metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m541-m542

trans-Di­aqua­bis­{1,3-bis­­[5-(2-pyrid­yl)-2H-tetra­zol-2-yl]propane}zinc(II) bis­­(perchlorate)

aDepto. de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
*Correspondence e-mail: hugo@qmc.ufsc.br

(Received 1 March 2008; accepted 10 March 2008; online 14 March 2008)

The ZnII ion in the title compound, [Zn(C15H14N10)(H2O)2](ClO4)2, lies on a centre of symmetry. The distorted N4O2 octa­hedral coordination environment around the Zn atom is composed of two 1,3-bis­[5-(2-pyrid­yl)-2H-tetra­zol-2-yl]propane ligands (L1) and two water mol­ecules, coordinated in trans positions. The ligand acts as a typical bidentate chelating ligand through one of its 2-pyridyl-2H-tetra­zole units, forming a five-membered Zn—N—C—C—N metallacycle with a small N—Zn—N bite angle [77.40 (8)°]. The other 2-pyridyl-2H-tetra­zole unit remains uncoordinated. The average Zn—N distance (2.156 Å) is somewhat longer than the distance between the ZnII center and the aqua ligand [2.108 (2) Å]. The coordinated pyrid­yl-tetra­zoyl rings are quasi-coplanar, making a dihedral angle of 1.9 (2)°, while the uncoordinated rings show a larger inter­planar angle of 21.3 (2)°. The flexible propane spacer displays a zigzag chain. Inter­molecular O—H⋯N and O—H⋯O inter­actions result in two-dimensional polymeric structures parallel to (100). Two C atoms of the spacer are disordered over two positions, with site occupancy factors of ca 0.85 and 0.15.

Related literature

For related literature, see: Fan et al. (2005[Fan, R., Zhu, D., Ding, H., Mu, Y., Su, Q. & Xia, H. (2005). Synth. Met. 149, 135-141.]); Gallardo et al. (2001[Gallardo, H., Magnago, R. & Bortoluzzi, A. J. (2001). Liq. Cryst. 28, 1343-1352.], 2004[Gallardo, H., Meyer, E., Bortoluzzi, A. J., Molin, F. & Mangrich, A. S. (2004). Inorg. Chim. Acta, 357, 505-512.]); Gong et al. (2004[Gong, Y.-Q., Wang, R.-H., Zhou, Y.-F., Yuan, D.-Q. & Hong, M.-C. (2004). J. Mol. Struct. 705, 29-34.]); Mizukami et al. (2005[Mizukami, S., Houjou, H., Sugaya, K., Koyama, E., Tokuhisa, H., Sasaki, T. & Kanesato, M. (2005). Chem. Mater. 17, 50-56.]); Rodríguez-Diéguez et al. (2007[Rodríguez-Diéguez, A., Salinas Castillo, A., Galli, S., Masciocchi, N., Gutiérrez-Zorrilla, J. M., Vitoria, P. & Colacio, E. (2007). Dalton Trans. pp. 1821-1828.]); Wang et al. (2005[Wang, X., Tang, Y., Huang, X., Qu, Z., Che, C., Chan, P. W. H. & Xiong, R. (2005). Inorg. Chem. 44, 5278-5285.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C15H14N10)(H2O)2](ClO4)2

  • Mr = 969.03

  • Monoclinic, P 21 /c

  • a = 7.378 (3) Å

  • b = 13.354 (3) Å

  • c = 20.764 (4) Å

  • β = 99.25 (2)°

  • V = 2019.2 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 293 (2) K

  • 0.50 × 0.46 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.682, Tmax = 0.853

  • 3873 measured reflections

  • 3576 independent reflections

  • 2826 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.06

  • 3576 reflections

  • 305 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1W 2.1079 (18)
Zn1—N17 2.149 (2)
Zn1—N11 2.170 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O11 0.86 2.01 2.869 (3) 172
O1W—H1WB⋯N21i 0.86 1.97 2.833 (3) 178
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SET4 in CAD-4 EXPRESS; data reduction: HELENA (Spek, 1996[Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

New compounds for the research of supramolecular chemistry and crystal engineering have been extensively described in the literature in the last few years (Wang et al., 2005; Fan et al., 2005; Rodríguez-Diéguez et al., 2007). Self-assembly processes involving organic ligands and metal ions have attracted much attention from the point of view of the development of novel functional materials with unique electronic, magnetic, catalytic and optical properties. However, while an accurate prediction of the overall crystal structure of such materials is not often an easy task, the introduction of rational organic ligands acting as building blocks has been recognized as a crucial synthetic strategy to overcome such difficulties. The syntheses of aromatic molecules containing nitrogen donor groups and which are interconnected by different type of spacers, such as conformationally rigid or flexible molecular skeletons, have been widely utilized as building blocks (Mizukami et al., 2005; Gallardo et al., 2001; Gong et al., 2004).

The synthesis and X-ray crystal structure of the ligand 1,3-Bis-[(2-pyridyl)-2H-tetrazol-5-yl]propane (L1) has been described previously (Gallardo et al., 2004). We report herein the title cation complex [Zn(L1)2(H2O)2]2+. The ZnII atom lies on a center of symmetry and its distorted octahedral coordination is achieved through the interaction with four nitrogen atoms of two trans L1 ligands, defining the equatorial plane and two water molecules in apical positions (Fig. 1). The basal Zn1—N17 (2.149 (2) Å) and Zn1—N11 (2.170 (2) Å) distances are somewhat larger than the apical ones (Zn1—O1W: (2.108 (2) Å). Some conformational differences in the structure of the two 2-pyridyl-2H-tetrazoyl units in the L1 ligand can be observed: the coordination of the pyridyl and tetrazoyl rings of one of the units to the metal center imposes structural rigidity in this moiety, and the rings become rings quasi coplanar with an interplanar angle of 1.9 (2)°. The N11—C10—C16 angle (113.5 (2)°) is smaller than the expected value due to the restriction of the five-membered chelate ring. On the other hand, in the uncoordinated unit the bond the corresponding rings are free to rotate around C20—C26 and the interplanar angle between angle climbs up to 21.3 (2)°. Besides, the N21—C20—C26 angle (116.6 (2)°) is significantly larger than the one in the coordinated unit. A two-dimensional polymeric structure parallel to (100) is formed by intermolecular O—H···N interactions (Fig. 2). Finally, the perchlorate counterion is also connected to the polymeric structure by a O—H···O interaction.

Related literature top

For related literature, see: Fan et al. (2005); Gallardo et al. (2001, 2004); Gong et al. (2004); Mizukami et al. (2005); Rodríguez-Diéguez et al. (2007); Wang et al. (2005).

Experimental top

Ligand L1 (obtained as described in Gallardo et al., 2004) was added to a suspension of Zn(ClO)4.6H2O in Ethanol and stirred at 50°C for 30 min. The white product was filtered off and recrystallized from isopropyl alcohol/water (1:1) affording white crystals. Yield: 61%. Elemental analysis. Calc. C30H32Cl2N20O10Zn: C 37.18, H 3.33, N 28.91%. Found: C 37.27, H 3.29, N 28.98%.

Refinement top

H atoms attached to carbon atoms were added at their calculated positions and allowed to ride, with C—HAr = 0.93 Å and 0.97 Å for methylene groups and Uiso(H) = 1.2Ueq(C). H atoms of the water ligand were located from Fourier the difference map and treated in the riding model aproximation with Uiso(H) fixed at 1.2 times of Uiso(O). C2 and C3 atoms are disordered over two alternative positions which determine two different conformations for the propylene group. The occupancies for disordered atoms were refined and the respective values are 0.848 (8) and 0.152 (8).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: SET4 in CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation complex showing the labeling scheme. Displacement ellipsoids are shown at the 40% probability level. Symmetry code: (i) -x, -y, -z
[Figure 2] Fig. 2. A detail of the two-dimensional polymeric strucuture formed by hydrogen bonding.
trans-Diaquabis{1,3-bis[5-(2-pyridyl)-2H-tetrazol-2-yl]propane}zinc(II) bis(perchlorate) top
Crystal data top
[Zn(C15H14N10)(H2O)2](ClO4)2F(000) = 992
Mr = 969.03Dx = 1.594 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.378 (3) Åθ = 9.6–15.4°
b = 13.354 (3) ŵ = 0.82 mm1
c = 20.764 (4) ÅT = 293 K
β = 99.25 (2)°Prismatic, colorless
V = 2019.2 (10) Å30.50 × 0.46 × 0.20 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2826 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.1°, θmin = 2.5°
ω–2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.682, Tmax = 0.853l = 2424
3873 measured reflections3 standard reflections every 200 reflections
3576 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0463P)2 + 1.2496P]
where P = (Fo2 + 2Fc2)/3
3576 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 0.30 e Å3
3 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Zn(C15H14N10)(H2O)2](ClO4)2V = 2019.2 (10) Å3
Mr = 969.03Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.378 (3) ŵ = 0.82 mm1
b = 13.354 (3) ÅT = 293 K
c = 20.764 (4) Å0.50 × 0.46 × 0.20 mm
β = 99.25 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2826 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.682, Tmax = 0.8533 standard reflections every 200 reflections
3873 measured reflections intensity decay: 1%
3576 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
3576 reflectionsΔρmin = 0.41 e Å3
305 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.00000.50000.50000.03313 (13)
O1W0.1357 (3)0.37083 (13)0.54150 (8)0.0414 (4)
H1WA0.20790.38210.57790.050*
H1WB0.06300.32240.54790.050*
C10.2499 (4)0.4082 (2)0.26479 (13)0.0525 (8)
H1C0.36100.44740.27630.063*0.848 (8)
H1B0.28570.33870.26180.063*0.848 (8)
H1A'0.37890.40820.28380.063*0.152 (8)
H1B'0.22300.34550.24160.063*0.152 (8)
C20.1502 (6)0.4409 (3)0.19841 (17)0.0478 (12)0.848 (8)
H2A0.03350.40630.18840.057*0.848 (8)
H2B0.22330.42350.16520.057*0.848 (8)
C2'0.212 (2)0.5004 (19)0.2178 (9)0.062 (9)0.152 (8)
H2A'0.30420.49900.18930.075*0.152 (8)
H2B'0.23020.56200.24280.075*0.152 (8)
C30.1192 (7)0.5522 (3)0.19766 (16)0.0473 (11)0.848 (8)
H3A0.02210.56800.22240.057*0.848 (8)
H3B0.22990.58650.21770.057*0.848 (8)
C3'0.031 (2)0.5010 (16)0.1744 (9)0.048 (6)0.152 (8)
H3A'0.00170.43820.15210.058*0.152 (8)
H3B'0.06400.51980.19940.058*0.152 (8)
C100.2250 (3)0.36570 (18)0.40158 (11)0.0336 (5)
N110.2337 (3)0.40794 (15)0.46025 (9)0.0330 (5)
C120.3779 (4)0.3837 (2)0.48910 (13)0.0407 (6)
H120.38800.41290.52900.049*
C130.5122 (4)0.3170 (2)0.46167 (15)0.0488 (7)
H130.60990.30130.48310.059*
C140.4989 (4)0.2741 (2)0.40210 (15)0.0505 (7)
H140.58690.22850.38310.061*
C150.3538 (4)0.2996 (2)0.37130 (13)0.0433 (6)
H150.34320.27270.33080.052*
C160.0630 (3)0.39652 (18)0.37349 (11)0.0333 (5)
N170.0622 (3)0.45884 (16)0.40591 (10)0.0351 (5)
N180.1900 (3)0.47270 (17)0.36914 (10)0.0404 (5)
N190.1370 (3)0.41780 (17)0.31670 (10)0.0395 (5)
N200.0198 (3)0.36842 (17)0.31667 (10)0.0414 (5)
C200.1645 (4)0.6352 (2)0.02723 (13)0.0393 (6)
N210.1096 (3)0.71610 (16)0.06368 (11)0.0429 (5)
C220.1892 (4)0.7317 (2)0.11638 (14)0.0534 (8)
H220.15360.78760.14200.064*
C230.3205 (5)0.6698 (3)0.13475 (16)0.0654 (9)
H230.37410.68450.17120.078*
C240.3713 (5)0.5852 (3)0.09787 (17)0.0697 (10)
H240.45730.54090.10980.084*
C250.2923 (4)0.5676 (2)0.04327 (15)0.0552 (8)
H250.32420.51130.01760.066*
C260.0884 (4)0.62351 (19)0.03362 (13)0.0394 (6)
N270.0628 (3)0.66990 (18)0.04770 (12)0.0485 (6)
N280.0761 (4)0.64443 (19)0.10824 (12)0.0540 (6)
N290.0649 (4)0.58592 (19)0.12805 (12)0.0539 (6)
N300.1722 (3)0.56958 (19)0.08358 (11)0.0513 (6)
Cl10.34362 (10)0.38846 (6)0.71439 (3)0.0497 (2)
O110.3975 (4)0.4197 (2)0.65481 (12)0.0874 (8)
O120.4636 (4)0.3152 (2)0.74296 (16)0.1075 (11)
O130.1623 (4)0.3525 (3)0.70176 (15)0.1099 (11)
O140.3557 (5)0.4722 (3)0.75703 (19)0.1274 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0396 (2)0.0337 (2)0.0263 (2)0.00564 (18)0.00595 (16)0.00305 (17)
O1W0.0500 (11)0.0362 (10)0.0370 (10)0.0037 (8)0.0033 (8)0.0006 (8)
C10.0586 (18)0.066 (2)0.0379 (15)0.0157 (16)0.0229 (14)0.0050 (14)
C20.067 (3)0.048 (2)0.0299 (19)0.006 (2)0.0123 (19)0.0028 (16)
C2'0.028 (10)0.13 (3)0.028 (10)0.024 (15)0.012 (8)0.024 (15)
C30.061 (3)0.050 (2)0.0314 (19)0.004 (2)0.0107 (19)0.0017 (16)
C3'0.038 (11)0.067 (15)0.042 (11)0.008 (11)0.009 (9)0.025 (11)
C100.0382 (14)0.0300 (13)0.0308 (12)0.0017 (11)0.0003 (10)0.0012 (10)
N110.0355 (11)0.0312 (11)0.0319 (11)0.0005 (9)0.0043 (9)0.0027 (9)
C120.0395 (14)0.0410 (15)0.0422 (14)0.0031 (12)0.0087 (12)0.0041 (12)
C130.0338 (14)0.0504 (17)0.0623 (19)0.0011 (13)0.0082 (13)0.0105 (15)
C140.0404 (15)0.0460 (17)0.0608 (19)0.0081 (13)0.0045 (14)0.0024 (14)
C150.0445 (15)0.0411 (15)0.0420 (15)0.0022 (12)0.0000 (12)0.0062 (12)
C160.0401 (14)0.0293 (12)0.0294 (12)0.0008 (11)0.0026 (11)0.0015 (10)
N170.0405 (12)0.0364 (11)0.0295 (11)0.0032 (10)0.0088 (9)0.0005 (9)
N180.0467 (13)0.0425 (13)0.0332 (12)0.0003 (10)0.0102 (10)0.0000 (9)
N190.0478 (13)0.0429 (12)0.0291 (11)0.0050 (11)0.0099 (10)0.0025 (9)
N200.0505 (14)0.0447 (13)0.0287 (11)0.0032 (11)0.0060 (10)0.0049 (10)
C200.0429 (15)0.0370 (14)0.0373 (14)0.0021 (12)0.0045 (12)0.0000 (11)
N210.0537 (14)0.0359 (12)0.0386 (12)0.0020 (11)0.0054 (11)0.0000 (10)
C220.067 (2)0.0500 (18)0.0426 (16)0.0033 (15)0.0075 (15)0.0075 (14)
C230.069 (2)0.086 (3)0.0469 (17)0.0004 (19)0.0247 (16)0.0100 (18)
C240.068 (2)0.081 (2)0.066 (2)0.0221 (19)0.0282 (18)0.0054 (19)
C250.0602 (19)0.0541 (19)0.0534 (18)0.0129 (16)0.0153 (15)0.0094 (15)
C260.0448 (15)0.0314 (14)0.0418 (15)0.0009 (12)0.0066 (12)0.0003 (11)
N270.0533 (15)0.0432 (13)0.0511 (14)0.0121 (11)0.0145 (12)0.0072 (11)
N280.0587 (16)0.0535 (15)0.0535 (15)0.0171 (13)0.0207 (13)0.0091 (12)
N290.0618 (16)0.0559 (15)0.0484 (14)0.0193 (13)0.0228 (12)0.0112 (12)
N300.0565 (15)0.0568 (15)0.0440 (13)0.0168 (12)0.0189 (12)0.0100 (12)
Cl10.0474 (4)0.0528 (4)0.0465 (4)0.0002 (3)0.0006 (3)0.0051 (3)
O110.0928 (19)0.109 (2)0.0586 (15)0.0223 (17)0.0069 (14)0.0235 (15)
O120.104 (2)0.095 (2)0.113 (2)0.0239 (18)0.0123 (19)0.0464 (19)
O130.0612 (17)0.168 (3)0.098 (2)0.0375 (19)0.0047 (15)0.009 (2)
O140.141 (3)0.111 (2)0.137 (3)0.016 (2)0.042 (3)0.068 (2)
Geometric parameters (Å, º) top
Zn1—O1Wi2.1079 (18)C12—H120.9300
Zn1—O1W2.1079 (18)C13—C141.381 (4)
Zn1—N17i2.149 (2)C13—H130.9300
Zn1—N172.149 (2)C14—C151.375 (4)
Zn1—N11i2.170 (2)C14—H140.9300
Zn1—N112.170 (2)C15—H150.9300
O1W—H1WA0.8646C16—N201.325 (3)
O1W—H1WB0.8638C16—N171.341 (3)
C1—N191.470 (3)N17—N181.319 (3)
C1—C21.519 (4)N18—N191.319 (3)
C1—C2'1.569 (17)N19—N201.331 (3)
C1—H1C0.9700C20—N211.343 (3)
C1—H1B0.9700C20—C251.385 (4)
C1—H1A'0.9700C20—C261.471 (4)
C1—H1B'0.9700N21—C221.339 (4)
C2—C31.503 (5)C22—C231.373 (5)
C2—H2A0.9700C22—H220.9300
C2—H2B0.9699C23—C241.383 (5)
C2'—C3'1.485 (17)C23—H230.9300
C2'—H2A'0.9700C24—C251.375 (4)
C2'—H2B'0.9700C24—H240.9300
C3—N291.505 (4)C25—H250.9300
C3—H3A0.9701C26—N301.331 (3)
C3—H3B0.9700C26—N271.348 (3)
C3'—N291.534 (14)N27—N281.321 (3)
C3'—H3A'0.9699N28—N291.313 (3)
C3'—H3B'0.9700N29—N301.327 (3)
C10—N111.353 (3)Cl1—O121.387 (3)
C10—C151.373 (4)Cl1—O131.406 (3)
C10—C161.470 (3)Cl1—O141.420 (3)
N11—C121.342 (3)Cl1—O111.421 (3)
C12—C131.385 (4)
O1Wi—Zn1—O1W180.00 (9)C10—N11—Zn1115.41 (16)
O1Wi—Zn1—N17i90.32 (8)N11—C12—C13122.5 (3)
O1W—Zn1—N17i89.68 (8)N11—C12—H12118.7
O1Wi—Zn1—N1789.68 (8)C13—C12—H12118.7
O1W—Zn1—N1790.32 (8)C14—C13—C12119.1 (3)
N17i—Zn1—N17180.00 (4)C14—C13—H13120.5
O1Wi—Zn1—N11i89.32 (8)C12—C13—H13120.5
O1W—Zn1—N11i90.68 (8)C15—C14—C13119.1 (3)
N17i—Zn1—N11i77.40 (8)C15—C14—H14120.5
N17—Zn1—N11i102.60 (8)C13—C14—H14120.5
O1Wi—Zn1—N1190.68 (8)C10—C15—C14118.7 (3)
O1W—Zn1—N1189.32 (8)C10—C15—H15120.7
N17i—Zn1—N11102.60 (8)C14—C15—H15120.7
N17—Zn1—N1177.40 (8)N20—C16—N17112.2 (2)
N11i—Zn1—N11180.00 (9)N20—C16—C10127.0 (2)
Zn1—O1W—H1WA113.6N17—C16—C10120.9 (2)
Zn1—O1W—H1WB114.1N18—N17—C16107.2 (2)
H1WA—O1W—H1WB107.9N18—N17—Zn1140.15 (17)
N19—C1—C2113.0 (3)C16—N17—Zn1112.61 (16)
N19—C1—C2'108.8 (8)N17—N18—N19104.8 (2)
N19—C1—H1C109.1N18—N19—N20114.7 (2)
C2—C1—H1C109.6N18—N19—C1121.8 (2)
N19—C1—H1B108.9N20—N19—C1123.4 (2)
C2—C1—H1B108.3C16—N20—N19101.1 (2)
H1C—C1—H1B107.8N21—C20—C25123.0 (3)
N19—C1—H1A'109.6N21—C20—C26116.6 (2)
C2'—C1—H1A'108.6C25—C20—C26120.4 (2)
C2'—C1—H1B'111.6C22—N21—C20116.9 (2)
H1A'—C1—H1B'108.1N21—C22—C23123.8 (3)
C3—C2—C1110.2 (3)N21—C22—H22118.1
C3—C2—H2A109.9C23—C22—H22118.1
C1—C2—H2A110.0C22—C23—C24118.6 (3)
C3—C2—H2B109.3C22—C23—H23120.7
C1—C2—H2B109.4C24—C23—H23120.7
H2A—C2—H2B108.0C25—C24—C23118.9 (3)
C3'—C2'—C1115.7 (15)C25—C24—H24120.6
C3'—C2'—H2A'106.3C23—C24—H24120.6
C1—C2'—H2A'106.9C24—C25—C20118.8 (3)
C3'—C2'—H2B'110.7C24—C25—H25120.6
C1—C2'—H2B'109.7C20—C25—H25120.6
H2A'—C2'—H2B'107.1N30—C26—N27112.1 (2)
C2—C3—N29108.8 (3)N30—C26—C20122.2 (2)
C2—C3—H3A109.5N27—C26—C20125.5 (2)
N29—C3—H3A109.8N28—N27—C26106.2 (2)
C2—C3—H3B110.3N29—N28—N27106.0 (2)
N29—C3—H3B110.2N28—N29—N30114.3 (2)
H3A—C3—H3B108.2N28—N29—C3123.6 (3)
C2'—C3'—N2999.4 (12)N30—N29—C3121.5 (3)
C2'—C3'—H3A'114.6N28—N29—C3'115.9 (7)
N29—C3'—H3A'113.1N30—N29—C3'119.4 (9)
C2'—C3'—H3B'109.5N29—N30—C26101.5 (2)
N29—C3'—H3B'110.4O12—Cl1—O13111.2 (2)
H3A'—C3'—H3B'109.4O12—Cl1—O14108.5 (2)
N11—C10—C15123.4 (2)O13—Cl1—O14110.3 (2)
N11—C10—C16113.5 (2)O12—Cl1—O11109.3 (2)
C15—C10—C16123.0 (2)O13—Cl1—O11109.19 (18)
C12—N11—C10117.2 (2)O14—Cl1—O11108.3 (2)
C12—N11—Zn1127.24 (17)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O110.862.012.869 (3)172
O1W—H1WB···N21ii0.861.972.833 (3)178
Symmetry code: (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C15H14N10)(H2O)2](ClO4)2
Mr969.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.378 (3), 13.354 (3), 20.764 (4)
β (°) 99.25 (2)
V3)2019.2 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.50 × 0.46 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.682, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
3873, 3576, 2826
Rint0.016
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.06
No. of reflections3576
No. of parameters305
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.41

Computer programs: , SET4 in CAD-4 EXPRESS (Enraf–Nonius, 1994), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Zn1—O1W2.1079 (18)Zn1—N112.170 (2)
Zn1—N172.149 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O110.862.012.869 (3)172
O1W—H1WB···N21i0.861.972.833 (3)178
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC), Financiadora de Estudos e Projetos (FINEP) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFan, R., Zhu, D., Ding, H., Mu, Y., Su, Q. & Xia, H. (2005). Synth. Met. 149, 135–141.  Web of Science CSD CrossRef CAS Google Scholar
First citationGallardo, H., Magnago, R. & Bortoluzzi, A. J. (2001). Liq. Cryst. 28, 1343–1352.  CSD CrossRef CAS Google Scholar
First citationGallardo, H., Meyer, E., Bortoluzzi, A. J., Molin, F. & Mangrich, A. S. (2004). Inorg. Chim. Acta, 357, 505–512.  Web of Science CSD CrossRef CAS Google Scholar
First citationGong, Y.-Q., Wang, R.-H., Zhou, Y.-F., Yuan, D.-Q. & Hong, M.-C. (2004). J. Mol. Struct. 705, 29–34.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMizukami, S., Houjou, H., Sugaya, K., Koyama, E., Tokuhisa, H., Sasaki, T. & Kanesato, M. (2005). Chem. Mater. 17, 50–56.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRodríguez-Diéguez, A., Salinas Castillo, A., Galli, S., Masciocchi, N., Gutiérrez-Zorrilla, J. M., Vitoria, P. & Colacio, E. (2007). Dalton Trans. pp. 1821–1828.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X., Tang, Y., Huang, X., Qu, Z., Che, C., Chan, P. W. H. & Xiong, R. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m541-m542
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds