organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Benzoyl-4-chloro­phen­yl)-4-chloro­benzene­sulfonamide

aDepartment of Chemistry, University of Jyväskylä, PO Box 35, FIN-40014 Jyväskylä, Finland, and bDepartment of Chemistry, University of Technology and Life Sciences, Seminaryjna 3, PL-85-326 Bydgoszcz, Poland
*Correspondence e-mail: arto.valkonen@jyu.fi

(Received 28 February 2008; accepted 18 March 2008; online 29 March 2008)

The title compound, C19H13Cl2NO3S, is an N-aryl­sulfonyl derivative of 2-amino-5-chloro­benzophenone. The compound is biologically active and shows potential to be utilized as an inhibitor of CCR2 and CCR9 receptor functions. In the crystal structure, there is an intra­molecular N—H⋯O hydrogen bond between the amide and carbonyl groups. The benzoyl and 4-chloro­phenyl groups form intra­molecular and inter­molecular face-to-face contacts, with a dihedral angle of 10.6 (1)° between their mean planes in both cases, and centroid–centroid separations of 4.00 (1) and 4.25 (1) Å for the intra- and inter­molecular inter­actions, respectively.

Related literature

For related literature, see: Basak et al. (2008[Basak, A., Jin, J., Moore, J., Pennell, A. M. K., Punna, S., Ungashe, S. & Wei, Z. (2008). World Patent Application 2008008374.]); Fleming et al. (2003[Fleming, P., Harriman, G. C. B., Shi, Z. & Chen, S. (2003). World Patent Application 2003099773.]); Kolehmainen et al. (2003[Kolehmainen, E., Nissinen, M., Janota, H., Gawinecki, R. & Ośmiałowski, B. (2003). Pol. J. Chem. 77, 889-894.]); Sternbach et al. (1962[Sternbach, L. H., Fryer, R. I., Metlesics, W., Sach, G. & Stempel, A. (1962). J. Org. Chem. 27, 3781-3788.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13Cl2NO3S

  • Mr = 406.26

  • Monoclinic, P 21 /n

  • a = 8.2307 (1) Å

  • b = 18.5014 (3) Å

  • c = 12.1364 (2) Å

  • β = 105.211 (1)°

  • V = 1783.38 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 173 (2) K

  • 0.25 × 0.25 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: none

  • 13987 measured reflections

  • 4401 independent reflections

  • 3534 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.084

  • S = 1.05

  • 4401 reflections

  • 238 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.865 (15) 2.20 (2) 2.798 (2) 126.1 (18)

Data collection: COLLECT (Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

The title compound was originally prepared to study its molecular structure by spectroscopy (Kolehmainen et al., 2003). The compound has a sulfone group showing strong electron acceptor capability and two S=O double bonds with ineffective conjugation properties with other double bonds. The compound has also shown a potential to be utilized as inhibitor of CCR2 (Basak et al., 2008) and CCR9 (Fleming et al., 2003) receptor functions. This potent antagonist can possibly be utilized in pharmaceutical compositions for treatment of CCR2 and CCR9 related diseases.

In the crystal, there is an intramolecular N—H···O hydrogen bond between the amide and carbonyl groups (Fig. 1). The benzoyl and 4-chlorophenyl groups form intramolecular (Fig. 2) and intermolecular face-to-face contacts (Fig. 3), with a dihedral angle of 10.6 (1)° between their mean planes in both cases, and a centroid-centroid separation of 4.00 (1) and 4.25 (1)Å for the intra- and intermolecular interactions, respectively.

Related literature top

For related literature, see: Basak et al. (2008); Fleming et al. (2003); Kolehmainen et al. (2003); Sternbach et al. (1962).

Experimental top

The title compound was obtained by condensation of 2-amino-5-chlorobenzophenone and 4-chlorobenzenesulfonyl chloride according to a previously described method (Sternbach et al., 1962). The reaction product was purified by crystallization from ethanol. The spectroscopic characterization (NMR, IR) has previously been reported by us (Kolehmainen et al., 2003). The single-crystal suitable for X-ray determination was obtained by extremely slow evaporation of a CDCl3 solution in a NMR tube.

Refinement top

All H atoms were visible in electron density maps, but those bound to C were placed in idealized positions and allowed to ride on their parent atoms at C—H distances of 0.95 Å with Uiso(H) = 1.2Ueq(C). The position of the N—H proton was refined with the N—H distance restrained to 0.91 (2) Å and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by circles of arbitrary size
[Figure 2] Fig. 2. Molecular conformation with selected geometric parameters
[Figure 3] Fig. 3. Packing viewed along the a-axis showing the stack-like architecture
N-(2-Benzoyl-4-chlorophenyl)-4-chlorobenzenesulfonamide top
Crystal data top
C19H13Cl2NO3SF(000) = 832
Mr = 406.26Dx = 1.513 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 31954 reflections
a = 8.2307 (1) Åθ = 0.4–28.3°
b = 18.5014 (3) ŵ = 0.50 mm1
c = 12.1364 (2) ÅT = 173 K
β = 105.211 (1)°Block, yellow
V = 1783.38 (5) Å30.25 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3534 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 28.3°, θmin = 2.1°
ϕ and ω scansh = 1010
13987 measured reflectionsk = 2424
4401 independent reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0187P)2 + 1.5712P]
where P = (Fo2 + 2Fc2)/3
4401 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C19H13Cl2NO3SV = 1783.38 (5) Å3
Mr = 406.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2307 (1) ŵ = 0.50 mm1
b = 18.5014 (3) ÅT = 173 K
c = 12.1364 (2) Å0.25 × 0.25 × 0.15 mm
β = 105.211 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3534 reflections with I > 2σ(I)
13987 measured reflectionsRint = 0.044
4401 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
4401 reflectionsΔρmin = 0.31 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44574 (7)0.01345 (3)0.80411 (4)0.03185 (13)
S10.95358 (6)0.13899 (3)0.46317 (4)0.02381 (11)
Cl20.64457 (7)0.44781 (3)0.45821 (5)0.03514 (13)
O10.47941 (18)0.13671 (8)0.33815 (11)0.0301 (3)
O31.00797 (18)0.13033 (8)0.36105 (13)0.0331 (3)
O21.06708 (17)0.12706 (8)0.57308 (12)0.0310 (3)
N10.7971 (2)0.08200 (9)0.44914 (14)0.0239 (3)
H10.729 (2)0.0856 (12)0.3815 (14)0.029*
C40.7144 (3)0.01218 (10)0.71469 (17)0.0270 (4)
H40.76900.01640.77870.032*
C150.7816 (2)0.25730 (11)0.35920 (17)0.0261 (4)
H150.76890.23120.29000.031*
C70.4749 (2)0.15092 (10)0.43573 (16)0.0220 (4)
C60.4742 (2)0.08317 (10)0.61488 (16)0.0231 (4)
H60.36520.10180.61070.028*
C10.5564 (2)0.10128 (10)0.53194 (16)0.0215 (4)
C140.8692 (2)0.22691 (10)0.46257 (16)0.0227 (4)
C100.2063 (3)0.31757 (12)0.3887 (2)0.0358 (5)
H100.12500.33970.32780.043*
C170.7328 (2)0.36241 (10)0.45946 (17)0.0246 (4)
C180.8210 (3)0.33297 (11)0.56290 (17)0.0279 (4)
H180.83450.35940.63180.033*
C160.7129 (3)0.32578 (11)0.35766 (17)0.0268 (4)
H160.65300.34720.28760.032*
C20.7158 (2)0.07170 (10)0.53854 (16)0.0220 (4)
C80.3942 (2)0.21889 (10)0.46066 (16)0.0222 (4)
C190.8891 (2)0.26433 (11)0.56418 (17)0.0261 (4)
H190.94910.24310.63430.031*
C90.2776 (3)0.25261 (11)0.37109 (17)0.0280 (4)
H90.24730.23070.29770.034*
C30.7952 (2)0.02892 (10)0.63138 (17)0.0262 (4)
H30.90550.01110.63760.031*
C50.5527 (2)0.03774 (10)0.70344 (16)0.0232 (4)
C130.4391 (3)0.25198 (11)0.56727 (17)0.0266 (4)
H130.51740.22910.62900.032*
C110.2525 (3)0.35055 (11)0.4944 (2)0.0362 (5)
H110.20360.39550.50580.043*
C120.3699 (3)0.31836 (11)0.58384 (19)0.0334 (5)
H120.40300.34150.65620.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0399 (3)0.0286 (3)0.0302 (3)0.0016 (2)0.0148 (2)0.0021 (2)
S10.0222 (2)0.0227 (2)0.0275 (3)0.00388 (18)0.00828 (19)0.00123 (19)
Cl20.0431 (3)0.0224 (2)0.0419 (3)0.0072 (2)0.0147 (2)0.0016 (2)
O10.0341 (8)0.0324 (8)0.0215 (7)0.0044 (6)0.0029 (6)0.0029 (6)
O30.0374 (8)0.0304 (8)0.0375 (8)0.0066 (6)0.0202 (7)0.0006 (6)
O20.0221 (7)0.0336 (8)0.0349 (8)0.0041 (6)0.0031 (6)0.0044 (6)
N10.0255 (8)0.0219 (8)0.0239 (9)0.0003 (7)0.0058 (7)0.0030 (7)
C40.0304 (10)0.0195 (9)0.0283 (10)0.0012 (8)0.0029 (8)0.0045 (8)
C150.0321 (11)0.0250 (10)0.0210 (10)0.0016 (8)0.0064 (8)0.0016 (8)
C70.0191 (9)0.0223 (9)0.0229 (10)0.0021 (7)0.0024 (7)0.0010 (7)
C60.0217 (9)0.0202 (9)0.0267 (10)0.0005 (7)0.0050 (8)0.0016 (8)
C10.0227 (9)0.0169 (9)0.0223 (9)0.0004 (7)0.0013 (7)0.0017 (7)
C140.0226 (9)0.0223 (9)0.0243 (10)0.0010 (7)0.0079 (8)0.0013 (7)
C100.0364 (12)0.0279 (11)0.0399 (13)0.0081 (9)0.0042 (10)0.0105 (10)
C170.0255 (10)0.0184 (9)0.0312 (11)0.0003 (7)0.0099 (8)0.0014 (8)
C180.0327 (11)0.0268 (10)0.0242 (10)0.0010 (8)0.0075 (8)0.0051 (8)
C160.0299 (10)0.0258 (10)0.0234 (10)0.0030 (8)0.0047 (8)0.0017 (8)
C20.0243 (9)0.0179 (9)0.0232 (9)0.0003 (7)0.0051 (7)0.0014 (7)
C80.0201 (9)0.0205 (9)0.0255 (10)0.0004 (7)0.0051 (7)0.0038 (7)
C190.0265 (10)0.0276 (10)0.0222 (10)0.0007 (8)0.0031 (8)0.0004 (8)
C90.0309 (11)0.0253 (10)0.0251 (10)0.0009 (8)0.0027 (8)0.0052 (8)
C30.0235 (10)0.0200 (9)0.0336 (11)0.0025 (7)0.0046 (8)0.0010 (8)
C50.0292 (10)0.0181 (9)0.0223 (9)0.0034 (8)0.0067 (8)0.0016 (7)
C130.0303 (10)0.0253 (10)0.0230 (10)0.0003 (8)0.0051 (8)0.0017 (8)
C110.0416 (13)0.0198 (10)0.0519 (14)0.0049 (9)0.0205 (11)0.0053 (10)
C120.0439 (13)0.0251 (10)0.0350 (12)0.0047 (9)0.0168 (10)0.0043 (9)
Geometric parameters (Å, º) top
Cl1—C51.742 (2)C14—C191.386 (3)
S1—O21.4307 (15)C10—C91.379 (3)
S1—O31.4329 (15)C10—C111.381 (3)
S1—N11.6383 (17)C10—H100.950
S1—C141.7679 (19)C17—C161.381 (3)
Cl2—C171.7374 (19)C17—C181.386 (3)
O1—C71.223 (2)C18—C191.387 (3)
N1—C21.429 (2)C18—H180.950
N1—H10.865 (15)C16—H160.950
C4—C31.384 (3)C2—C31.392 (3)
C4—C51.385 (3)C8—C131.391 (3)
C4—H40.950C8—C91.394 (3)
C15—C161.386 (3)C19—H190.950
C15—C141.391 (3)C9—H90.950
C15—H150.950C3—H30.950
C7—C81.490 (3)C13—C121.391 (3)
C7—C11.499 (3)C13—H130.950
C6—C51.384 (3)C11—C121.384 (3)
C6—C11.393 (3)C11—H110.950
C6—H60.950C12—H120.950
C1—C21.404 (3)
O2—S1—O3120.89 (9)C17—C18—C19118.95 (18)
O2—S1—N1107.51 (9)C17—C18—H18120.5
O3—S1—N1104.68 (9)C19—C18—H18120.5
O2—S1—C14107.79 (9)C17—C16—C15118.98 (18)
O3—S1—C14108.11 (9)C17—C16—H16120.5
N1—S1—C14107.13 (9)C15—C16—H16120.5
C2—N1—S1121.25 (13)C3—C2—C1120.09 (18)
C2—N1—H1114.7 (15)C3—C2—N1118.44 (17)
S1—N1—H1110.0 (15)C1—C2—N1121.43 (17)
C3—C4—C5119.05 (18)C13—C8—C9119.28 (18)
C3—C4—H4120.5C13—C8—C7122.45 (17)
C5—C4—H4120.5C9—C8—C7118.12 (17)
C16—C15—C14119.66 (18)C14—C19—C18119.64 (18)
C16—C15—H15120.2C14—C19—H19120.2
C14—C15—H15120.2C18—C19—H19120.2
O1—C7—C8120.44 (17)C10—C9—C8120.21 (19)
O1—C7—C1120.10 (17)C10—C9—H9119.9
C8—C7—C1119.43 (16)C8—C9—H9119.9
C5—C6—C1119.39 (17)C4—C3—C2120.33 (18)
C5—C6—H6120.3C4—C3—H3119.8
C1—C6—H6120.3C2—C3—H3119.8
C6—C1—C2119.26 (17)C6—C5—C4121.67 (18)
C6—C1—C7120.47 (17)C6—C5—Cl1118.85 (15)
C2—C1—C7120.26 (17)C4—C5—Cl1119.48 (15)
C19—C14—C15120.85 (18)C12—C13—C8120.28 (19)
C19—C14—S1120.09 (15)C12—C13—H13119.9
C15—C14—S1119.06 (15)C8—C13—H13119.9
C9—C10—C11120.3 (2)C10—C11—C12120.3 (2)
C9—C10—H10119.9C10—C11—H11119.9
C11—C10—H10119.9C12—C11—H11119.9
C16—C17—C18121.92 (18)C11—C12—C13119.7 (2)
C16—C17—Cl2119.17 (15)C11—C12—H12120.2
C18—C17—Cl2118.92 (15)C13—C12—H12120.2
O2—S1—N1—C246.32 (17)C7—C1—C2—N16.2 (3)
O3—S1—N1—C2176.05 (14)S1—N1—C2—C378.1 (2)
C14—S1—N1—C269.30 (16)S1—N1—C2—C1104.42 (19)
C5—C6—C1—C21.4 (3)O1—C7—C8—C13154.24 (19)
C5—C6—C1—C7179.43 (17)C1—C7—C8—C1323.5 (3)
O1—C7—C1—C6136.12 (19)O1—C7—C8—C921.4 (3)
C8—C7—C1—C646.2 (2)C1—C7—C8—C9160.91 (17)
O1—C7—C1—C243.0 (3)C15—C14—C19—C180.0 (3)
C8—C7—C1—C2134.72 (18)S1—C14—C19—C18179.36 (15)
C16—C15—C14—C190.2 (3)C17—C18—C19—C140.6 (3)
C16—C15—C14—S1179.15 (15)C11—C10—C9—C81.5 (3)
O2—S1—C14—C1913.39 (18)C13—C8—C9—C100.8 (3)
O3—S1—C14—C19145.63 (16)C7—C8—C9—C10176.61 (19)
N1—S1—C14—C19102.04 (17)C5—C4—C3—C20.9 (3)
O2—S1—C14—C15167.28 (15)C1—C2—C3—C43.3 (3)
O3—S1—C14—C1535.04 (18)N1—C2—C3—C4174.15 (17)
N1—S1—C14—C1577.28 (17)C1—C6—C5—C42.9 (3)
C16—C17—C18—C190.9 (3)C1—C6—C5—Cl1178.11 (14)
Cl2—C17—C18—C19178.95 (15)C3—C4—C5—C64.0 (3)
C18—C17—C16—C150.7 (3)C3—C4—C5—Cl1176.93 (15)
Cl2—C17—C16—C15179.17 (15)C9—C8—C13—C120.7 (3)
C14—C15—C16—C170.1 (3)C7—C8—C13—C12174.83 (18)
C6—C1—C2—C34.5 (3)C9—C10—C11—C120.5 (3)
C7—C1—C2—C3176.37 (17)C10—C11—C12—C131.1 (3)
C6—C1—C2—N1172.92 (17)C8—C13—C12—C111.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.87 (2)2.97 (2)3.6519 (17)138 (2)
N1—H1···O10.87 (2)2.20 (2)2.798 (2)126 (2)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H13Cl2NO3S
Mr406.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)8.2307 (1), 18.5014 (3), 12.1364 (2)
β (°) 105.211 (1)
V3)1783.38 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.25 × 0.25 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13987, 4401, 3534
Rint0.044
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.084, 1.05
No. of reflections4401
No. of parameters238
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: COLLECT (Bruker, 2004), DENZO-SMN (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.865 (15)2.20 (2)2.798 (2)126.1 (18)
 

References

First citationBasak, A., Jin, J., Moore, J., Pennell, A. M. K., Punna, S., Ungashe, S. & Wei, Z. (2008). World Patent Application 2008008374.  Google Scholar
First citationBruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFleming, P., Harriman, G. C. B., Shi, Z. & Chen, S. (2003). World Patent Application 2003099773.  Google Scholar
First citationKolehmainen, E., Nissinen, M., Janota, H., Gawinecki, R. & Ośmiałowski, B. (2003). Pol. J. Chem. 77, 889–894.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSternbach, L. H., Fryer, R. I., Metlesics, W., Sach, G. & Stempel, A. (1962). J. Org. Chem. 27, 3781–3788.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds