has received attention for several decades. The Rochelle salt, is of particular interest as it as it exhibits a ferroelectric phase between 255 and 297 K, where the structure is monoclinic, space group P21; outside this temperature range the compound is paraelectric and presents orthorhombic phases in space group P21212. The nature of the radicals formed in Rochelle salt is currently investigated in order to understand the mechanisms producing changes in the ferroelectric properties of this compound upon irradiation (Suzuki, 1974; Treeck, van & Windsch, 1977). For the analysis of the electron magnetic resonance data, precise knowledge of the low-temperature orthorhombic form is necessary. Structural data for the high-temperature orthorhombic form were first provided by Beevers & Hughes (1941). Iwata et al. (1989) carried out a neutron diffraction study for both orthorhombic forms; more accurate X-ray diffraction studies were later presented by Solans et al. (1997), who concluded that differences between the two P21212 states are "small but significant". None of these structures are, however, available in the Cambridge Structural Database (Version 5.29 of November 2007; Allen, 2002). A high-precision redetermination of Rochelle salt at low temperature has therefore been executed.

The molecular structure of (I) is shown in Fig. 1. The crystal packing arrangement, illustrated in Fig. 2, is very similar to those found in the P21212 structures of other salts of tartaric acid in which Na+ is replaced by Li+ and/or K+ by NH4+ or Tl+ [Li+/K+: Ottenz et al., 1998; Li+/NH4+: Hinazumi & Mitsui, 1972; Li+/Tl+: Kay, 1978; Na+/NH4+ (II): Kuroda & Mason, 1981; Brożek & Stadnicka, 1994; Suzuki et al., 1996a] as well as in salts where K+ has been only partly replaced by NH4+ (Suzuki et al., 1996a; Suzuki et al., 1996b). The pure sodium (Ambady & Kartha, 1968) or potassium salts (Boese et al., 1995) on the other hand, have completely different structures.

Hydrogen bonds are listed in Table 1, the most unusual feature is the almost symmetric four-center interaction involving H31W.

When K+ is replaced by NH4+ [as, for instance, in II] the four shortest K2···O contacts are converted into hydrogen bonds, while only the two K1···O4 interactions are transformed into short hydrogen bonds, the K1···O1W and K1···O2W contacts being replaced by a three-center hydrogen bond.

Related literature top

For previous and related structures, see: Beevers & Hughes (1941); Iwata et al. (1989); Solans et al. (1997); Ottenz et al. (1998); Hinazumi & Mitsui (1972); Kay (1978); Kuroda & Mason (1981); Brożek & Stadnicka (1994); Suzuki et al. (1996a,b); Ambady & Kartha (1968); Boese et al. (1995). For irradiation studies, see: Suzuki (1974); Treeck, van & Windsch (1977). For information on the Cambridge Structural Database, see: Allen (2002).

Experimental top

Rochelle salt was obtained from Sigma-Aldrich and tetrahydrate crystals were grown from saturated aqueous solutions. A large block-shaped speciemen was ground into a sphere in a mill and used for data collection.

Refinement top

Full isotropic refinement was carried out for all H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level. Metal ccordination has been indicated by dashed lines.
[Figure 2] Fig. 2. : Crystal packing arrangement viewed approximately along the c axis. H atoms bonded to C have been left out for clarity. Na+ is yellow, K+ is light blue with K1 at the centre of the unit cell and K2 at the cell edge. Hydrogen bonds are shown as black dotted lines while ligand coordination is indicated in orange for three selected metal ions. The arrow points to H31W, which is involved in a four-center hydrogen bond.
Potassium sodium (2R,3R)-tartrate tetrahydrate top
Crystal data top
K+·Na+·C4H4O62·4H2ODx = 1.811 Mg m3
Mr = 282.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 10000 reflections
a = 11.7859 (6) Åθ = 2.9–49.7°
b = 14.1972 (7) ŵ = 0.60 mm1
c = 6.1875 (3) ÅT = 105 K
V = 1035.33 (9) Å3Sphere, colourless
Z = 40.5 mm (radius)
F(000) = 584
Data collection top
Siemens SMART CCD
diffractometer
10040 independent reflections
Radiation source: fine-focus sealed tube8947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.3 pixels mm-1θmax = 49.7°, θmin = 2.9°
sets of exposures each taken over 0.3° ω rotation scansh = 2525
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2830
Tmin = 0.398, Tmax = 0.551l = 1212
33523 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0324P)2 + 0.0088P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max = 0.002
wR(F2) = 0.069Δρmax = 0.50 e Å3
S = 1.06Δρmin = 0.73 e Å3
10040 reflectionsExtinction correction: SHELXTL (Bruker, 2000), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
195 parametersExtinction coefficient: 0.132 (3)
12 restraintsAbsolute structure: Flack, 1983, 4266 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.044 (14)
Hydrogen site location: difference Fourier map
Crystal data top
K+·Na+·C4H4O62·4H2OV = 1035.33 (9) Å3
Mr = 282.23Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 11.7859 (6) ŵ = 0.60 mm1
b = 14.1972 (7) ÅT = 105 K
c = 6.1875 (3) Å0.5 mm (radius)
Data collection top
Siemens SMART CCD
diffractometer
10040 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
8947 reflections with I > 2σ(I)
Tmin = 0.398, Tmax = 0.551Rint = 0.037
33523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.069Δρmax = 0.50 e Å3
S = 1.06Δρmin = 0.73 e Å3
10040 reflectionsAbsolute structure: Flack, 1983, 4266 Friedel pairs
195 parametersAbsolute structure parameter: 0.044 (14)
12 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Data were collected by measuring six sets of exposures with the detector set at 2θ = 29° and 65°, crystal-to-detector distance 5.00 cm. Refinement of F2 against ALL reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.00000.00000.04255 (4)0.02054 (4)
K20.50000.00000.83902 (3)0.01318 (3)
Na0.23248 (2)0.007143 (18)0.51526 (4)0.01041 (4)
O10.12000 (3)0.10859 (3)0.34799 (7)0.01016 (5)
O20.21269 (4)0.20379 (3)0.11755 (7)0.01211 (6)
O30.22830 (4)0.40729 (3)0.82011 (8)0.01585 (7)
O40.04765 (4)0.35891 (3)0.84893 (8)0.01439 (7)
O50.16547 (4)0.35790 (3)0.32421 (7)0.01060 (5)
H50.1932 (12)0.3393 (11)0.216 (3)0.021 (3)*
O60.29638 (3)0.24888 (3)0.63394 (7)0.01132 (6)
H60.3284 (13)0.2989 (11)0.584 (3)0.025 (3)*
C10.15538 (4)0.18798 (3)0.28320 (8)0.00798 (6)
C20.12505 (4)0.27375 (3)0.42269 (8)0.00802 (6)
H20.0351 (13)0.2714 (11)0.429 (3)0.024 (3)*
C30.17752 (4)0.26353 (3)0.64784 (8)0.00867 (6)
H30.1368 (13)0.2117 (11)0.726 (3)0.027 (4)*
C40.14865 (5)0.35032 (4)0.78496 (9)0.01035 (6)
O1W0.39615 (4)0.08350 (3)0.48487 (8)0.01405 (7)
H11W0.3642 (12)0.1317 (8)0.527 (2)0.023 (3)*
H12W0.4433 (14)0.0974 (13)0.388 (3)0.058 (6)*
O2W0.23689 (6)0.04149 (3)0.87925 (8)0.02083 (10)
H21W0.2524 (16)0.0009 (10)0.980 (2)0.045 (5)*
H22W0.2331 (16)0.0930 (8)0.953 (3)0.044 (5)*
O3W0.05896 (4)0.19201 (4)0.03036 (10)0.01860 (8)
H31W0.1210 (11)0.2072 (13)0.028 (3)0.051 (6)*
H32W0.0307 (13)0.2458 (8)0.066 (3)0.037 (5)*
O4W0.07835 (4)0.10799 (4)0.57031 (9)0.01684 (8)
H41W0.0099 (9)0.1009 (14)0.526 (3)0.054 (6)*
H42W0.0734 (12)0.1431 (10)0.6784 (19)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.02786 (8)0.01565 (7)0.01810 (8)0.00967 (7)0.0000.000
K20.01563 (5)0.01227 (5)0.01164 (6)0.00229 (5)0.0000.000
Na0.01174 (8)0.00770 (8)0.01179 (9)0.00031 (6)0.00041 (6)0.00065 (7)
O10.01294 (12)0.00587 (11)0.01166 (15)0.00070 (9)0.00034 (11)0.00031 (10)
O20.01710 (14)0.00966 (13)0.00956 (15)0.00019 (11)0.00367 (11)0.00079 (10)
O30.02292 (18)0.01090 (15)0.01373 (18)0.00454 (13)0.00006 (14)0.00398 (12)
O40.01600 (14)0.01549 (16)0.01168 (16)0.00482 (12)0.00046 (12)0.00285 (13)
O50.01694 (14)0.00605 (12)0.00880 (14)0.00054 (10)0.00024 (11)0.00062 (9)
O60.01094 (12)0.00955 (13)0.01345 (16)0.00182 (10)0.00145 (10)0.00072 (11)
C10.01007 (13)0.00605 (13)0.00782 (15)0.00050 (11)0.00097 (11)0.00050 (10)
C20.01034 (13)0.00591 (13)0.00780 (16)0.00042 (11)0.00044 (11)0.00038 (10)
C30.01152 (13)0.00669 (14)0.00780 (16)0.00042 (11)0.00063 (12)0.00042 (11)
C40.01571 (16)0.00818 (15)0.00715 (16)0.00110 (13)0.00097 (13)0.00082 (11)
O1W0.01351 (14)0.01088 (14)0.01774 (19)0.00051 (11)0.00272 (12)0.00068 (12)
O2W0.0434 (3)0.00952 (15)0.00958 (18)0.00494 (17)0.00155 (17)0.00014 (11)
O3W0.01445 (15)0.0230 (2)0.0183 (2)0.00034 (14)0.00277 (14)0.00046 (16)
O4W0.01251 (14)0.01583 (17)0.0222 (2)0.00316 (12)0.00284 (13)0.00420 (15)
Geometric parameters (Å, º) top
K1—O12.8194 (4)O2—C11.2479 (6)
K1—O1i2.8194 (4)O3—C41.2581 (7)
K1—O3Wi2.8491 (6)O4—C41.2604 (7)
K1—O3W2.8491 (6)O5—C21.4232 (6)
K1—O2Wii3.0271 (7)O5—H50.789 (17)
K1—O2Wiii3.0270 (7)O6—C31.4188 (6)
K2—O1W2.7758 (5)O6—H60.861 (16)
K2—O1Wiv2.7758 (5)C1—C21.5348 (7)
K2—O4v2.8383 (5)C2—C31.5311 (7)
K2—O4vi2.8383 (5)C2—H21.062 (15)
K2—O5vii2.9822 (4)C3—C41.5342 (7)
K2—O5viii2.9822 (4)C3—H31.004 (17)
K2—O2W3.1662 (7)O1W—H11W0.824 (8)
K2—O2Wiv3.1662 (7)O1W—H12W0.843 (9)
Na—O1W2.3264 (5)O2W—H21W0.868 (9)
Na—O4W2.3379 (5)O2W—H22W0.862 (9)
Na—O12.3512 (5)O3W—H31W0.843 (9)
Na—O2W2.3562 (6)O3W—H32W0.862 (8)
Na—O3vii2.4485 (6)O4W—H41W0.858 (9)
Na—O5vii2.4707 (5)O4W—H42W0.836 (8)
O1—C11.2668 (6)
O2—C1—O1126.74 (5)C2—C3—C4109.72 (4)
O2—C1—C2116.44 (4)O6—C3—H3113.2 (9)
O1—C1—C2116.82 (4)C2—C3—H3108.4 (10)
O5—C2—C3109.50 (4)C4—C3—H3102.5 (10)
O5—C2—C1110.32 (4)O3—C4—O4126.03 (5)
C3—C2—C1110.02 (4)O3—C4—C3116.52 (5)
O5—C2—H2112.1 (8)O4—C4—C3117.44 (5)
C3—C2—H2111.5 (9)H11W—O1W—H12W109.6 (12)
C1—C2—H2103.2 (9)H21W—O2W—H22W101.2 (11)
O6—C3—C2110.95 (4)H31W—O3W—H32W102.7 (11)
O6—C3—C4111.73 (4)H41W—O4W—H42W105.2 (11)
O2—C1—C2—O53.05 (6)O5—C2—C3—C457.57 (5)
O1—C1—C2—O5177.09 (4)C1—C2—C3—C4178.98 (4)
O2—C1—C2—C3117.87 (5)O6—C3—C4—O316.43 (7)
O1—C1—C2—C361.98 (5)C2—C3—C4—O3107.06 (5)
O5—C2—C3—O666.37 (5)O6—C3—C4—O4164.68 (5)
C1—C2—C3—O655.04 (5)C2—C3—C4—O471.84 (6)
Symmetry codes: (i) x, y, z; (ii) x, y, z1; (iii) x, y, z1; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+2; (vi) x+1/2, y1/2, z+2; (vii) x+1/2, y1/2, z+1; (viii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O20.789 (17)2.031 (16)2.5946 (6)128.2 (14)
O6—H6···O4Wix0.861 (16)1.968 (16)2.8119 (7)166.5 (16)
O1W—H11W···O60.82 (1)1.96 (1)2.7832 (6)177 (2)
O1W—H12W···O4viii0.84 (1)2.01 (1)2.8500 (7)175 (2)
O2W—H21W···O3vi0.87 (1)1.83 (1)2.6941 (7)173 (2)
O2W—H22W···O2x0.86 (1)1.89 (1)2.7505 (7)176 (2)
O3W—H31W···O6vii0.84 (1)2.39 (2)3.1029 (7)143 (2)
O3W—H31W···O2xi0.84 (1)2.50 (2)3.1181 (7)131 (2)
O3W—H31W···O3vii0.84 (1)2.58 (1)3.1569 (8)126 (2)
O3W—H32W···O4ii0.86 (1)1.93 (1)2.7842 (8)174 (2)
O4W—H41W···O1i0.86 (1)1.89 (1)2.7124 (6)160 (2)
O4W—H42W···O3Wx0.84 (1)1.94 (1)2.7532 (8)164 (2)
Symmetry codes: (i) x, y, z; (ii) x, y, z1; (vi) x+1/2, y1/2, z+2; (vii) x+1/2, y1/2, z+1; (viii) x+1/2, y+1/2, z+1; (ix) x+1/2, y+1/2, z+1; (x) x, y, z+1; (xi) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaK+·Na+·C4H4O62·4H2O
Mr282.23
Crystal system, space groupOrthorhombic, P21212
Temperature (K)105
a, b, c (Å)11.7859 (6), 14.1972 (7), 6.1875 (3)
V3)1035.33 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.5 (radius)
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.398, 0.551
No. of measured, independent and
observed [I > 2σ(I)] reflections
33523, 10040, 8947
Rint0.037
(sin θ/λ)max1)1.072
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 1.06
No. of reflections10040
No. of parameters195
No. of restraints12
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.50, 0.73
Absolute structureFlack, 1983, 4266 Friedel pairs
Absolute structure parameter0.044 (14)

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O20.789 (17)2.031 (16)2.5946 (6)128.2 (14)
O6—H6···O4Wi0.861 (16)1.968 (16)2.8119 (7)166.5 (16)
O1W—H11W···O60.824 (8)1.960 (8)2.7832 (6)176.8 (15)
O1W—H12W···O4ii0.843 (9)2.010 (9)2.8500 (7)174.8 (18)
O2W—H21W···O3iii0.868 (9)1.830 (9)2.6941 (7)173.4 (19)
O2W—H22W···O2iv0.862 (9)1.890 (9)2.7505 (7)175.5 (19)
O3W—H31W···O6v0.843 (9)2.391 (15)3.1029 (7)142.5 (19)
O3W—H31W···O2vi0.843 (9)2.499 (17)3.1181 (7)131.0 (17)
O3W—H31W···O3v0.843 (9)2.584 (14)3.1569 (8)126.2 (15)
O3W—H32W···O4vii0.862 (8)1.926 (8)2.7842 (8)173.8 (16)
O4W—H41W···O1viii0.858 (9)1.888 (10)2.7124 (6)160.4 (19)
O4W—H42W···O3Wiv0.836 (8)1.939 (9)2.7532 (8)164.4 (16)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y1/2, z+2; (iv) x, y, z+1; (v) x+1/2, y1/2, z+1; (vi) x+1/2, y1/2, z; (vii) x, y, z1; (viii) x, y, z.
 

Acknowledgements

The purchase of the Siemens SMART CCD diffractometer was made possible through support from the Research Council of Norway (NFR)

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmbady, G. K. & Kartha, G. (1968). Acta Cryst. B24, 1540–1547.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBeevers, C. A. & Hughes, W. (1941). Proc. R. Soc. London Ser. A, 177, 251–259.  CrossRef CAS Google Scholar
First citationBoese, R., Bläser, D., Latz, R. & Piennisch, M. (1995). Acta Cryst. C51, 2227–2229.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrożek, Z. & Stadnicka, K. (1994). Acta Cryst. B50, 59–68.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHinazumi, H. & Mitsui, T. (1972). Acta Cryst. B28, 3299–3305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationIwata, Y., Mitani, S. & Shibuya, I. (1989). Ferroelectrics, 96, 215–219.  CrossRef CAS Web of Science Google Scholar
First citationKay, M. I. (1978). Ferroelectrics, 19, 159–164.  CrossRef CAS Web of Science Google Scholar
First citationKuroda, R. & Mason, S. F. (1981). J. Chem. Soc. Dalton Trans. pp. 1261–1273.  Google Scholar
First citationOttenz, C., Schurmann, M., Preut, H. & Bleckmann, P. (1998). Z. Kristallogr. New Cryst. Struct. 213, 166.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolans, X., Gonzalez-Silgo, C. & Ruiz-Pérez, C. (1997). J. Solid State Chem. 131, 350–357.  CSD CrossRef CAS Web of Science Google Scholar
First citationSuzuki, I. (1974). J. Phys. Soc. Jpn, 37, 1379–1384.  CrossRef CAS Web of Science Google Scholar
First citationSuzuki, E., Kabasawa, H., Honma, T., Nozaki, R. & Shiozaki, Y. (1996b). Acta Cryst. B52, 976–981.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSuzuki, E., Muta, T., Nozaki, R. & Shiozaki, Y. (1996a). Acta Cryst. B52, 296–302.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTreeck, E. van & Windsch, W. (1977). J. Magn. Reson. 25, 15–23.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m507-m508
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds