organic compounds
(1R,1′R,3S,3′S)-5,5′,10,10′-Tetramethoxy-1,1′,3,3′-tetramethyl-3,3′,4,4′-tetrahydro-1H,1′H-8,8′-bi[benzo[g]isochromene]
aDepartment of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: m.brimble@auckland.ac.nz
In the title compound, C34H38O6, the methyl groups on each pyran ring exhibit 1,3-cis stereochemistry, established during synthesis by pseudo-axial delivery of hydride during a lactol reduction step. In the the molecule lies on a twofold rotation axis and the torsion angle about the central diaryl bond is 41.3 (1)°. The molecules pack in a herringbone arrangement.
Related literature
For details of the synthesis, see: Brimble et al. (2008). For related literature, see: Brenstrum et al. (2001); Gibson et al. (2007); Gill et al. (1997a,b).
Experimental
Crystal data
|
Data collection: SMART (Siemens, 1995); cell SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808007599/bi2283sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808007599/bi2283Isup2.hkl
To a solution of 1,1'-(6,6'-bis((S)-2-(tert-butyldiphenylsilyloxy)propyl)-5,5',8,8'-tetramethoxy-2,2'-binaphthyl-7,7'-diyl)diethanone (144 mg, 0.14 mmol) in THF (5 ml) was added a 1 M solution of tetra-n-butylammonium fluoride (3.0 ml, 3.0 mmol). The reaction mixture was stirred under nitrogen at room temperature for 3 d then concentrated in vacuo. The resulting residue was flushed through a pad of silica (hexanes-ethyl acetate 1:1–1:3). The filtrate was concentrated in vacuo and the resulting oil was dissolved in distilled dichloromethane (5 ml) and cooled to 195.15 K. Trifluoroacetic acid (0.065 ml, 0.86 mmol) was added and the reaction mixture was stirred for 15 min before addition of triethylsilane (0.13 ml, 0.80 mmol). The reaction mixture was then allowed to reach room temperature over 16 h. Water (20 ml) was added and the mixture extracted with ethyl acetate (20 ml × 3). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, concentrated in vacuo and the resulting residue was purified by flash
eluting with hexanes-ethyl acetate (7:3) to give the title compound (52 mg, 0.096 mmol, 70%) as a pale yellow solid which was recrystallized from diethyl ether-dichloromethane; m.p. 541.15–542.15 KH atoms were placed in calculated positions and were refined using a riding model (C–H = 0.93 or 0.97 Å), with U iso(H) = 1.2 or 1.5 times Ueq(C). In the absence of significant
the could not be determined and Friedel pairs were merged. The configuration was inferred from the known stereochemistry (S) of C12.Data collection: SMART (Siemens, 1995); cell
SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2008).C34H38O6 | Dx = 1.261 Mg m−3 |
Mr = 542.64 | Melting point: 541.15 K |
Orthorhombic, C2221 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2c 2 | Cell parameters from 4238 reflections |
a = 8.8773 (2) Å | θ = 1.8–28.6° |
b = 13.9298 (2) Å | µ = 0.09 mm−1 |
c = 23.1234 (4) Å | T = 89 K |
V = 2859.42 (9) Å3 | Needle, pale yellow |
Z = 4 | 0.36 × 0.28 × 0.22 mm |
F(000) = 1160 |
Siemens SMART CCD diffractometer | 2035 independent reflections |
Radiation source: fine-focus sealed tube | 1542 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
ω scans | θmax = 28.6°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −11→11 |
Tmin = 0.889, Tmax = 0.981 | k = −18→18 |
22789 measured reflections | l = −27→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0484P)2 + 0.1354P] where P = (Fo2 + 2Fc2)/3 |
2035 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C34H38O6 | V = 2859.42 (9) Å3 |
Mr = 542.64 | Z = 4 |
Orthorhombic, C2221 | Mo Kα radiation |
a = 8.8773 (2) Å | µ = 0.09 mm−1 |
b = 13.9298 (2) Å | T = 89 K |
c = 23.1234 (4) Å | 0.36 × 0.28 × 0.22 mm |
Siemens SMART CCD diffractometer | 2035 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1542 reflections with I > 2σ(I) |
Tmin = 0.889, Tmax = 0.981 | Rint = 0.052 |
22789 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.21 e Å−3 |
2035 reflections | Δρmin = −0.19 e Å−3 |
185 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.81372 (17) | 0.37827 (10) | 0.59844 (6) | 0.0305 (4) | |
O1 | 0.33079 (16) | 0.12481 (10) | 0.60649 (6) | 0.0293 (4) | |
O3 | 0.29982 (17) | 0.39411 (11) | 0.69152 (7) | 0.0340 (4) | |
C4 | 0.7076 (2) | 0.22511 (15) | 0.57426 (9) | 0.0249 (5) | |
C2 | 0.8442 (2) | 0.11042 (16) | 0.51523 (9) | 0.0264 (5) | |
H2 | 0.9313 | 0.0936 | 0.4953 | 0.032* | |
C1 | 0.7206 (2) | 0.04620 (15) | 0.51579 (8) | 0.0240 (5) | |
C9 | 0.4425 (2) | 0.27435 (16) | 0.63512 (9) | 0.0259 (5) | |
C5 | 0.5831 (2) | 0.16126 (15) | 0.57533 (9) | 0.0235 (4) | |
C7 | 0.6948 (2) | 0.31407 (15) | 0.60336 (9) | 0.0260 (5) | |
C3 | 0.8384 (2) | 0.19642 (15) | 0.54331 (9) | 0.0257 (5) | |
H3 | 0.9215 | 0.2370 | 0.5422 | 0.031* | |
C10 | 0.4513 (2) | 0.18827 (15) | 0.60595 (9) | 0.0254 (5) | |
C6 | 0.5934 (2) | 0.07262 (14) | 0.54638 (9) | 0.0243 (5) | |
H6 | 0.5122 | 0.0305 | 0.5479 | 0.029* | |
C11 | 0.5454 (3) | 0.43732 (15) | 0.65890 (10) | 0.0312 (5) | |
H11A | 0.6029 | 0.4843 | 0.6372 | 0.037* | |
H11B | 0.5819 | 0.4371 | 0.6984 | 0.037* | |
C8 | 0.5659 (2) | 0.33918 (16) | 0.63246 (9) | 0.0267 (5) | |
C13 | 0.2982 (3) | 0.29950 (16) | 0.66695 (9) | 0.0314 (5) | |
H13 | 0.2144 | 0.2957 | 0.6395 | 0.038* | |
C12 | 0.3790 (3) | 0.46387 (17) | 0.65792 (10) | 0.0354 (6) | |
H12 | 0.3422 | 0.4622 | 0.6180 | 0.043* | |
C17 | 0.3459 (3) | 0.56069 (17) | 0.68390 (11) | 0.0430 (7) | |
H17A | 0.2397 | 0.5733 | 0.6816 | 0.065* | |
H17B | 0.3999 | 0.6093 | 0.6630 | 0.065* | |
H17C | 0.3768 | 0.5612 | 0.7237 | 0.065* | |
C15 | 0.9036 (3) | 0.3855 (2) | 0.64991 (10) | 0.0382 (6) | |
H15A | 0.8431 | 0.4102 | 0.6809 | 0.057* | |
H15B | 0.9868 | 0.4281 | 0.6430 | 0.057* | |
H15C | 0.9411 | 0.3232 | 0.6601 | 0.057* | |
C14 | 0.2395 (3) | 0.12913 (18) | 0.55544 (10) | 0.0382 (6) | |
H14A | 0.1977 | 0.1924 | 0.5516 | 0.057* | |
H14B | 0.1594 | 0.0831 | 0.5583 | 0.057* | |
H14C | 0.3003 | 0.1148 | 0.5222 | 0.057* | |
C16 | 0.2646 (3) | 0.23321 (17) | 0.71690 (10) | 0.0427 (6) | |
H16A | 0.3452 | 0.2365 | 0.7445 | 0.064* | |
H16B | 0.2552 | 0.1686 | 0.7029 | 0.064* | |
H16C | 0.1721 | 0.2524 | 0.7350 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0365 (9) | 0.0286 (8) | 0.0265 (8) | −0.0083 (7) | −0.0003 (7) | 0.0009 (7) |
O1 | 0.0278 (8) | 0.0357 (8) | 0.0244 (8) | −0.0046 (7) | 0.0007 (6) | 0.0002 (7) |
O3 | 0.0385 (9) | 0.0344 (9) | 0.0292 (9) | 0.0067 (8) | 0.0023 (7) | −0.0034 (7) |
C4 | 0.0283 (11) | 0.0256 (11) | 0.0208 (11) | 0.0011 (9) | −0.0019 (8) | 0.0030 (9) |
C2 | 0.0239 (10) | 0.0329 (12) | 0.0224 (12) | −0.0005 (9) | 0.0010 (8) | 0.0024 (10) |
C1 | 0.0284 (10) | 0.0243 (11) | 0.0194 (11) | 0.0012 (9) | −0.0028 (8) | 0.0035 (9) |
C9 | 0.0309 (11) | 0.0291 (12) | 0.0178 (10) | 0.0024 (9) | 0.0001 (8) | 0.0027 (9) |
C5 | 0.0266 (10) | 0.0245 (11) | 0.0194 (11) | 0.0015 (9) | −0.0014 (8) | 0.0034 (9) |
C7 | 0.0318 (11) | 0.0236 (11) | 0.0226 (11) | −0.0019 (9) | −0.0018 (9) | 0.0035 (9) |
C3 | 0.0249 (10) | 0.0276 (12) | 0.0247 (11) | −0.0038 (9) | −0.0004 (9) | 0.0030 (9) |
C10 | 0.0255 (11) | 0.0286 (11) | 0.0221 (10) | −0.0008 (9) | −0.0006 (8) | 0.0050 (10) |
C6 | 0.0255 (10) | 0.0256 (11) | 0.0218 (11) | −0.0024 (9) | −0.0023 (9) | 0.0020 (9) |
C11 | 0.0412 (13) | 0.0235 (11) | 0.0288 (12) | 0.0012 (10) | 0.0022 (10) | 0.0005 (10) |
C8 | 0.0346 (11) | 0.0261 (11) | 0.0193 (11) | 0.0031 (9) | −0.0015 (9) | 0.0048 (9) |
C13 | 0.0316 (12) | 0.0336 (13) | 0.0289 (12) | 0.0051 (10) | 0.0021 (9) | −0.0043 (10) |
C12 | 0.0504 (14) | 0.0315 (13) | 0.0243 (12) | 0.0103 (11) | −0.0012 (10) | 0.0012 (11) |
C17 | 0.0602 (16) | 0.0371 (14) | 0.0318 (14) | 0.0160 (12) | −0.0048 (12) | −0.0012 (12) |
C15 | 0.0364 (13) | 0.0429 (14) | 0.0354 (14) | −0.0068 (11) | −0.0038 (11) | −0.0004 (12) |
C14 | 0.0303 (12) | 0.0498 (16) | 0.0346 (14) | −0.0090 (11) | −0.0032 (10) | 0.0045 (12) |
C16 | 0.0480 (14) | 0.0448 (15) | 0.0354 (13) | −0.0002 (12) | 0.0158 (12) | −0.0041 (12) |
O2—C7 | 1.388 (2) | C6—H6 | 0.9300 |
O2—C15 | 1.436 (3) | C11—C8 | 1.509 (3) |
O1—C10 | 1.388 (2) | C11—C12 | 1.523 (3) |
O1—C14 | 1.433 (3) | C11—H11A | 0.9700 |
O3—C12 | 1.429 (3) | C11—H11B | 0.9700 |
O3—C13 | 1.435 (3) | C13—C16 | 1.508 (3) |
C4—C7 | 1.415 (3) | C13—H13 | 0.9800 |
C4—C3 | 1.421 (3) | C12—C17 | 1.505 (3) |
C4—C5 | 1.419 (3) | C12—H12 | 0.9800 |
C2—C3 | 1.364 (3) | C17—H17A | 0.9600 |
C2—C1 | 1.416 (3) | C17—H17B | 0.9600 |
C2—H2 | 0.9300 | C17—H17C | 0.9600 |
C1—C6 | 1.382 (3) | C15—H15A | 0.9600 |
C1—C1i | 1.480 (4) | C15—H15B | 0.9600 |
C9—C10 | 1.378 (3) | C15—H15C | 0.9600 |
C9—C8 | 1.421 (3) | C14—H14A | 0.9600 |
C9—C13 | 1.518 (3) | C14—H14B | 0.9600 |
C5—C6 | 1.408 (3) | C14—H14C | 0.9600 |
C5—C10 | 1.418 (3) | C16—H16A | 0.9600 |
C7—C8 | 1.373 (3) | C16—H16B | 0.9600 |
C3—H3 | 0.9300 | C16—H16C | 0.9600 |
C7—O2—C15 | 113.58 (16) | C9—C8—C11 | 117.76 (19) |
C10—O1—C14 | 113.67 (15) | O3—C13—C16 | 105.14 (17) |
C12—O3—C13 | 114.47 (16) | O3—C13—C9 | 113.29 (18) |
C7—C4—C3 | 123.47 (19) | C16—C13—C9 | 113.37 (19) |
C7—C4—C5 | 118.55 (18) | O3—C13—H13 | 108.3 |
C3—C4—C5 | 117.97 (18) | C16—C13—H13 | 108.3 |
C3—C2—C1 | 121.43 (18) | C9—C13—H13 | 108.3 |
C3—C2—H2 | 119.3 | O3—C12—C17 | 107.21 (19) |
C1—C2—H2 | 119.3 | O3—C12—C11 | 107.70 (18) |
C6—C1—C2 | 118.01 (18) | C17—C12—C11 | 113.7 (2) |
C6—C1—C1i | 118.94 (14) | O3—C12—H12 | 109.4 |
C2—C1—C1i | 123.03 (14) | C17—C12—H12 | 109.4 |
C10—C9—C8 | 119.23 (18) | C11—C12—H12 | 109.4 |
C10—C9—C13 | 119.07 (19) | C12—C17—H17A | 109.5 |
C8—C9—C13 | 121.64 (19) | C12—C17—H17B | 109.5 |
C6—C5—C10 | 121.61 (19) | H17A—C17—H17B | 109.5 |
C6—C5—C4 | 119.37 (18) | C12—C17—H17C | 109.5 |
C10—C5—C4 | 119.02 (18) | H17A—C17—H17C | 109.5 |
C8—C7—O2 | 120.66 (18) | H17B—C17—H17C | 109.5 |
C8—C7—C4 | 121.54 (19) | O2—C15—H15A | 109.5 |
O2—C7—C4 | 117.67 (18) | O2—C15—H15B | 109.5 |
C2—C3—C4 | 121.19 (19) | H15A—C15—H15B | 109.5 |
C2—C3—H3 | 119.4 | O2—C15—H15C | 109.5 |
C4—C3—H3 | 119.4 | H15A—C15—H15C | 109.5 |
C9—C10—O1 | 120.42 (18) | H15B—C15—H15C | 109.5 |
C9—C10—C5 | 121.46 (19) | O1—C14—H14A | 109.5 |
O1—C10—C5 | 118.11 (18) | O1—C14—H14B | 109.5 |
C1—C6—C5 | 122.02 (19) | H14A—C14—H14B | 109.5 |
C1—C6—H6 | 119.0 | O1—C14—H14C | 109.5 |
C5—C6—H6 | 119.0 | H14A—C14—H14C | 109.5 |
C8—C11—C12 | 109.3 (2) | H14B—C14—H14C | 109.5 |
C8—C11—H11A | 109.8 | C13—C16—H16A | 109.5 |
C12—C11—H11A | 109.8 | C13—C16—H16B | 109.5 |
C8—C11—H11B | 109.8 | H16A—C16—H16B | 109.5 |
C12—C11—H11B | 109.8 | C13—C16—H16C | 109.5 |
H11A—C11—H11B | 108.3 | H16A—C16—H16C | 109.5 |
C7—C8—C9 | 120.13 (19) | H16B—C16—H16C | 109.5 |
C7—C8—C11 | 121.99 (19) |
Symmetry code: (i) x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C34H38O6 |
Mr | 542.64 |
Crystal system, space group | Orthorhombic, C2221 |
Temperature (K) | 89 |
a, b, c (Å) | 8.8773 (2), 13.9298 (2), 23.1234 (4) |
V (Å3) | 2859.42 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.36 × 0.28 × 0.22 |
Data collection | |
Diffractometer | Siemens SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.889, 0.981 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22789, 2035, 1542 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.673 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.095, 1.13 |
No. of reflections | 2035 |
No. of parameters | 185 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.19 |
Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2008).
Acknowledgements
Tania Groutso is gratefully acknowledged for assistance with the data collection.
References
Brenstrum, T. J., Brimble, M. A. & Turner, P. (2001). Acta Cryst. E57, o28–o29. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brimble, M. A., Gibson, J. S., Sejberg, J. J. P. & Sperry, J. (2008). Synlett. 867–870. Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Gibson, J. S., Andrey, O. & Brimble, M. A. (2007). Synthesis, pp. 2611–2613. Google Scholar
Gill, M., Buchanan, M. S. & Yu, J. (1997a). Aust. J. Chem. 50, 1081–1089. Google Scholar
Gill, M., Buchanan, M. S. & Yu, J. (1997b). J. Chem. Soc. Perkin Trans. 1, pp. 919–925. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recent synthetic effort has been directed towards enantioselective synthesis of the dimeric pyranonaphthoquinone core of the cardinalins which were isolated from the New Zealand toadstool Dermocybe cardinalis (Gill et al., 1997a, 1997b). We now report the crystal structure of the title compound (Fig. 1). The assignment of absolute stereochemistry is based on the initial use of a chiral pool reagent in the synthetic sequence. Since the stereochemistry at C3 in the pyran rings (C12 in the crystallographic numbering scheme; Fig. 2) is known to be S, the absolute configuration at C1 (C13 in the crystallographic numbering scheme) has therefore been assigned as R. The torsion angle about the diaryl bond is 41.3 (1)°. The molecules pack in a herringbone arrangement (Fig. 3).