organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Thienylcarbonylmethylene–tri­phenylphosphorane ylide

aFaculty of Chemistry, Bu-Ali Sina University, Hamadan 65174, Iran, and bDepartment of Chemistry, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
*Correspondence e-mail: jsabounchei@yahoo.co.uk

(Received 21 January 2008; accepted 26 February 2008; online 5 March 2008)

In the mol­ecule of the title compound, (2-thienylcarbon­yl)(triphenyl­phospho­nio)methanide, C24H19OPS, the geometry around the P atom is nearly tetra­hedral and the O—C—C—P torsion angle is 2.80 (3)°. The thio­phene ring is twisted through an angle of 4.33 (4)° with respect to the plane of the carbonyl group. Inter- and intra­molecular hydrogen bonds and C—H⋯π inter­actions are present in the crystal structure.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Waston, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]); Bart (1969[Bart, J. C. J. (1969). J. Chem. Soc. B, pp. 350-365.]); Dunitz (1979[Dunitz, J. D. (1979). X-ray Analysis and the Structure of Organic Molecules. Ithaca: Cornell University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19OPS

  • Mr = 386.43

  • Monoclinic, C c

  • a = 11.3076 (17) Å

  • b = 15.474 (2) Å

  • c = 11.3540 (16) Å

  • β = 97.063 (12)°

  • V = 1971.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 (2) K

  • 0.4 × 0.25 × 0.2 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical (X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-RED32, X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.930, Tmax = 0.950

  • 7138 measured reflections

  • 4130 independent reflections

  • 4082 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.03

  • 4130 reflections

  • 244 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3361 Friedel pairs

  • Flack parameter: 0.03 (7)

Table 1
Selected geometric parameters (Å, °)

C6—P1 1.727 (2)
C7—P1 1.806 (2)
C13—P1 1.812 (2)
C19—P1 1.816 (2)
C6—P1—C7 106.06 (10)
C6—P1—C13 117.09 (12)
C7—P1—C13 106.16 (10)
C6—P1—C19 112.72 (10)
C7—P1—C19 108.67 (10)
C13—P1—C19 105.74 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.93 2.34 3.147 (3) 145
C14—H14⋯O1 0.93 2.52 3.187 (3) 129
C3—H3⋯Cg1ii 0.93 2.82 3.582 (3) 140
C8—H8⋯Cg2ii 0.93 2.80 3.592 (2) 143
C10—H10⋯Cg2i 0.93 2.95 3.734 (3) 143
C23—H23⋯Cg3iii 0.93 2.82 3.465 (3) 127
Symmetry code: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) [x, -y, z-{\script{1\over 2}}]. Cg1 is the centroid of atoms C7–C12, Cg2 is the centroid of atoms C19–C24 and Cg3 is the centroid of atoms C13–C18.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-RED32, X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-RED32, X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Phosphoranes of the type (C6H5)3PCHCOC4H3S (TPPY) can coordinate to metals through either C or O atoms. The crystal and molecular structure of this ylide was determined successfully. The structural investigation with metrical parameters for the title compound, (I), show that how they vary with a change in delocalization in the metal derivatives as well as in other resonance stabilized ylides. In this molecule, the bond lengths and angles (Table 1) are generally within normal ranges (Allen et al., 1987).

The P1—C6 bond length [1.727 (2) Å], is shorter than the other P—C bonds (Table 1) and longer than the equivalent bond lengths of 1.66 Å reported for methylenetriphenylphosphorane (Bart, 1969), which shows partial double-bond character for these two bonds.

The C4—S1 and C1—S1 bond lengths of 1.712 (3) Å and 1.719 (2) Å are longer than the other C—C bonds. These bond distances suggest resonance delocalization in the molecule (Fig. 2). The resonance formulation is supported by the near planarity of P1, C6, C5 and O1 in TPPY. The torsion angle O1—C2—C1—P1 of 2.80 (3)° also indicates resonance.

The thiophenyl group is twisted with respect to the plane containing the carbonyl group through angles of 4.33 (4)°. Bond angle of 118.30 (16)° for P1—C6—C5, indicate a distorted trigonal arrangement about C6. The non-bonded distances P1—O1 of 2.990 (3) Å of TPPY is significantly shorter than the sum of the van der Waals radii of P and O (3.3 Å) (Dunitz, 1979), indicating a strong intramolecular interaction between P+ and O- charge centers, which leads to the cis orientation. Packing diagram of TPPY is shown in Fig. 3. A s it is clear from this diagram, there are some C—H···O inter- and intra-molecular interactions that seem to be effective in stability of packing (Table 2). There are four remarkable C—H···Cg (pi-ring) interactions; [H3···Cg1(C7/12)i = 2.82 Å and C3—H3···Cg1 = 140°, H8···Cg2(C19/24)i = 2.80 Å and C8—H8···Cg2 = 143°, H10···Cg2(C19/24)ii = 2.95 Å and C10—H10···Cg2 = 143°, H23···Cg3(C13/18)iii = 2.82 Å and C23—H23···Cg1 = 127°, with symmetry codes; (i) X,-Y,1/2+Z, (ii) -1/2+X,-1/2+Y,Z and (iii) X,-Y,-1/2+Z] which are effective in the stabilization of crystal packing.

Related literature top

For related literature, see: Allen et al. (1987); Bart (1969); Dunitz (1979).

Experimental top

The title compound was prepared by addition of 2-bromo-acetothiophen (0.102 g, 0.5 mmol) in chloroform (25 ml) to a solution of triphenylphosphine (0.131 g, 0.5 mmol) in the same solvent (5 ml). The resulting pale pink solution was stirred for 12 h. The solution was concentrated under reduced pressure to 5 ml, and diethyl ether (20 ml) was added. The yellow solid formed was filtered off, washed with petroleum diethyl ether (10 ml), and dried under reduced pressure. In order to get the final product, all of the crude solid was transferred to an alkaline solution of 5% NaOH and stirred at 310 K for about 14 h, yielding the white precipitate. The product was washed several times with distilled water and air dried. The resulting solid was recrystallized from a chloroform-diethyl ether mixture (m.p. 496–498 K). Yield: 78%, 0.301 g.

Refinement top

H atoms were positioned geometrically, with C—H=0.93 Å for aromatic and methine H and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. Resonance in the TPPY.
[Figure 3] Fig. 3. The packing of (I). Hydrogen bonds are shown as dashed lines. H atoms not participate in H bonding are omitted for clarity. Symmetry code: (i) -1/2 + x,-1/2 + y,z.
(2-Thienylcarbonyl)(triphenylphosphonio)methanide top
Crystal data top
C24H19OPSF(000) = 808
Mr = 386.43Dx = 1.302 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2000 reflections
a = 11.3076 (17) Åθ = 2.2–27.9°
b = 15.474 (2) ŵ = 0.26 mm1
c = 11.3540 (16) ÅT = 120 K
β = 97.063 (12)°Prism, colorless
V = 1971.6 (5) Å30.4 × 0.25 × 0.2 mm
Z = 4
Data collection top
Stoe IPDSII
diffractometer
4082 reflections with I > 2σ(I)
rotation method scansRint = 0.059
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2005)
θmax = 25.9°, θmin = 2.2°
Tmin = 0.930, Tmax = 0.950h = 1414
7138 measured reflectionsk = 2020
4130 independent reflectionsl = 1414
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0801P)2 + 1.5059P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max = 0.007
wR(F2) = 0.116Δρmax = 0.74 e Å3
S = 1.03Δρmin = 0.48 e Å3
4130 reflectionsAbsolute structure: Flack (1983), 3361 Friedel pairs
244 parametersAbsolute structure parameter: 0.03 (7)
2 restraints
Crystal data top
C24H19OPSV = 1971.6 (5) Å3
Mr = 386.43Z = 4
Monoclinic, CcMo Kα radiation
a = 11.3076 (17) ŵ = 0.26 mm1
b = 15.474 (2) ÅT = 120 K
c = 11.3540 (16) Å0.4 × 0.25 × 0.2 mm
β = 97.063 (12)°
Data collection top
Stoe IPDSII
diffractometer
4130 independent reflections
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2005)
4082 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.950Rint = 0.059
7138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.74 e Å3
S = 1.03Δρmin = 0.48 e Å3
4130 reflectionsAbsolute structure: Flack (1983), 3361 Friedel pairs
244 parametersAbsolute structure parameter: 0.03 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0560 (3)0.37507 (16)0.7865 (2)0.0305 (5)
H10.06670.42550.83110.037*
C20.0358 (2)0.31826 (17)0.7929 (2)0.0297 (5)
H20.09420.32540.84310.036*
C30.0319 (2)0.24653 (15)0.7135 (2)0.0262 (5)
H30.08750.20190.70580.031*
C40.0640 (2)0.25175 (14)0.6502 (2)0.0232 (4)
C50.1026 (2)0.19364 (13)0.5570 (2)0.0224 (4)
C60.0300 (2)0.12304 (14)0.5188 (2)0.0221 (4)
H60.03310.10680.55930.026*
C70.0633 (2)0.00552 (13)0.3568 (2)0.0208 (4)
C80.0838 (2)0.06819 (14)0.4413 (2)0.0243 (5)
H80.03150.07330.51090.029*
C90.1822 (2)0.12279 (15)0.4217 (2)0.0272 (5)
H90.1960.16380.47830.033*
C100.2600 (2)0.11563 (15)0.3166 (2)0.0274 (5)
H100.32620.15160.30340.033*
C110.2385 (2)0.05476 (15)0.2316 (2)0.0295 (5)
H110.290.05070.16130.035*
C120.1407 (2)0.00010 (14)0.2511 (2)0.0240 (4)
H120.12670.04060.19390.029*
C130.1935 (2)0.00050 (14)0.4095 (2)0.0212 (4)
C140.2881 (2)0.01748 (15)0.4970 (2)0.0277 (5)
H140.28250.06190.55110.033*
C150.3913 (3)0.03241 (18)0.5029 (3)0.0340 (5)
H150.45470.02120.56110.041*
C160.3994 (2)0.09902 (18)0.4220 (3)0.0345 (6)
H160.46850.13210.42590.041*
C170.3045 (3)0.11623 (17)0.3350 (2)0.0327 (6)
H170.31020.16070.2810.039*
C180.2014 (3)0.06698 (14)0.3290 (2)0.0272 (5)
H180.13760.07890.27140.033*
C190.0732 (2)0.13744 (14)0.26848 (19)0.0210 (4)
C200.0162 (2)0.19924 (14)0.2397 (2)0.0233 (4)
H200.07930.20370.28470.028*
C210.0099 (2)0.25406 (15)0.1430 (2)0.0280 (5)
H210.07030.2940.12190.034*
C220.0866 (3)0.24901 (15)0.0782 (2)0.0284 (5)
H220.09130.28640.01490.034*
C230.1750 (2)0.18886 (16)0.1075 (2)0.0269 (5)
H230.23940.18590.0640.032*
C240.1684 (2)0.13204 (15)0.2025 (2)0.0238 (4)
H240.22760.09080.22130.029*
O10.19781 (17)0.21153 (10)0.51549 (16)0.0280 (4)
P10.06067 (5)0.06711 (3)0.39443 (5)0.01906 (13)
S10.14871 (6)0.34234 (4)0.68674 (6)0.02845 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (15)0.0251 (10)0.0223 (11)0.0022 (10)0.0003 (10)0.0063 (8)
C20.0360 (14)0.0310 (12)0.0225 (11)0.0044 (10)0.0055 (10)0.0033 (9)
C30.0328 (13)0.0238 (10)0.0224 (10)0.0021 (9)0.0053 (9)0.0005 (8)
C40.0281 (11)0.0195 (9)0.0218 (10)0.0002 (8)0.0028 (9)0.0007 (7)
C50.0286 (11)0.0182 (9)0.0208 (10)0.0013 (8)0.0042 (9)0.0008 (7)
C60.0279 (12)0.0186 (9)0.0205 (10)0.0044 (8)0.0063 (9)0.0017 (7)
C70.0244 (10)0.0163 (9)0.0218 (10)0.0007 (7)0.0032 (8)0.0018 (7)
C80.0301 (13)0.0212 (10)0.0220 (11)0.0002 (8)0.0044 (9)0.0001 (7)
C90.0341 (13)0.0218 (10)0.0274 (11)0.0056 (9)0.0105 (10)0.0016 (8)
C100.0248 (11)0.0218 (10)0.0365 (13)0.0043 (8)0.0074 (10)0.0063 (9)
C110.0287 (13)0.0251 (10)0.0331 (12)0.0011 (9)0.0029 (10)0.0026 (9)
C120.0261 (12)0.0206 (10)0.0246 (10)0.0003 (8)0.0006 (9)0.0015 (8)
C130.0229 (11)0.0192 (9)0.0218 (10)0.0000 (8)0.0037 (8)0.0036 (8)
C140.0293 (13)0.0253 (10)0.0276 (11)0.0017 (9)0.0001 (10)0.0018 (9)
C150.0291 (13)0.0361 (13)0.0357 (13)0.0024 (10)0.0001 (11)0.0084 (11)
C160.0282 (13)0.0358 (13)0.0407 (14)0.0092 (10)0.0097 (11)0.0125 (11)
C170.0407 (15)0.0290 (11)0.0294 (12)0.0107 (10)0.0075 (11)0.0021 (9)
C180.0329 (14)0.0247 (12)0.0243 (12)0.0048 (9)0.0047 (10)0.0001 (8)
C190.0252 (11)0.0192 (9)0.0186 (10)0.0005 (8)0.0024 (8)0.0009 (7)
C200.0282 (12)0.0178 (9)0.0243 (10)0.0011 (8)0.0051 (9)0.0022 (7)
C210.0336 (13)0.0234 (10)0.0263 (11)0.0018 (9)0.0011 (10)0.0045 (8)
C220.0384 (14)0.0265 (11)0.0201 (10)0.0044 (10)0.0020 (10)0.0042 (8)
C230.0323 (12)0.0293 (11)0.0200 (10)0.0031 (9)0.0064 (9)0.0007 (8)
C240.0270 (12)0.0225 (9)0.0226 (11)0.0011 (8)0.0054 (9)0.0004 (8)
O10.0299 (9)0.0235 (8)0.0325 (9)0.0059 (6)0.0108 (8)0.0035 (6)
P10.0227 (3)0.0161 (2)0.0186 (2)0.00069 (19)0.00337 (19)0.00047 (18)
S10.0342 (3)0.0220 (3)0.0294 (3)0.0054 (2)0.0047 (2)0.0052 (2)
Geometric parameters (Å, º) top
C1—C21.369 (4)C13—C141.392 (4)
C1—S11.712 (3)C13—C181.398 (3)
C1—H10.93C13—P11.812 (2)
C2—C31.434 (3)C14—C151.394 (4)
C2—H20.93C14—H140.93
C3—C41.375 (3)C15—C161.392 (4)
C3—H30.93C15—H150.93
C4—C51.494 (3)C16—C171.392 (4)
C4—S11.719 (2)C16—H160.93
C5—O11.258 (3)C17—C181.388 (4)
C5—C61.403 (3)C17—H170.93
C6—P11.727 (2)C18—H180.93
C6—H60.93C19—C241.388 (3)
C7—C121.399 (3)C19—C201.401 (3)
C7—C81.403 (3)C19—P11.816 (2)
C7—P11.806 (2)C20—C211.396 (3)
C8—C91.393 (4)C20—H200.93
C8—H80.93C21—C221.391 (4)
C9—C101.398 (4)C21—H210.93
C9—H90.93C22—C231.377 (4)
C10—C111.391 (4)C22—H220.93
C10—H100.93C23—C241.401 (3)
C11—C121.391 (3)C23—H230.93
C11—H110.93C24—H240.93
C12—H120.93
C2—C1—S1112.04 (18)C13—C14—H14120.1
C2—C1—H1124C15—C14—H14120.1
S1—C1—H1124C16—C15—C14120.1 (3)
C1—C2—C3112.4 (2)C16—C15—H15120
C1—C2—H2123.8C14—C15—H15120
C3—C2—H2123.8C17—C16—C15120.1 (2)
C4—C3—C2111.7 (2)C17—C16—H16119.9
C4—C3—H3124.1C15—C16—H16119.9
C2—C3—H3124.1C18—C17—C16120.0 (2)
C3—C4—C5130.7 (2)C18—C17—H17120
C3—C4—S1111.94 (17)C16—C17—H17120
C5—C4—S1117.31 (17)C17—C18—C13119.9 (3)
O1—C5—C6123.4 (2)C17—C18—H18120.1
O1—C5—C4118.1 (2)C13—C18—H18120.1
C6—C5—C4118.5 (2)C24—C19—C20120.0 (2)
C5—C6—P1118.30 (16)C24—C19—P1121.98 (18)
C5—C6—H6120.9C20—C19—P1117.98 (16)
P1—C6—H6120.9C21—C20—C19119.6 (2)
C12—C7—C8119.4 (2)C21—C20—H20120.2
C12—C7—P1123.35 (16)C19—C20—H20120.2
C8—C7—P1117.22 (19)C22—C21—C20120.0 (2)
C9—C8—C7120.4 (2)C22—C21—H21120
C9—C8—H8119.8C20—C21—H21120
C7—C8—H8119.8C23—C22—C21120.3 (2)
C8—C9—C10119.7 (2)C23—C22—H22119.9
C8—C9—H9120.2C21—C22—H22119.9
C10—C9—H9120.2C22—C23—C24120.3 (2)
C11—C10—C9120.1 (2)C22—C23—H23119.9
C11—C10—H10120C24—C23—H23119.9
C9—C10—H10120C19—C24—C23119.7 (2)
C12—C11—C10120.4 (2)C19—C24—H24120.1
C12—C11—H11119.8C23—C24—H24120.1
C10—C11—H11119.8C6—P1—C7106.06 (10)
C11—C12—C7120.0 (2)C6—P1—C13117.09 (12)
C11—C12—H12120C7—P1—C13106.16 (10)
C7—C12—H12120C6—P1—C19112.72 (10)
C14—C13—C18120.2 (2)C7—P1—C19108.67 (10)
C14—C13—P1121.02 (17)C13—P1—C19105.74 (10)
C18—C13—P1118.8 (2)C1—S1—C491.86 (13)
C13—C14—C15119.7 (2)
S1—C1—C2—C30.8 (3)C20—C21—C22—C231.3 (4)
C1—C2—C3—C40.4 (3)C21—C22—C23—C240.2 (4)
C2—C3—C4—C5178.7 (2)C20—C19—C24—C230.3 (3)
C2—C3—C4—S10.2 (3)P1—C19—C24—C23178.83 (18)
C3—C4—C5—O1177.3 (3)C22—C23—C24—C191.0 (4)
S1—C4—C5—O13.9 (3)C5—C6—P1—C7170.32 (19)
C3—C4—C5—C63.8 (4)C5—C6—P1—C1371.5 (2)
S1—C4—C5—C6175.02 (18)C5—C6—P1—C1951.5 (2)
O1—C5—C6—P19.7 (3)C12—C7—P1—C6115.89 (19)
C4—C5—C6—P1169.12 (17)C8—C7—P1—C661.6 (2)
C12—C7—C8—C91.7 (3)C12—C7—P1—C13118.89 (19)
P1—C7—C8—C9175.91 (17)C8—C7—P1—C1363.60 (19)
C7—C8—C9—C100.7 (3)C12—C7—P1—C195.6 (2)
C8—C9—C10—C110.6 (4)C8—C7—P1—C19176.93 (17)
C9—C10—C11—C120.8 (4)C14—C13—P1—C623.8 (2)
C10—C11—C12—C70.2 (3)C18—C13—P1—C6158.29 (17)
C8—C7—C12—C111.5 (3)C14—C13—P1—C7141.96 (18)
P1—C7—C12—C11176.01 (18)C18—C13—P1—C740.1 (2)
C18—C13—C14—C150.8 (3)C14—C13—P1—C19102.69 (19)
P1—C13—C14—C15177.07 (18)C18—C13—P1—C1975.2 (2)
C13—C14—C15—C160.1 (4)C24—C19—P1—C6131.09 (19)
C14—C15—C16—C170.2 (4)C20—C19—P1—C648.1 (2)
C15—C16—C17—C180.0 (4)C24—C19—P1—C7111.6 (2)
C16—C17—C18—C130.7 (4)C20—C19—P1—C769.2 (2)
C14—C13—C18—C171.1 (3)C24—C19—P1—C132.0 (2)
P1—C13—C18—C17176.84 (18)C20—C19—P1—C13177.19 (18)
C24—C19—C20—C211.2 (4)C2—C1—S1—C40.7 (2)
P1—C19—C20—C21179.61 (18)C3—C4—S1—C10.5 (2)
C19—C20—C21—C222.0 (4)C5—C4—S1—C1178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.343.147 (3)145
C14—H14···O10.932.523.187 (3)129
C3—H3···Cg1ii0.932.823.582 (3)140
C8—H8···Cg2ii0.932.803.592 (2)143
C10—H10···Cg2i0.932.953.734 (3)143
C23—H23···Cg3iii0.932.823.465 (3)127
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y, z+1/2; (iii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC24H19OPS
Mr386.43
Crystal system, space groupMonoclinic, Cc
Temperature (K)120
a, b, c (Å)11.3076 (17), 15.474 (2), 11.3540 (16)
β (°) 97.063 (12)
V3)1971.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.4 × 0.25 × 0.2
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionNumerical
(X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.930, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
7138, 4130, 4082
Rint0.059
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.03
No. of reflections4130
No. of parameters244
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.48
Absolute structureFlack (1983), 3361 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C6—P11.727 (2)C13—P11.812 (2)
C7—P11.806 (2)
C6—P1—C7106.06 (10)C6—P1—C19112.72 (10)
C6—P1—C13117.09 (12)C7—P1—C19108.67 (10)
C7—P1—C13106.16 (10)C13—P1—C19105.74 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.343.147 (3)145
C14—H14···O10.932.523.187 (3)129
C3—H3···Cg1ii0.932.823.582 (3)140
C8—H8···Cg2ii0.932.803.592 (2)143
C10—H10···Cg2i0.932.953.734 (3)143
C23—H23···Cg3iii0.932.823.465 (3)127
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y, z+1/2; (iii) x, y, z1/2.
 

Acknowledgements

The authors acknowledge Bu-Ali Sina University for financial support.

References

First citationAllen, F. H., Kennard, O., Waston, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Google Scholar
First citationBart, J. C. J. (1969). J. Chem. Soc. B, pp. 350–365.  Google Scholar
First citationDunitz, J. D. (1979). X-ray Analysis and the Structure of Organic Molecules. Ithaca: Cornell University Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-RED32, X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds