organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,1′R,3S,3′S)-5,5′,10,10′-Tetra­meth­­oxy-1,1′,3,3′-tetra­methyl-3,3′,4,4′-tetra­hydro-1H,1′H-8,8′-bi[benzo[g]isochromene]

aDepartment of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: m.brimble@auckland.ac.nz

(Received 22 February 2008; accepted 19 March 2008; online 29 March 2008)

In the title compound, C34H38O6, the methyl groups on each pyran ring exhibit 1,3-cis stereochemistry, established during synthesis by pseudo-axial delivery of hydride during a lactol reduction step. In the crystal structure, the mol­ecule lies on a twofold rotation axis and the torsion angle about the central diaryl bond is 41.3 (1)°. The mol­ecules pack in a herringbone arrangement.

Related literature

For details of the synthesis, see: Brimble et al. (2008[Brimble, M. A., Gibson, J. S., Sejberg, J. J. P. & Sperry, J. (2008). Synlett. 867-870.]). For related literature, see: Brenstrum et al. (2001[Brenstrum, T. J., Brimble, M. A. & Turner, P. (2001). Acta Cryst. E57, o28-o29.]); Gibson et al. (2007[Gibson, J. S., Andrey, O. & Brimble, M. A. (2007). Synthesis, pp. 2611-2613.]); Gill et al. (1997a[Gill, M., Buchanan, M. S. & Yu, J. (1997a). Aust. J. Chem. 50, 1081-1089.],b[Gill, M., Buchanan, M. S. & Yu, J. (1997b). J. Chem. Soc. Perkin Trans. 1, pp. 919-925.]).

[Scheme 1]

Experimental

Crystal data
  • C34H38O6

  • Mr = 542.64

  • Orthorhombic, C 2221

  • a = 8.8773 (2) Å

  • b = 13.9298 (2) Å

  • c = 23.1234 (4) Å

  • V = 2859.42 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 89 (2) K

  • 0.36 × 0.28 × 0.22 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.981

  • 22789 measured reflections

  • 2035 independent reflections

  • 1542 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.095

  • S = 1.13

  • 2035 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Recent synthetic effort has been directed towards enantioselective synthesis of the dimeric pyranonaphthoquinone core of the cardinalins which were isolated from the New Zealand toadstool Dermocybe cardinalis (Gill et al., 1997a, 1997b). We now report the crystal structure of the title compound (Fig. 1). The assignment of absolute stereochemistry is based on the initial use of a chiral pool reagent in the synthetic sequence. Since the stereochemistry at C3 in the pyran rings (C12 in the crystallographic numbering scheme; Fig. 2) is known to be S, the absolute configuration at C1 (C13 in the crystallographic numbering scheme) has therefore been assigned as R. The torsion angle about the diaryl bond is 41.3 (1)°. The molecules pack in a herringbone arrangement (Fig. 3).

Related literature top

For synthesis details, see: Brimble et al. (2008). For related literature, see: Brenstrum et al. (2001); Gibson et al. (2007); Gill et al. (1997a,b).

Experimental top

To a solution of 1,1'-(6,6'-bis((S)-2-(tert-butyldiphenylsilyloxy)propyl)-5,5',8,8'-tetramethoxy-2,2'-binaphthyl-7,7'-diyl)diethanone (144 mg, 0.14 mmol) in THF (5 ml) was added a 1 M solution of tetra-n-butylammonium fluoride (3.0 ml, 3.0 mmol). The reaction mixture was stirred under nitrogen at room temperature for 3 d then concentrated in vacuo. The resulting residue was flushed through a pad of silica (hexanes-ethyl acetate 1:1–1:3). The filtrate was concentrated in vacuo and the resulting oil was dissolved in distilled dichloromethane (5 ml) and cooled to 195.15 K. Trifluoroacetic acid (0.065 ml, 0.86 mmol) was added and the reaction mixture was stirred for 15 min before addition of triethylsilane (0.13 ml, 0.80 mmol). The reaction mixture was then allowed to reach room temperature over 16 h. Water (20 ml) was added and the mixture extracted with ethyl acetate (20 ml × 3). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, concentrated in vacuo and the resulting residue was purified by flash chromatography eluting with hexanes-ethyl acetate (7:3) to give the title compound (52 mg, 0.096 mmol, 70%) as a pale yellow solid which was recrystallized from diethyl ether-dichloromethane; m.p. 541.15–542.15 K

Refinement top

H atoms were placed in calculated positions and were refined using a riding model (C–H = 0.93 or 0.97 Å), with U iso(H) = 1.2 or 1.5 times Ueq(C). In the absence of significant anomalous scattering, the absolute configuration could not be determined and Friedel pairs were merged. The configuration was inferred from the known stereochemistry (S) of C12.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Scheme showing the standard chemical numbering scheme.
[Figure 2] Fig. 2. The molecular structure with displacement ellipsoids drawn at the 50% probability level for non-H atoms, showing the crystallographic numbering scheme. Symmetry code: (i) x, -y, 1 - z.
[Figure 3] Fig. 3. Molecular packing viewed down the a-axis, with H atoms omitted.
(1R,1'R,3S,3'S)-5,5',10,10'-Tetramethoxy-1,1',3,3'- tetramethyl- 3,3',4,4'-tetrahydro-1H,1'H-8,8'-bi[benzo[g]isochromene] top
Crystal data top
C34H38O6Dx = 1.261 Mg m3
Mr = 542.64Melting point: 541.15 K
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 4238 reflections
a = 8.8773 (2) Åθ = 1.8–28.6°
b = 13.9298 (2) ŵ = 0.09 mm1
c = 23.1234 (4) ÅT = 89 K
V = 2859.42 (9) Å3Needle, pale yellow
Z = 40.36 × 0.28 × 0.22 mm
F(000) = 1160
Data collection top
Siemens SMART CCD
diffractometer
2035 independent reflections
Radiation source: fine-focus sealed tube1542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 28.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.889, Tmax = 0.981k = 1818
22789 measured reflectionsl = 2730
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.1354P]
where P = (Fo2 + 2Fc2)/3
2035 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C34H38O6V = 2859.42 (9) Å3
Mr = 542.64Z = 4
Orthorhombic, C2221Mo Kα radiation
a = 8.8773 (2) ŵ = 0.09 mm1
b = 13.9298 (2) ÅT = 89 K
c = 23.1234 (4) Å0.36 × 0.28 × 0.22 mm
Data collection top
Siemens SMART CCD
diffractometer
2035 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1542 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.981Rint = 0.052
22789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.13Δρmax = 0.21 e Å3
2035 reflectionsΔρmin = 0.19 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.81372 (17)0.37827 (10)0.59844 (6)0.0305 (4)
O10.33079 (16)0.12481 (10)0.60649 (6)0.0293 (4)
O30.29982 (17)0.39411 (11)0.69152 (7)0.0340 (4)
C40.7076 (2)0.22511 (15)0.57426 (9)0.0249 (5)
C20.8442 (2)0.11042 (16)0.51523 (9)0.0264 (5)
H20.93130.09360.49530.032*
C10.7206 (2)0.04620 (15)0.51579 (8)0.0240 (5)
C90.4425 (2)0.27435 (16)0.63512 (9)0.0259 (5)
C50.5831 (2)0.16126 (15)0.57533 (9)0.0235 (4)
C70.6948 (2)0.31407 (15)0.60336 (9)0.0260 (5)
C30.8384 (2)0.19642 (15)0.54331 (9)0.0257 (5)
H30.92150.23700.54220.031*
C100.4513 (2)0.18827 (15)0.60595 (9)0.0254 (5)
C60.5934 (2)0.07262 (14)0.54638 (9)0.0243 (5)
H60.51220.03050.54790.029*
C110.5454 (3)0.43732 (15)0.65890 (10)0.0312 (5)
H11A0.60290.48430.63720.037*
H11B0.58190.43710.69840.037*
C80.5659 (2)0.33918 (16)0.63246 (9)0.0267 (5)
C130.2982 (3)0.29950 (16)0.66695 (9)0.0314 (5)
H130.21440.29570.63950.038*
C120.3790 (3)0.46387 (17)0.65792 (10)0.0354 (6)
H120.34220.46220.61800.043*
C170.3459 (3)0.56069 (17)0.68390 (11)0.0430 (7)
H17A0.23970.57330.68160.065*
H17B0.39990.60930.66300.065*
H17C0.37680.56120.72370.065*
C150.9036 (3)0.3855 (2)0.64991 (10)0.0382 (6)
H15A0.84310.41020.68090.057*
H15B0.98680.42810.64300.057*
H15C0.94110.32320.66010.057*
C140.2395 (3)0.12913 (18)0.55544 (10)0.0382 (6)
H14A0.19770.19240.55160.057*
H14B0.15940.08310.55830.057*
H14C0.30030.11480.52220.057*
C160.2646 (3)0.23321 (17)0.71690 (10)0.0427 (6)
H16A0.34520.23650.74450.064*
H16B0.25520.16860.70290.064*
H16C0.17210.25240.73500.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0365 (9)0.0286 (8)0.0265 (8)0.0083 (7)0.0003 (7)0.0009 (7)
O10.0278 (8)0.0357 (8)0.0244 (8)0.0046 (7)0.0007 (6)0.0002 (7)
O30.0385 (9)0.0344 (9)0.0292 (9)0.0067 (8)0.0023 (7)0.0034 (7)
C40.0283 (11)0.0256 (11)0.0208 (11)0.0011 (9)0.0019 (8)0.0030 (9)
C20.0239 (10)0.0329 (12)0.0224 (12)0.0005 (9)0.0010 (8)0.0024 (10)
C10.0284 (10)0.0243 (11)0.0194 (11)0.0012 (9)0.0028 (8)0.0035 (9)
C90.0309 (11)0.0291 (12)0.0178 (10)0.0024 (9)0.0001 (8)0.0027 (9)
C50.0266 (10)0.0245 (11)0.0194 (11)0.0015 (9)0.0014 (8)0.0034 (9)
C70.0318 (11)0.0236 (11)0.0226 (11)0.0019 (9)0.0018 (9)0.0035 (9)
C30.0249 (10)0.0276 (12)0.0247 (11)0.0038 (9)0.0004 (9)0.0030 (9)
C100.0255 (11)0.0286 (11)0.0221 (10)0.0008 (9)0.0006 (8)0.0050 (10)
C60.0255 (10)0.0256 (11)0.0218 (11)0.0024 (9)0.0023 (9)0.0020 (9)
C110.0412 (13)0.0235 (11)0.0288 (12)0.0012 (10)0.0022 (10)0.0005 (10)
C80.0346 (11)0.0261 (11)0.0193 (11)0.0031 (9)0.0015 (9)0.0048 (9)
C130.0316 (12)0.0336 (13)0.0289 (12)0.0051 (10)0.0021 (9)0.0043 (10)
C120.0504 (14)0.0315 (13)0.0243 (12)0.0103 (11)0.0012 (10)0.0012 (11)
C170.0602 (16)0.0371 (14)0.0318 (14)0.0160 (12)0.0048 (12)0.0012 (12)
C150.0364 (13)0.0429 (14)0.0354 (14)0.0068 (11)0.0038 (11)0.0004 (12)
C140.0303 (12)0.0498 (16)0.0346 (14)0.0090 (11)0.0032 (10)0.0045 (12)
C160.0480 (14)0.0448 (15)0.0354 (13)0.0002 (12)0.0158 (12)0.0041 (12)
Geometric parameters (Å, º) top
O2—C71.388 (2)C6—H60.9300
O2—C151.436 (3)C11—C81.509 (3)
O1—C101.388 (2)C11—C121.523 (3)
O1—C141.433 (3)C11—H11A0.9700
O3—C121.429 (3)C11—H11B0.9700
O3—C131.435 (3)C13—C161.508 (3)
C4—C71.415 (3)C13—H130.9800
C4—C31.421 (3)C12—C171.505 (3)
C4—C51.419 (3)C12—H120.9800
C2—C31.364 (3)C17—H17A0.9600
C2—C11.416 (3)C17—H17B0.9600
C2—H20.9300C17—H17C0.9600
C1—C61.382 (3)C15—H15A0.9600
C1—C1i1.480 (4)C15—H15B0.9600
C9—C101.378 (3)C15—H15C0.9600
C9—C81.421 (3)C14—H14A0.9600
C9—C131.518 (3)C14—H14B0.9600
C5—C61.408 (3)C14—H14C0.9600
C5—C101.418 (3)C16—H16A0.9600
C7—C81.373 (3)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
C7—O2—C15113.58 (16)C9—C8—C11117.76 (19)
C10—O1—C14113.67 (15)O3—C13—C16105.14 (17)
C12—O3—C13114.47 (16)O3—C13—C9113.29 (18)
C7—C4—C3123.47 (19)C16—C13—C9113.37 (19)
C7—C4—C5118.55 (18)O3—C13—H13108.3
C3—C4—C5117.97 (18)C16—C13—H13108.3
C3—C2—C1121.43 (18)C9—C13—H13108.3
C3—C2—H2119.3O3—C12—C17107.21 (19)
C1—C2—H2119.3O3—C12—C11107.70 (18)
C6—C1—C2118.01 (18)C17—C12—C11113.7 (2)
C6—C1—C1i118.94 (14)O3—C12—H12109.4
C2—C1—C1i123.03 (14)C17—C12—H12109.4
C10—C9—C8119.23 (18)C11—C12—H12109.4
C10—C9—C13119.07 (19)C12—C17—H17A109.5
C8—C9—C13121.64 (19)C12—C17—H17B109.5
C6—C5—C10121.61 (19)H17A—C17—H17B109.5
C6—C5—C4119.37 (18)C12—C17—H17C109.5
C10—C5—C4119.02 (18)H17A—C17—H17C109.5
C8—C7—O2120.66 (18)H17B—C17—H17C109.5
C8—C7—C4121.54 (19)O2—C15—H15A109.5
O2—C7—C4117.67 (18)O2—C15—H15B109.5
C2—C3—C4121.19 (19)H15A—C15—H15B109.5
C2—C3—H3119.4O2—C15—H15C109.5
C4—C3—H3119.4H15A—C15—H15C109.5
C9—C10—O1120.42 (18)H15B—C15—H15C109.5
C9—C10—C5121.46 (19)O1—C14—H14A109.5
O1—C10—C5118.11 (18)O1—C14—H14B109.5
C1—C6—C5122.02 (19)H14A—C14—H14B109.5
C1—C6—H6119.0O1—C14—H14C109.5
C5—C6—H6119.0H14A—C14—H14C109.5
C8—C11—C12109.3 (2)H14B—C14—H14C109.5
C8—C11—H11A109.8C13—C16—H16A109.5
C12—C11—H11A109.8C13—C16—H16B109.5
C8—C11—H11B109.8H16A—C16—H16B109.5
C12—C11—H11B109.8C13—C16—H16C109.5
H11A—C11—H11B108.3H16A—C16—H16C109.5
C7—C8—C9120.13 (19)H16B—C16—H16C109.5
C7—C8—C11121.99 (19)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC34H38O6
Mr542.64
Crystal system, space groupOrthorhombic, C2221
Temperature (K)89
a, b, c (Å)8.8773 (2), 13.9298 (2), 23.1234 (4)
V3)2859.42 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.28 × 0.22
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.889, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
22789, 2035, 1542
Rint0.052
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.095, 1.13
No. of reflections2035
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2008).

 

Acknowledgements

Tania Groutso is gratefully acknowledged for assistance with the data collection.

References

First citationBrenstrum, T. J., Brimble, M. A. & Turner, P. (2001). Acta Cryst. E57, o28–o29.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrimble, M. A., Gibson, J. S., Sejberg, J. J. P. & Sperry, J. (2008). Synlett. 867–870.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationGibson, J. S., Andrey, O. & Brimble, M. A. (2007). Synthesis, pp. 2611–2613.  Google Scholar
First citationGill, M., Buchanan, M. S. & Yu, J. (1997a). Aust. J. Chem. 50, 1081–1089.  Google Scholar
First citationGill, M., Buchanan, M. S. & Yu, J. (1997b). J. Chem. Soc. Perkin Trans. 1, pp. 919–925.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds