metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}bis­­[(thio­cyanato)manganese(III)]

aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475003, People's Republic of China, and bCollege of Medicine, Henan University, Kaifeng 475003, People's Republic of China
*Correspondence e-mail: wangsb6688@sina.com

(Received 7 January 2008; accepted 1 February 2008; online 14 March 2008)

The reported structure is a monoclinic polymorph of the title compound, [Mn2(C16H14N2O2)2(NCS)2], which has been characterized previously in an ortho­rhom­bic form. Each MnIII atom is chelated by a tetra­dentate 2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate ligand and by the N atom of a thio­cyanate anion, in a square-pyramidal arrangement. The complexes form centrosymmetric dimers, with an Mn—O contact of 2.557 (3) Å trans to each thio­cyanate anion, completing a distorted octa­hedral coordination geometry.

Related literature

For the ortho­rhom­bic polymorph, see: Mikuriya et al. (1992[Mikuriya, M., Yamato, Y. & Tokii, T. (1992). Bull. Chem. Soc. Jpn, 65, 1466-1468.]); Li et al. (1997[Li, H., Zhong, Z. J., Duan, C.-Y., You, X.-Z., Mak, T. C. W. & Wu, B. (1997). J. Coord. Chem. 41, 183-189.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C16H14N2O2)2(NCS)2]

  • Mr = 758.62

  • Monoclinic, P 21 /n

  • a = 9.0026 (10) Å

  • b = 14.0629 (16) Å

  • c = 14.9884 (17) Å

  • β = 106.848 (1)°

  • V = 1816.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 (2) K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.710, Tmax = 0.834

  • 13254 measured reflections

  • 3296 independent reflections

  • 2627 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.231

  • S = 1.00

  • 3296 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 1.47 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 1.874 (3)
Mn1—O2 1.902 (3)
Mn1—N1 1.979 (4)
Mn1—N2 1.990 (5)
Mn1—N3 2.181 (5)
Mn1—O2i 2.557 (3)
O1—Mn1—O2 94.95 (14)
O1—Mn1—N1 92.1 (2)
O1—Mn1—N2 170.90 (17)
O1—Mn1—N3 93.94 (18)
O1—Mn1—O2i 88.62 (15)
O2—Mn1—N1 165.40 (19)
O2—Mn1—N2 89.51 (17)
O2—Mn1—N3 96.85 (17)
O2—Mn1—O2i 80.14 (14)
N1—Mn1—N2 81.9 (2)
N1—Mn1—N3 95.4 (2)
N1—Mn1—O2i 87.29 (16)
N2—Mn1—N3 93.4 (2)
N2—Mn1—O2i 84.35 (17)
N3—Mn1—O2i 176.24 (17)
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As shown in Fig. 1, the Mn atom is chelated by two N and two O atoms of the N,N'-ethylenebis(salicylideneamine) ligand and by the N atom of the thiocyanate anion in the apical site. The Mn—N and Mn—O bond lengths are in the range of 1.979 (4)–2.181 (5) and 1.874 (3)–1.902 (3) %A, respectively (Table 1).

Related literature top

For the orthorhombic polymorph, see: Mikuriya et al. (1992); Li et al. (1997).

Experimental top

A mixture of manganese(III) acetate (1 mmol) and N,N'-bis(2-hydroxybenzyl)ethylenediamine (1 mmol) in 20 ml me thanol was refluxed for several hours. The solution was then cooled and filtered, and the filtrate was left to evaporate at room temperature. Pink blocks of the title compound were obtained after 2 days with a yield of 12%. Elemental analysis calculated: C 53.72, H 3.67, N 5.49%; found: C 53.78, H 3.69, N 5.54%.

Refinement top

H atoms were placed in calculated positions and refined as riding with Uiso(H) = 1.2 Ueq(C). The phenyl rings were constrained to have regular hexagonal geometry.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit drawn with 30% probability displacement ellipsoids for the non-H atoms.
Bis{µ-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}bis[(thiocyanato)manganese(III)] top
Crystal data top
[Mn2(C16H14N2O2)2(NCS)2]F(000) = 776
Mr = 758.62Dx = 1.387 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4497 reflections
a = 9.0026 (10) Åθ = 2.4–24.4°
b = 14.0629 (16) ŵ = 0.86 mm1
c = 14.9884 (17) ÅT = 293 K
β = 106.848 (1)°Block, pink
V = 1816.1 (4) Å30.43 × 0.28 × 0.22 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3296 independent reflections
Radiation source: fine-focus sealed tube2627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.710, Tmax = 0.834k = 1616
13254 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.147P)2 + 2.2875P]
where P = (Fo2 + 2Fc2)/3
3296 reflections(Δ/σ)max = 0.013
193 parametersΔρmax = 1.47 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Mn2(C16H14N2O2)2(NCS)2]V = 1816.1 (4) Å3
Mr = 758.62Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.0026 (10) ŵ = 0.86 mm1
b = 14.0629 (16) ÅT = 293 K
c = 14.9884 (17) Å0.43 × 0.28 × 0.22 mm
β = 106.848 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3296 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2627 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.834Rint = 0.023
13254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.231H-atom parameters constrained
S = 1.00Δρmax = 1.47 e Å3
3296 reflectionsΔρmin = 0.33 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.64485 (8)0.01038 (5)0.10349 (5)0.0575 (3)
C10.8655 (4)0.1314 (2)0.0466 (3)0.0705 (14)
C20.9625 (5)0.1411 (3)0.0101 (3)0.093 (2)
H20.97660.09020.04650.112*
C31.0384 (5)0.2267 (4)0.0124 (4)0.124 (3)
H31.10330.23320.05030.148*
C41.0173 (6)0.3027 (3)0.0420 (4)0.146 (4)
H41.06810.36000.04040.175*
C50.9204 (6)0.2931 (3)0.0987 (4)0.128 (3)
H50.90630.34390.13510.153*
C60.8445 (5)0.2074 (3)0.1010 (3)0.0848 (17)
C70.9436 (7)0.0871 (3)0.2500 (4)0.0640 (12)
C80.7500 (9)0.2027 (5)0.1635 (4)0.098 (2)
H80.74660.25680.19860.117*
C90.5841 (12)0.1325 (5)0.2457 (5)0.117 (3)
H9A0.56290.19770.25920.140*
H9B0.64510.10270.30300.140*
C100.4299 (12)0.0775 (6)0.2049 (7)0.125 (3)
H10A0.38260.06160.25350.150*
H10B0.35710.11470.15740.150*
C110.4148 (7)0.0916 (5)0.1681 (4)0.0801 (16)
H110.34200.09520.20110.096*
C120.4489 (4)0.1778 (2)0.1251 (2)0.0686 (13)
C130.4001 (5)0.2635 (3)0.1534 (3)0.0921 (19)
H130.34960.26410.19940.110*
C140.4266 (6)0.3482 (2)0.1127 (3)0.106 (2)
H140.39390.40550.13160.128*
C150.5020 (5)0.34726 (18)0.0439 (3)0.0937 (19)
H150.51970.40400.01670.112*
C160.5508 (4)0.2616 (2)0.0156 (2)0.0723 (14)
H160.60130.26100.03040.087*
C170.5243 (4)0.17685 (18)0.0563 (2)0.0592 (11)
N10.6693 (7)0.1302 (3)0.1756 (3)0.0799 (13)
N20.4777 (6)0.0108 (3)0.1639 (3)0.0737 (12)
N30.8165 (6)0.0691 (4)0.2100 (4)0.0823 (13)
O10.7880 (4)0.0494 (3)0.0418 (3)0.0692 (9)
O20.5682 (4)0.0941 (2)0.0227 (2)0.0574 (8)
S11.11942 (18)0.11754 (13)0.30794 (13)0.0894 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0669 (5)0.0504 (5)0.0598 (5)0.0061 (3)0.0259 (4)0.0011 (3)
C10.057 (3)0.066 (3)0.080 (3)0.005 (2)0.005 (2)0.012 (3)
C20.061 (3)0.089 (4)0.127 (6)0.007 (3)0.023 (3)0.022 (4)
C30.076 (4)0.120 (7)0.159 (8)0.037 (4)0.010 (4)0.042 (6)
C40.117 (7)0.112 (7)0.162 (9)0.061 (6)0.034 (6)0.028 (6)
C50.133 (7)0.085 (5)0.123 (6)0.041 (5)0.029 (5)0.002 (4)
C60.091 (4)0.068 (3)0.075 (4)0.012 (3)0.009 (3)0.001 (3)
C70.080 (3)0.051 (3)0.066 (3)0.006 (2)0.029 (3)0.010 (2)
C80.130 (6)0.064 (4)0.071 (4)0.009 (4)0.015 (4)0.016 (3)
C90.190 (9)0.082 (5)0.090 (5)0.030 (5)0.058 (5)0.015 (4)
C100.169 (8)0.110 (6)0.130 (6)0.039 (6)0.098 (6)0.011 (5)
C110.079 (3)0.105 (5)0.067 (3)0.013 (3)0.037 (3)0.023 (3)
C120.061 (3)0.079 (3)0.066 (3)0.000 (2)0.018 (2)0.020 (3)
C130.090 (4)0.102 (5)0.084 (4)0.019 (4)0.025 (3)0.030 (4)
C140.111 (5)0.073 (4)0.124 (6)0.021 (4)0.017 (5)0.035 (4)
C150.090 (4)0.058 (3)0.126 (6)0.000 (3)0.021 (4)0.010 (3)
C160.070 (3)0.053 (3)0.093 (4)0.003 (2)0.021 (3)0.005 (2)
C170.055 (2)0.054 (2)0.068 (3)0.001 (2)0.017 (2)0.006 (2)
N10.114 (4)0.061 (3)0.061 (3)0.016 (3)0.020 (2)0.006 (2)
N20.085 (3)0.079 (3)0.070 (3)0.015 (2)0.043 (2)0.006 (2)
N30.085 (3)0.078 (3)0.082 (3)0.016 (3)0.020 (3)0.011 (2)
O10.069 (2)0.060 (2)0.084 (2)0.0027 (16)0.0313 (18)0.0004 (17)
O20.0661 (19)0.0491 (16)0.0641 (18)0.0026 (14)0.0302 (15)0.0026 (14)
S10.0697 (9)0.0979 (12)0.1010 (12)0.0079 (8)0.0256 (8)0.0270 (9)
Geometric parameters (Å, º) top
Mn1—O11.874 (3)C9—N11.469 (9)
Mn1—O21.902 (3)C9—C101.552 (13)
Mn1—N11.979 (4)C9—H9A0.970
Mn1—N21.990 (5)C9—H9B0.970
Mn1—N32.181 (5)C10—N21.503 (8)
Mn1—O2i2.557 (3)C10—H10A0.970
C1—O11.339 (4)C10—H10B0.970
C1—C21.390C11—N21.280 (8)
C1—C61.390C11—C121.447 (7)
C2—C31.390C11—H110.930
C2—H20.930C12—C131.390
C3—C41.390C12—C171.390
C3—H30.930C13—C141.390
C4—C51.390C13—H130.930
C4—H40.930C14—C151.390
C5—C61.390C14—H140.930
C5—H50.930C15—C161.390
C6—C81.439 (9)C15—H150.930
C7—N31.155 (7)C16—C171.390
C7—S11.627 (6)C16—H160.930
C8—N11.295 (9)C17—O21.371 (4)
C8—H80.930
O1—Mn1—O294.95 (14)N1—C9—H9B110.2
O1—Mn1—N192.1 (2)C10—C9—H9B110.2
O1—Mn1—N2170.90 (17)H9A—C9—H9B108.5
O1—Mn1—N393.94 (18)N2—C10—C9104.1 (6)
O1—Mn1—O2i88.62 (15)N2—C10—H10A110.9
O2—Mn1—N1165.40 (19)C9—C10—H10A110.9
O2—Mn1—N289.51 (17)N2—C10—H10B110.9
O2—Mn1—N396.85 (17)C9—C10—H10B110.9
O2—Mn1—O2i80.14 (14)H10A—C10—H10B109.0
N1—Mn1—N281.9 (2)N2—C11—C12124.6 (5)
N1—Mn1—N395.4 (2)N2—C11—H11117.7
N1—Mn1—O2i87.29 (16)C12—C11—H11117.7
N2—Mn1—N393.4 (2)C13—C12—C17120.0
N2—Mn1—O2i84.35 (17)C13—C12—C11117.6 (3)
N3—Mn1—O2i176.24 (17)C17—C12—C11122.3 (3)
O1—C1—C2117.4 (3)C12—C13—C14120.0
O1—C1—C6122.4 (3)C12—C13—H13120.0
C2—C1—C6120.0C14—C13—H13120.0
C3—C2—C1120.0C13—C14—C15120.0
C3—C2—H2120.0C13—C14—H14120.0
C1—C2—H2120.0C15—C14—H14120.0
C2—C3—C4120.0C14—C15—C16120.0
C2—C3—H3120.0C14—C15—H15120.0
C4—C3—H3120.0C16—C15—H15120.0
C5—C4—C3120.0C17—C16—C15120.0
C5—C4—H4120.0C17—C16—H16120.0
C3—C4—H4120.0C15—C16—H16120.0
C4—C5—C6120.0O2—C17—C16117.5 (2)
C4—C5—H5120.0O2—C17—C12122.4 (2)
C6—C5—H5120.0C16—C17—C12120.0
C5—C6—C1120.0C8—N1—C9120.8 (6)
C5—C6—C8116.3 (4)C8—N1—Mn1124.9 (4)
C1—C6—C8123.6 (4)C9—N1—Mn1114.2 (4)
N3—C7—S1177.1 (5)C11—N2—C10122.0 (6)
N1—C8—C6126.1 (5)C11—N2—Mn1124.0 (4)
N1—C8—H8117.0C10—N2—Mn1114.0 (5)
C6—C8—H8117.0C7—N3—Mn1151.3 (5)
N1—C9—C10107.5 (6)C1—O1—Mn1130.4 (3)
N1—C9—H9A110.2C17—O2—Mn1120.8 (2)
C10—C9—H9A110.2
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mn2(C16H14N2O2)2(NCS)2]
Mr758.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.0026 (10), 14.0629 (16), 14.9884 (17)
β (°) 106.848 (1)
V3)1816.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.710, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
13254, 3296, 2627
Rint0.023
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.231, 1.00
No. of reflections3296
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.47, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O11.874 (3)Mn1—N21.990 (5)
Mn1—O21.902 (3)Mn1—N32.181 (5)
Mn1—N11.979 (4)Mn1—O2i2.557 (3)
O1—Mn1—O294.95 (14)O2—Mn1—O2i80.14 (14)
O1—Mn1—N192.1 (2)N1—Mn1—N281.9 (2)
O1—Mn1—N2170.90 (17)N1—Mn1—N395.4 (2)
O1—Mn1—N393.94 (18)N1—Mn1—O2i87.29 (16)
O1—Mn1—O2i88.62 (15)N2—Mn1—N393.4 (2)
O2—Mn1—N1165.40 (19)N2—Mn1—O2i84.35 (17)
O2—Mn1—N289.51 (17)N3—Mn1—O2i176.24 (17)
O2—Mn1—N396.85 (17)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors are grateful for financial support from Henan University (grant No. 05YBGG013).

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H., Zhong, Z. J., Duan, C.-Y., You, X.-Z., Mak, T. C. W. & Wu, B. (1997). J. Coord. Chem. 41, 183–189.  CrossRef CAS Web of Science Google Scholar
First citationMikuriya, M., Yamato, Y. & Tokii, T. (1992). Bull. Chem. Soc. Jpn, 65, 1466–1468.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds