metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m533-m534

(2,2′-Bi­pyridine)bis­­(tri­phenyl­phosphine)copper(I) nitrate chloro­form solvate hemihydrate

aCentro de Química, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela, and bDepartamento de Química, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
*Correspondence e-mail: mariocapparelli@cantv.net

(Received 23 February 2008; accepted 6 March 2008; online 12 March 2008)

In the title compound, [Cu(C10H8N2)(C18H15P)2]NO2·CHCl3·0.5H2O, the Cu atom is tetra­hedrally coordinated by a bidentate 2,2′-bipyridine ligand and two PPh3 ligands. The Cu—N and Cu—P distances are similar to those observed in similar compounds. The range of coordination angles shows a moderate distortion from ideal tetra­hedral geometry. The bipyridine ligand is twisted [14.2 (4)°] about the ring–ring C—C bond. The nitrate anion and the water and chloro­form mol­ecules of solvation are disordered. In the crystal structure, there are O(water)—H⋯O(nitrate), C—H⋯O(water) and C—H⋯O(nitrate) hydrogen bonds.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]); Engelhardt et al. (1985[Engelhardt, L. M., Pakawatchai, C., White, A. H. & Healy, P. C. (1985). J. Chem. Soc. Dalton Trans. pp. 125-133.]); Hirshfeld (1976[Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.]); Navarro et al. (2003[Navarro, M., Cisneros-Fajardo, E., Fernandez-Mestre, M., Arriechi, D. & Marchan, E. (2003). J. Inorg. Biochem. 97, 364-369.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H8N2)(C18H15P)2]NO3·CHCl3·0.5H2O

  • Mr = 934.65

  • Triclinic, [P \overline 1]

  • a = 10.754 (2) Å

  • b = 12.672 (3) Å

  • c = 17.464 (4) Å

  • α = 99.100 (5)°

  • β = 99.279 (4)°

  • γ = 101.229 (5)°

  • V = 2259.4 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 296 (2) K

  • 0.56 × 0.51 × 0.40 mm

Data collection
  • Rigaku AFC7S Mercury diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC., The Woodlands, Texas, USA.]) Tmin = 0.584, Tmax = 0.733

  • 25842 measured reflections

  • 8576 independent reflections

  • 6719 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.136

  • S = 1.06

  • 8576 reflections

  • 549 parameters

  • 20 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 2.070 (2)
Cu1—N12 2.103 (3)
Cu1—P2 2.2600 (9)
Cu1—P1 2.2659 (9)
N1—Cu1—N12 79.71 (10)
N1—Cu1—P2 111.18 (8)
N12—Cu1—P2 111.86 (7)
N1—Cu1—P1 111.46 (8)
N12—Cu1—P1 108.68 (7)
P2—Cu1—P1 124.89 (3)
N1—C6—C7—N12 14.2 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3Si 0.93 2.56 3.317 (9) 139
C5—H5⋯O1Wi 0.93 2.34 3.182 (15) 151
C8—H8⋯O2Sii 0.93 2.38 3.242 (11) 155
C45—H45⋯O3S 0.93 2.59 3.493 (10) 163
C1S—H1S⋯O1Siii 0.98 2.25 3.204 (7) 165
O1W⋯O2Siv     2.663 (19)  
O1W⋯O2Sv     2.667 (19)  
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z+1; (iv) x+1, y, z+1; (v) -x+1, -y+2, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (I) was prepared within our program of studies of copper complexes containing N-bidentated aromatic ligands, focused on the search for drugs with biological activity, especially against parasitic diseases (Navarro et al., 2003).

The structure analysis showed that, in addition to the complex cation and the (partially disordered) nitrate anion the crystals contain disordered molecules of water and chloroform of solvation.

In the cation (Fig. 1), the metal atom is tetrahedrally coordinated to a bidentated 2,2'-bipyridine (bipy) ligand and to two PPh3 moieties. The Cu—N and Cu—P (Table 1) distances are comparable to Cu—N, 2.056 (8), 2.113 (9) Å and Cu—P, 2.246 (3), 2.256 (3) Å observed in the same cation in [Cu(PPh3)2(bipy)]ClO4 (Engelhardt et al., 1985). All bond lengths and angles in the organic ligands are within normal values (Allen et al., 1987).

The range of coordination angles (Table 1) shows a moderate distortion from the ideal tetrahedral geometry. As expected, the bite angle is the smaller one, while the P—Cu—P angle is the largest, due to the bulkiness of the PPh3 moieties. The five-member metallacycle, Cu1—N1—C6—C7—N2, can be described as an envelope on C6, albeit a flat one [C6 is 0.148 (4) Å out of the plane]. The bipy ligand is twisted about C6—C7 (Table 1); the dihedral angle between both heterocycles is 17.0 (2)°.

Although the water's H atoms could not be located (see Refinement Section), short contacts with the nitrate anion [O1w···O2s(1 + x, y, z), 2.663 (19) Å; O1w···O2s(1 - x, 2 - y, -z), 2.667 (19) Å] indicate hydrogen bonds between these two groups. Further evidence of the feasibility of these links is given by the corresponding O2s···O1w···O2s angle [146.7 (5)°]. Several C—H···O bonds may also contribute to the crystal packing (Fig. 2 and Supplementary material).

Related literature top

For related literature, see: Allen et al. (1987); Engelhardt et al. (1985); Hirshfeld (1976); Navarro et al. (2003); Sheldrick (1997b); Spek (1998).

Experimental top

The title compound (I) was synthesized by the reaction of copper nitrate with bipyridine. To a solution of Cu(PPh3)2NO3 (100 mg, 0.15 mmol) in dichloromethane (10 ml) was added 2,2'-bipyridine (24 mg, 0.15 mmol). The solution, initially transparent, became yellow. It was stirred for 1 h at room temperature and then was added to hexane (50 ml). The light yellow solid formed was filtered and dried (122 mg, 98%). All operations were carried out under inert atmosphere. Crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution.

Refinement top

The hydrogen atoms were placed in calculated positions using a riding atom model with fixed C—H distances [0.93 Å for C(sp2), 0.98 Å for C(sp3) in CHCl3] and Uiso = 1.2 Ueq(parent atom).

The nitrate anion and the water and chloroform molecules of solvation were found to be disordered. The NO3- showed severe disorder, difficult to model satisfactorily; in the final refinement the four largest residual electron density peaks were close (0.64–1.07 e/Å3) to NO3 atoms. O2s and O3s were split in two positions, with complementary occupancies, and refined isotropically to final occupancies of 0.505 (14) and 0.719 (12) respectively. To obtain better geometries, restraints were applied: SADI to all N—O bonds and to all O···O distances, and FLAT to both NO3 groups. An attempt at splitting N1s, as suggested by its elongated ADP, gave meaningless results. The O1w atom of the water molecule was given an occupancy of 1/2, since it is disordered between two centrosymmetrically related positions, which are mutually exclusive [O1w···O1w(2 - x, 2 - y, -x), 1.53 (3) Å]. The corresponding H atoms could not be found. Each of the Cl atoms of chloroform was split in two alternative positions, with complementary occupancies. The main positions [final occupancy 0.911 (6) for all three] were refined anisotropically, while the alternative ones were given isotropic displacement parameters.

Both Cu—P bonds, with ΔU/σ = 7.21 for Cu1—P1 and 7.13 for Cu1—P2, failed to pass the standard rigid-bond test (e.g.: ΔU/σ 5, Spek, 1998; Hirshfeld, 1976) even after applying a DELU restraint (Sheldrick, 2008). This was probably due to an unfavorable specimen morphology which caused a poor absorption correction.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structure of the complex cation [Cu(PPh3)2(bipy)]+ showing the atomic numbering. Displacement parameters are drawn at 50% probability level.
[Figure 2] Fig. 2. Crystal structure of (I). For clarity, alternative positions for disordered atoms and H atoms were omitted. Possible hydrogen bonds are shown as dashed lines.
(2,2'-Bipyridine)bis(triphenylphosphine)copper(I) nitrate chloroform solvate hemihydrate top
Crystal data top
[Cu(C10H8N2)(C18H15P)2]NO3·CHCl3·0.5H2OZ = 2
Mr = 934.65F(000) = 962
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 10.754 (2) ÅCell parameters from 15269 reflections
b = 12.672 (3) Åθ = 1.7–28.0°
c = 17.464 (4) ŵ = 0.78 mm1
α = 99.100 (5)°T = 296 K
β = 99.279 (4)°Irregular, green
γ = 101.229 (5)°0.56 × 0.51 × 0.40 mm
V = 2259.4 (9) Å3
Data collection top
Rigaku AFC7S Mercury
diffractometer
8576 independent reflections
Radiation source: fine-focus sealed tube6719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 14.63 pixels mm-1θmax = 28.0°, θmin = 1.2°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1615
Tmin = 0.584, Tmax = 0.733l = 2121
25842 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0572P)2 + 1.3813P]
where P = (Fo2 + 2Fc2)/3
8576 reflections(Δ/σ)max = 0.001
549 parametersΔρmax = 0.49 e Å3
20 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cu(C10H8N2)(C18H15P)2]NO3·CHCl3·0.5H2Oγ = 101.229 (5)°
Mr = 934.65V = 2259.4 (9) Å3
Triclinic, P1Z = 2
a = 10.754 (2) ÅMo Kα radiation
b = 12.672 (3) ŵ = 0.78 mm1
c = 17.464 (4) ÅT = 296 K
α = 99.100 (5)°0.56 × 0.51 × 0.40 mm
β = 99.279 (4)°
Data collection top
Rigaku AFC7S Mercury
diffractometer
8576 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
6719 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 0.733Rint = 0.031
25842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05120 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
8576 reflectionsΔρmin = 0.53 e Å3
549 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refinement details for disordered atoms are given in the Refimnement section.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.56159 (3)0.26669 (3)0.22887 (2)0.04336 (12)
P10.40007 (8)0.34553 (6)0.18315 (5)0.04467 (19)
P20.61841 (7)0.24899 (6)0.35575 (4)0.04036 (18)
N10.5630 (3)0.1260 (2)0.15089 (15)0.0517 (6)
C20.4854 (4)0.0263 (3)0.1418 (2)0.0661 (10)
H20.41280.01950.16480.079*
C30.5102 (5)0.0673 (3)0.0989 (3)0.0839 (13)
H30.45500.13560.09340.101*
C40.6161 (6)0.0569 (4)0.0654 (3)0.0951 (15)
H40.63460.11870.03720.114*
C50.6960 (5)0.0441 (4)0.0730 (2)0.0810 (12)
H50.76870.05170.05000.097*
C60.6661 (3)0.1351 (3)0.11567 (19)0.0555 (8)
C70.7456 (3)0.2477 (3)0.12513 (19)0.0549 (8)
C80.8316 (4)0.2757 (4)0.0758 (2)0.0813 (12)
H80.84410.22220.03670.098*
C90.8968 (4)0.3815 (5)0.0854 (3)0.0913 (14)
H90.95470.40070.05310.110*
C100.8769 (4)0.4593 (4)0.1426 (3)0.0830 (13)
H100.92030.53220.14950.100*
C110.7911 (3)0.4281 (3)0.1902 (2)0.0625 (9)
H110.77910.48110.22990.075*
N120.7239 (2)0.3238 (2)0.18134 (15)0.0496 (6)
C210.3703 (3)0.3373 (3)0.07633 (18)0.0506 (7)
C220.2493 (4)0.3103 (3)0.0274 (2)0.0727 (10)
H220.17530.29380.04840.087*
C230.2388 (5)0.3081 (4)0.0532 (2)0.0900 (14)
H230.15730.28840.08590.108*
C240.3442 (5)0.3339 (3)0.0849 (2)0.0841 (13)
H240.33510.33400.13870.101*
C250.4636 (5)0.3597 (3)0.0381 (2)0.0769 (11)
H250.53640.37660.06010.092*
C260.4774 (4)0.3610 (3)0.0419 (2)0.0605 (9)
H260.55990.37800.07330.073*
C310.2417 (3)0.2894 (3)0.20327 (19)0.0506 (7)
C320.1871 (3)0.1791 (3)0.1751 (2)0.0676 (10)
H320.22790.13700.14310.081*
C330.0709 (4)0.1305 (4)0.1943 (3)0.0825 (12)
H330.03450.05630.17530.099*
C340.0109 (4)0.1929 (5)0.2412 (3)0.0854 (14)
H340.06620.16080.25440.103*
C350.0637 (4)0.3019 (4)0.2687 (3)0.0831 (13)
H350.02210.34380.30010.100*
C360.1787 (3)0.3507 (3)0.2502 (2)0.0633 (9)
H360.21400.42510.26940.076*
C410.4297 (3)0.4929 (2)0.22167 (19)0.0509 (7)
C420.5256 (4)0.5401 (3)0.2877 (2)0.0698 (10)
H420.57350.49640.31190.084*
C430.5515 (5)0.6512 (4)0.3184 (3)0.0949 (15)
H430.61550.68190.36330.114*
C440.4819 (5)0.7157 (4)0.2822 (3)0.0934 (14)
H440.50040.79070.30220.112*
C450.3853 (5)0.6713 (3)0.2168 (3)0.0797 (12)
H450.33760.71580.19340.096*
C460.3594 (4)0.5600 (3)0.1862 (2)0.0618 (9)
H460.29470.52980.14170.074*
C510.4918 (3)0.1884 (2)0.40385 (17)0.0422 (6)
C520.3641 (3)0.1788 (3)0.3692 (2)0.0585 (9)
H520.34390.20040.32110.070*
C530.2666 (4)0.1371 (4)0.4059 (3)0.0776 (12)
H530.18100.13130.38240.093*
C540.2936 (4)0.1043 (3)0.4756 (2)0.0666 (10)
H540.22680.07690.49990.080*
C550.4182 (4)0.1115 (3)0.5100 (2)0.0630 (9)
H550.43660.08820.55760.076*
C560.5182 (3)0.1533 (3)0.4745 (2)0.0583 (8)
H560.60340.15780.49830.070*
C610.6926 (3)0.3802 (2)0.42251 (17)0.0446 (7)
C620.8032 (3)0.4444 (3)0.4071 (2)0.0597 (9)
H620.83940.41810.36520.072*
C630.8595 (4)0.5465 (3)0.4535 (3)0.0743 (11)
H630.93440.58770.44340.089*
C640.8059 (4)0.5877 (3)0.5145 (3)0.0793 (12)
H640.84350.65700.54530.095*
C650.6963 (4)0.5260 (3)0.5297 (2)0.0742 (11)
H650.65950.55390.57080.089*
C660.6399 (3)0.4228 (3)0.4846 (2)0.0575 (8)
H660.56600.38170.49600.069*
C710.7379 (3)0.1653 (2)0.37355 (18)0.0444 (7)
C720.7141 (3)0.0629 (3)0.3242 (2)0.0583 (8)
H720.64050.04020.28430.070*
C730.7991 (4)0.0051 (3)0.3339 (2)0.0678 (10)
H730.78240.07330.30050.081*
C740.9088 (3)0.0279 (3)0.3931 (2)0.0657 (10)
H740.96660.01730.39930.079*
C750.9312 (3)0.1275 (3)0.4421 (2)0.0645 (9)
H751.00390.14940.48270.077*
C760.8469 (3)0.1965 (3)0.4323 (2)0.0558 (8)
H760.86430.26460.46590.067*
C1S0.0946 (4)0.2653 (3)0.6980 (3)0.0822 (12)
H1S0.10930.27480.75240.099*
Cl1S0.07297 (19)0.27094 (17)0.69940 (16)0.1137 (7)0.911 (6)
Cl2S0.18878 (19)0.13990 (18)0.64402 (13)0.1167 (7)0.911 (6)
Cl3S0.1396 (2)0.37078 (17)0.65417 (17)0.1141 (9)0.911 (6)
Cl1T0.0416 (19)0.2325 (18)0.7246 (11)0.094 (6)*0.089 (6)
Cl2T0.162 (2)0.191 (3)0.6233 (15)0.130 (8)*0.089 (6)
Cl3T0.0968 (14)0.3998 (12)0.7051 (13)0.083 (5)*0.089 (6)
N1S0.1383 (10)0.8269 (6)0.1199 (3)0.157 (3)
O1S0.1002 (5)0.7275 (5)0.1184 (3)0.1440 (16)
O2S0.0559 (12)0.8453 (8)0.0668 (6)0.146 (5)*0.505 (14)
O2S'0.1575 (9)0.9082 (8)0.0846 (5)0.123 (4)*0.495 (14)
O3S0.2184 (9)0.8712 (7)0.1718 (6)0.182 (4)*0.719 (12)
O3S'0.0415 (18)0.8635 (15)0.1616 (12)0.162 (9)*0.281 (12)
O1W0.9283 (12)0.9778 (13)0.0008 (10)0.240 (6)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0457 (2)0.0458 (2)0.0419 (2)0.01544 (16)0.01346 (16)0.00713 (15)
P10.0477 (4)0.0513 (4)0.0405 (4)0.0202 (3)0.0129 (3)0.0096 (3)
P20.0363 (4)0.0465 (4)0.0409 (4)0.0123 (3)0.0109 (3)0.0093 (3)
N10.0652 (17)0.0463 (14)0.0434 (15)0.0186 (13)0.0071 (13)0.0042 (11)
C20.080 (2)0.052 (2)0.059 (2)0.0102 (18)0.0028 (19)0.0029 (16)
C30.116 (4)0.049 (2)0.074 (3)0.016 (2)0.004 (3)0.0004 (18)
C40.136 (4)0.068 (3)0.084 (3)0.048 (3)0.018 (3)0.006 (2)
C50.109 (3)0.081 (3)0.065 (3)0.052 (3)0.027 (2)0.003 (2)
C60.070 (2)0.062 (2)0.0399 (18)0.0328 (17)0.0117 (16)0.0060 (14)
C70.0579 (19)0.070 (2)0.0459 (19)0.0287 (17)0.0176 (15)0.0137 (15)
C80.089 (3)0.107 (3)0.067 (3)0.040 (3)0.042 (2)0.022 (2)
C90.082 (3)0.117 (4)0.090 (3)0.019 (3)0.045 (3)0.041 (3)
C100.073 (3)0.085 (3)0.097 (3)0.005 (2)0.026 (2)0.044 (3)
C110.059 (2)0.059 (2)0.069 (2)0.0074 (17)0.0163 (18)0.0153 (17)
N120.0491 (14)0.0550 (15)0.0500 (16)0.0185 (12)0.0147 (12)0.0125 (12)
C210.062 (2)0.0529 (17)0.0414 (18)0.0228 (15)0.0111 (15)0.0106 (13)
C220.068 (2)0.101 (3)0.057 (2)0.035 (2)0.0095 (19)0.023 (2)
C230.095 (3)0.121 (4)0.052 (3)0.034 (3)0.010 (2)0.021 (2)
C240.128 (4)0.083 (3)0.049 (2)0.035 (3)0.015 (3)0.022 (2)
C250.105 (3)0.077 (3)0.059 (2)0.023 (2)0.031 (2)0.027 (2)
C260.071 (2)0.067 (2)0.049 (2)0.0191 (18)0.0166 (17)0.0155 (16)
C310.0467 (17)0.063 (2)0.0479 (19)0.0194 (15)0.0093 (14)0.0190 (15)
C320.058 (2)0.078 (3)0.066 (2)0.0139 (19)0.0105 (18)0.0127 (19)
C330.063 (2)0.086 (3)0.091 (3)0.003 (2)0.005 (2)0.031 (2)
C340.053 (2)0.132 (4)0.084 (3)0.020 (3)0.021 (2)0.051 (3)
C350.071 (3)0.123 (4)0.080 (3)0.044 (3)0.037 (2)0.042 (3)
C360.061 (2)0.080 (2)0.063 (2)0.0306 (19)0.0269 (18)0.0231 (18)
C410.0577 (19)0.0502 (17)0.0527 (19)0.0214 (15)0.0208 (15)0.0117 (14)
C420.079 (3)0.060 (2)0.066 (2)0.0253 (19)0.006 (2)0.0021 (18)
C430.106 (4)0.073 (3)0.090 (3)0.025 (3)0.001 (3)0.015 (2)
C440.124 (4)0.058 (2)0.098 (4)0.025 (3)0.036 (3)0.002 (2)
C450.110 (3)0.066 (2)0.091 (3)0.045 (2)0.053 (3)0.031 (2)
C460.072 (2)0.063 (2)0.063 (2)0.0302 (18)0.0256 (18)0.0188 (17)
C510.0431 (15)0.0408 (15)0.0455 (17)0.0129 (12)0.0112 (13)0.0100 (12)
C520.0426 (17)0.075 (2)0.063 (2)0.0106 (16)0.0104 (15)0.0297 (18)
C530.0441 (19)0.102 (3)0.095 (3)0.010 (2)0.022 (2)0.043 (3)
C540.061 (2)0.067 (2)0.081 (3)0.0106 (18)0.035 (2)0.0257 (19)
C550.077 (3)0.066 (2)0.054 (2)0.0147 (19)0.0265 (19)0.0225 (17)
C560.0505 (18)0.075 (2)0.053 (2)0.0146 (17)0.0109 (15)0.0230 (17)
C610.0445 (16)0.0490 (16)0.0411 (16)0.0137 (13)0.0068 (13)0.0091 (13)
C620.0518 (19)0.064 (2)0.059 (2)0.0031 (16)0.0134 (16)0.0092 (16)
C630.065 (2)0.064 (2)0.081 (3)0.0072 (19)0.009 (2)0.009 (2)
C640.083 (3)0.056 (2)0.082 (3)0.003 (2)0.001 (2)0.003 (2)
C650.081 (3)0.065 (2)0.071 (3)0.022 (2)0.016 (2)0.0115 (19)
C660.0544 (19)0.0541 (18)0.063 (2)0.0131 (15)0.0170 (16)0.0014 (15)
C710.0399 (15)0.0529 (17)0.0478 (18)0.0174 (13)0.0156 (13)0.0164 (13)
C720.0558 (19)0.0559 (19)0.065 (2)0.0204 (16)0.0077 (17)0.0125 (16)
C730.079 (3)0.056 (2)0.078 (3)0.0294 (19)0.022 (2)0.0162 (18)
C740.055 (2)0.071 (2)0.093 (3)0.0326 (18)0.030 (2)0.041 (2)
C750.0427 (18)0.080 (3)0.079 (3)0.0223 (17)0.0105 (17)0.030 (2)
C760.0440 (17)0.064 (2)0.061 (2)0.0180 (15)0.0082 (15)0.0113 (16)
C1S0.106 (3)0.072 (3)0.070 (3)0.032 (2)0.015 (2)0.008 (2)
Cl1S0.1039 (12)0.0881 (11)0.1527 (17)0.0357 (9)0.0224 (11)0.0201 (11)
Cl2S0.1263 (13)0.0855 (12)0.1194 (14)0.0151 (10)0.0038 (10)0.0035 (10)
Cl3S0.1557 (17)0.1091 (12)0.123 (2)0.0812 (12)0.0695 (16)0.0501 (12)
N1S0.281 (9)0.163 (6)0.063 (3)0.120 (6)0.025 (5)0.049 (4)
O1S0.138 (4)0.184 (5)0.110 (3)0.059 (4)0.013 (3)0.012 (3)
Geometric parameters (Å, º) top
Cu1—N12.070 (2)C42—C431.381 (5)
Cu1—N122.103 (3)C42—H420.9300
Cu1—P22.2600 (9)C43—C441.370 (7)
Cu1—P12.2659 (9)C43—H430.9300
P1—C211.824 (3)C44—C451.373 (6)
P1—C311.825 (3)C44—H440.9300
P1—C411.828 (3)C45—C461.383 (5)
P2—C511.821 (3)C45—H450.9300
P2—C611.825 (3)C46—H460.9300
P2—C711.839 (3)C51—C521.382 (4)
N1—C21.341 (4)C51—C561.382 (4)
N1—C61.347 (4)C52—C531.377 (5)
C2—C31.395 (5)C52—H520.9300
C2—H20.9300C53—C541.353 (5)
C3—C41.356 (7)C53—H530.9300
C3—H30.9300C54—C551.357 (5)
C4—C51.370 (6)C54—H540.9300
C4—H40.9300C55—C561.385 (5)
C5—C61.393 (5)C55—H550.9300
C5—H50.9300C56—H560.9300
C6—C71.483 (5)C61—C661.386 (4)
C7—N121.345 (4)C61—C621.394 (4)
C7—C81.396 (5)C62—C631.379 (5)
C8—C91.357 (6)C62—H620.9300
C8—H80.9300C63—C641.371 (6)
C9—C101.362 (7)C63—H630.9300
C9—H90.9300C64—C651.370 (6)
C10—C111.382 (5)C64—H640.9300
C10—H100.9300C65—C661.382 (5)
C11—N121.349 (4)C65—H650.9300
C11—H110.9300C66—H660.9300
C21—C221.384 (5)C71—C761.373 (4)
C21—C261.388 (5)C71—C721.392 (4)
C22—C231.389 (5)C72—C731.382 (5)
C22—H220.9300C72—H720.9300
C23—C241.347 (6)C73—C741.383 (5)
C23—H230.9300C73—H730.9300
C24—C251.355 (6)C74—C751.363 (5)
C24—H240.9300C74—H740.9300
C25—C261.378 (5)C75—C761.386 (5)
C25—H250.9300C75—H750.9300
C26—H260.9300C76—H760.9300
C31—C321.382 (5)C1S—H1S0.9800
C31—C361.384 (5)C1S—Cl1S1.786 (5)
C32—C331.398 (5)C1S—Cl2S1.741 (4)
C32—H320.9300C1S—Cl3S1.750 (4)
C33—C341.371 (6)C1S—Cl1t1.617 (19)
C33—H330.9300C1S—Cl2t1.47 (3)
C34—C351.363 (6)C1S—Cl3t1.694 (15)
C34—H340.9300N1S—O3S1.131 (10)
C35—C361.382 (5)N1S—O1S1.241 (8)
C35—H350.9300N1S—O2S1.259 (12)
C36—H360.9300N1S—O2S'1.282 (10)
C41—C421.382 (5)N1S—O3S'1.47 (2)
C41—C461.394 (5)
N1—Cu1—N1279.71 (10)C42—C41—C46118.5 (3)
N1—Cu1—P2111.18 (8)C42—C41—P1119.2 (3)
N12—Cu1—P2111.86 (7)C46—C41—P1122.2 (3)
N1—Cu1—P1111.46 (8)C43—C42—C41121.0 (4)
N12—Cu1—P1108.68 (7)C43—C42—H42119.5
P2—Cu1—P1124.89 (3)C41—C42—H42119.5
C21—P1—C31104.14 (15)C44—C43—C42119.4 (4)
C21—P1—C41102.77 (14)C44—C43—H43120.3
C31—P1—C41104.43 (15)C42—C43—H43120.3
C21—P1—Cu1114.07 (11)C43—C44—C45121.1 (4)
C31—P1—Cu1115.68 (10)C43—C44—H44119.5
C41—P1—Cu1114.29 (11)C45—C44—H44119.5
C51—P2—C61103.12 (13)C44—C45—C46119.4 (4)
C51—P2—C71101.93 (13)C44—C45—H45120.3
C61—P2—C71103.69 (14)C46—C45—H45120.3
C51—P2—Cu1118.06 (10)C45—C46—C41120.5 (4)
C61—P2—Cu1112.74 (10)C45—C46—H46119.7
C71—P2—Cu1115.48 (10)C41—C46—H46119.7
C2—N1—C6118.3 (3)C52—C51—C56118.5 (3)
C2—N1—Cu1127.0 (2)C52—C51—P2118.9 (2)
C6—N1—Cu1113.9 (2)C56—C51—P2122.6 (2)
N1—C2—C3122.1 (4)C53—C52—C51120.0 (3)
N1—C2—H2118.9C53—C52—H52120.0
C3—C2—H2118.9C51—C52—H52120.0
C4—C3—C2118.7 (4)C54—C53—C52121.0 (4)
C4—C3—H3120.6C54—C53—H53119.5
C2—C3—H3120.6C52—C53—H53119.5
C3—C4—C5120.3 (4)C53—C54—C55119.9 (3)
C3—C4—H4119.8C53—C54—H54120.0
C5—C4—H4119.8C55—C54—H54120.0
C4—C5—C6118.7 (4)C54—C55—C56120.3 (3)
C4—C5—H5120.7C54—C55—H55119.8
C6—C5—H5120.7C56—C55—H55119.8
N1—C6—C5121.8 (3)C51—C56—C55120.2 (3)
N1—C6—C7116.0 (3)C51—C56—H56119.9
C5—C6—C7122.2 (3)C55—C56—H56119.9
N12—C7—C8121.4 (3)C66—C61—C62118.1 (3)
N12—C7—C6115.8 (3)C66—C61—P2123.4 (2)
C8—C7—C6122.7 (3)C62—C61—P2118.4 (2)
C9—C8—C7119.6 (4)C63—C62—C61120.7 (3)
C9—C8—H8120.2C63—C62—H62119.7
C7—C8—H8120.2C61—C62—H62119.7
C8—C9—C10119.7 (4)C64—C63—C62120.5 (4)
C8—C9—H9120.1C64—C63—H63119.7
C10—C9—H9120.1C62—C63—H63119.7
C9—C10—C11118.8 (4)C65—C64—C63119.4 (3)
C9—C10—H10120.6C65—C64—H64120.3
C11—C10—H10120.6C63—C64—H64120.3
N12—C11—C10122.7 (4)C64—C65—C66120.8 (4)
N12—C11—H11118.6C64—C65—H65119.6
C10—C11—H11118.6C66—C65—H65119.6
C7—N12—C11117.7 (3)C65—C66—C61120.5 (3)
C7—N12—Cu1113.2 (2)C65—C66—H66119.8
C11—N12—Cu1128.0 (2)C61—C66—H66119.8
C22—C21—C26117.8 (3)C76—C71—C72118.5 (3)
C22—C21—P1125.0 (3)C76—C71—P2124.5 (2)
C26—C21—P1117.2 (3)C72—C71—P2117.0 (2)
C21—C22—C23119.7 (4)C73—C72—C71120.5 (3)
C21—C22—H22120.1C73—C72—H72119.7
C23—C22—H22120.1C71—C72—H72119.7
C24—C23—C22121.3 (4)C72—C73—C74120.2 (4)
C24—C23—H23119.3C72—C73—H73119.9
C22—C23—H23119.3C74—C73—H73119.9
C23—C24—C25119.8 (4)C75—C74—C73119.3 (3)
C23—C24—H24120.1C75—C74—H74120.3
C25—C24—H24120.1C73—C74—H74120.3
C24—C25—C26120.3 (4)C74—C75—C76120.8 (3)
C24—C25—H25119.9C74—C75—H75119.6
C26—C25—H25119.9C76—C75—H75119.6
C25—C26—C21121.0 (4)C71—C76—C75120.7 (3)
C25—C26—H26119.5C71—C76—H76119.7
C21—C26—H26119.5C75—C76—H76119.7
C32—C31—C36118.8 (3)Cl2S—C1S—Cl1S110.6 (2)
C32—C31—P1118.3 (3)Cl2S—C1S—Cl3S109.0 (3)
C36—C31—P1122.7 (3)Cl3S—C1S—Cl1S109.3 (3)
C31—C32—C33120.4 (4)Cl1S—C1S—H1S109.3
C31—C32—H32119.8Cl2S—C1S—H1S109.3
C33—C32—H32119.8Cl3S—C1S—H1S109.3
C34—C33—C32119.6 (4)Cl2t—C1S—Cl1t107.6 (12)
C34—C33—H33120.2Cl2t—C1S—Cl3t117.1 (11)
C32—C33—H33120.2Cl3t—C1S—Cl1t118.8 (9)
C35—C34—C33120.2 (4)Cl1t—C1S—H1S91.7
C35—C34—H34119.9Cl2t—C1S—H1S134.5
C33—C34—H34119.9Cl3t—C1S—H1S85.6
C34—C35—C36120.6 (4)O3S—N1S—O1S114.4 (7)
C34—C35—H35119.7O3S—N1S—O2S141.2 (10)
C36—C35—H35119.7O1S—N1S—O2S103.1 (9)
C35—C36—C31120.4 (4)O1S—N1S—O2S'151.1 (7)
C35—C36—H36119.8O1S—N1S—O3S'96.4 (10)
C31—C36—H36119.8O2S'—N1S—O3S'96.0 (9)
N1—Cu1—P1—C2137.02 (14)C21—P1—C31—C3267.5 (3)
N12—Cu1—P1—C2148.98 (14)C41—P1—C31—C32175.0 (3)
P2—Cu1—P1—C21175.39 (11)Cu1—P1—C31—C3258.5 (3)
N1—Cu1—P1—C3183.75 (15)C21—P1—C31—C36117.3 (3)
N12—Cu1—P1—C31169.75 (14)C41—P1—C31—C369.8 (3)
P2—Cu1—P1—C3154.62 (13)Cu1—P1—C31—C36116.7 (3)
N1—Cu1—P1—C41154.89 (14)C36—C31—C32—C330.5 (5)
N12—Cu1—P1—C4168.88 (14)P1—C31—C32—C33174.9 (3)
P2—Cu1—P1—C4166.75 (12)C31—C32—C33—C340.1 (6)
N1—Cu1—P2—C5187.33 (13)C32—C33—C34—C350.4 (6)
N12—Cu1—P2—C51174.41 (13)C33—C34—C35—C360.5 (7)
P1—Cu1—P2—C5151.13 (11)C34—C35—C36—C310.2 (6)
N1—Cu1—P2—C61152.51 (14)C32—C31—C36—C350.3 (5)
N12—Cu1—P2—C6165.43 (13)P1—C31—C36—C35174.8 (3)
P1—Cu1—P2—C6169.03 (11)C21—P1—C41—C42140.2 (3)
N1—Cu1—P2—C7133.56 (14)C31—P1—C41—C42111.3 (3)
N12—Cu1—P2—C7153.51 (13)Cu1—P1—C41—C4216.1 (3)
P1—Cu1—P2—C71172.03 (11)C21—P1—C41—C4639.2 (3)
N12—Cu1—N1—C2174.9 (3)C31—P1—C41—C4669.3 (3)
P2—Cu1—N1—C265.3 (3)Cu1—P1—C41—C46163.3 (2)
P1—Cu1—N1—C279.0 (3)C46—C41—C42—C430.2 (6)
N12—Cu1—N1—C65.6 (2)P1—C41—C42—C43179.6 (3)
P2—Cu1—N1—C6104.0 (2)C41—C42—C43—C440.8 (7)
P1—Cu1—N1—C6111.7 (2)C42—C43—C44—C451.3 (8)
C6—N1—C2—C31.6 (5)C43—C44—C45—C461.2 (7)
Cu1—N1—C2—C3167.3 (3)C44—C45—C46—C410.6 (6)
N1—C2—C3—C40.0 (6)C42—C41—C46—C450.2 (5)
C2—C3—C4—C50.8 (7)P1—C41—C46—C45179.6 (3)
C3—C4—C5—C60.2 (7)C61—P2—C51—C52110.3 (3)
C2—N1—C6—C52.3 (5)C71—P2—C51—C52142.3 (3)
Cu1—N1—C6—C5168.0 (3)Cu1—P2—C51—C5214.7 (3)
C2—N1—C6—C7177.7 (3)C61—P2—C51—C5668.6 (3)
Cu1—N1—C6—C712.0 (3)C71—P2—C51—C5638.8 (3)
C4—C5—C6—N11.4 (6)Cu1—P2—C51—C56166.4 (2)
C4—C5—C6—C7178.5 (4)C56—C51—C52—C531.4 (5)
N1—C6—C7—N1214.2 (4)P2—C51—C52—C53177.6 (3)
C5—C6—C7—N12165.8 (3)C51—C52—C53—C540.5 (6)
N1—C6—C7—C8161.7 (3)C52—C53—C54—C550.6 (6)
C5—C6—C7—C818.3 (5)C53—C54—C55—C560.7 (6)
N12—C7—C8—C91.2 (6)C52—C51—C56—C551.2 (5)
C6—C7—C8—C9176.8 (4)P2—C51—C56—C55177.7 (3)
C7—C8—C9—C100.5 (7)C54—C55—C56—C510.2 (6)
C8—C9—C10—C110.6 (7)C51—P2—C61—C6610.6 (3)
C9—C10—C11—N121.4 (6)C71—P2—C61—C66116.6 (3)
C8—C7—N12—C111.9 (5)Cu1—P2—C61—C66117.8 (3)
C6—C7—N12—C11177.9 (3)C51—P2—C61—C62173.9 (3)
C8—C7—N12—Cu1167.0 (3)C71—P2—C61—C6267.9 (3)
C6—C7—N12—Cu19.0 (4)Cu1—P2—C61—C6257.7 (3)
C10—C11—N12—C72.0 (5)C66—C61—C62—C631.2 (5)
C10—C11—N12—Cu1164.9 (3)P2—C61—C62—C63176.9 (3)
N1—Cu1—N12—C72.2 (2)C61—C62—C63—C641.5 (6)
P2—Cu1—N12—C7111.0 (2)C62—C63—C64—C650.8 (7)
P1—Cu1—N12—C7107.2 (2)C63—C64—C65—C660.3 (7)
N1—Cu1—N12—C11169.6 (3)C64—C65—C66—C610.6 (6)
P2—Cu1—N12—C1181.5 (3)C62—C61—C66—C650.1 (5)
P1—Cu1—N12—C1160.3 (3)P2—C61—C66—C65175.6 (3)
C31—P1—C21—C229.1 (3)C51—P2—C71—C7699.3 (3)
C41—P1—C21—C2299.6 (3)C61—P2—C71—C767.6 (3)
Cu1—P1—C21—C22136.1 (3)Cu1—P2—C71—C76131.4 (2)
C31—P1—C21—C26171.6 (3)C51—P2—C71—C7279.9 (3)
C41—P1—C21—C2679.7 (3)C61—P2—C71—C72173.2 (2)
Cu1—P1—C21—C2644.6 (3)Cu1—P2—C71—C7249.4 (3)
C26—C21—C22—C230.1 (6)C76—C71—C72—C730.5 (5)
P1—C21—C22—C23179.1 (3)P2—C71—C72—C73179.8 (3)
C21—C22—C23—C241.4 (7)C71—C72—C73—C740.1 (5)
C22—C23—C24—C251.9 (7)C72—C73—C74—C750.8 (6)
C23—C24—C25—C260.8 (7)C73—C74—C75—C761.3 (5)
C24—C25—C26—C210.7 (6)C72—C71—C76—C750.0 (5)
C22—C21—C26—C251.1 (5)P2—C71—C76—C75179.2 (3)
P1—C21—C26—C25178.2 (3)C74—C75—C76—C710.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3Si0.932.563.317 (9)139
C5—H5···O1Wi0.932.343.182 (15)151
C8—H8···O2Sii0.932.383.242 (11)155
C45—H45···O3S0.932.593.493 (10)163
C1S—H1S···O1Siii0.982.253.204 (7)165
O1W···O2Siv??2.663 (19)?
O1W···O2Sv??2.667 (19)?
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu(C10H8N2)(C18H15P)2]NO3·CHCl3·0.5H2O
Mr934.65
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.754 (2), 12.672 (3), 17.464 (4)
α, β, γ (°)99.100 (5), 99.279 (4), 101.229 (5)
V3)2259.4 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.56 × 0.51 × 0.40
Data collection
DiffractometerRigaku AFC7S Mercury
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.584, 0.733
No. of measured, independent and
observed [I > 2σ(I)] reflections
25842, 8576, 6719
Rint0.031
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.136, 1.06
No. of reflections8576
No. of parameters549
No. of restraints20
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.53

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—N12.070 (2)Cu1—P22.2600 (9)
Cu1—N122.103 (3)Cu1—P12.2659 (9)
N1—Cu1—N1279.71 (10)N1—Cu1—P1111.46 (8)
N1—Cu1—P2111.18 (8)N12—Cu1—P1108.68 (7)
N12—Cu1—P2111.86 (7)P2—Cu1—P1124.89 (3)
N1—C6—C7—N1214.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3Si0.932.563.317 (9)139.1
C5—H5···O1Wi0.932.343.182 (15)150.6
C8—H8···O2Sii0.932.383.242 (11)154.7
C45—H45···O3S0.932.593.493 (10)162.6
C1S—H1S···O1Siii0.982.253.204 (7)164.6
O1W···O2Siv??2.663 (19)?
O1W···O2Sv??2.667 (19)?
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y+2, z.
 

Acknowledgements

Financial support from the Fondo Nacional de Ciencia, Tecnología e Investigación (FONACIT) of Venezuela, project Lab-199700821, is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationEngelhardt, L. M., Pakawatchai, C., White, A. H. & Healy, P. C. (1985). J. Chem. Soc. Dalton Trans. pp. 125–133.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNavarro, M., Cisneros-Fajardo, E., Fernandez-Mestre, M., Arriechi, D. & Marchan, E. (2003). J. Inorg. Biochem. 97, 364–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m533-m534
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds