organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-((E)-{4-[(3,4-di­methyl­isoxazol-5-yl)sulfamo­yl]phen­yl}iminio­meth­yl)phenolate

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 3 March 2008; accepted 11 March 2008; online 14 March 2008)

The title compound, C18H16BrN3O4S, is a Schiff base ligand of 5-bromo­salicylaldehyde and sulfisoxazole [or N-(3,4-dimethyl-5-isoxazol)sulfanilamide]. The present structure is a zwitterion and is a more precise reinterpretation of the structure which was originally reported by Hämäläinen, Lehtinen & Turpeinen [Arch. Pharm. (1986), 319, 415–420]. The two aromatic rings which make ππ inter­actions [centroid–centroid distance 3.7538 (18) Å] through intermolecular interactions. There is also a C—Br⋯π inter­action [3.6333 (15) Å] with the heterocyclic ring. An intra­molecular N—H⋯O hydrogen bond also exists. Dimers are formed due to inter­molecular N—H⋯O hydrogen bonding. Inter­molecular C—H⋯O hydrogen bonding links a methyl C atom and the phenolate O atom. The dimers are linked by C—H⋯N hydrogen bonds, where the C atom is from the Schiff base group and the N atom is of five-membered heterocyclic ring.

Related literature

For related literature, see: Chohan et al. (2008[Chohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o648.]); Hämäläinen et al. (1986[Hämäläinen, R., Lehtinen, M. & Turpeinen, U. (1986). Arch. Pharm. 319, 415-420.]); Shad et al. (2008[Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16BrN3O4S

  • Mr = 450.31

  • Monoclinic, P 21 /n

  • a = 15.3846 (10) Å

  • b = 7.2235 (5) Å

  • c = 16.5520 (11) Å

  • β = 93.201 (4)°

  • V = 1836.6 (2) Å3

  • Z = 4

  • Mo Kα radiation radiation

  • μ = 2.38 mm−1

  • T = 296 (2) K

  • 0.18 × 0.14 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.]) Tmin = 0.685, Tmax = 0.793

  • 18874 measured reflections

  • 3955 independent reflections

  • 2704 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.00

  • 3955 reflections

  • 252 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.80 (3) 1.91 (3) 2.577 (4) 141 (3)
N2—H2⋯O1i 0.75 (3) 2.09 2.828 (4) 171 (4)
C17—H17C⋯O1i 0.96 2.58 3.248 (5) 126
C7—H7⋯N3ii 0.93 2.53 3.420 (4) 161
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides are a class of compounds, which have been found to possess a wide range of medicinal properties. In continuation of synthesizing Schiff base ligands of substituted halogen salicylaldehyde and various sulfonamides (Chohan et al., 2008, Shad et al., 2008), We report the refinement of (5-Bromosalicy1idene)-N-(3,4-dimethyl-5-isoxazolyl)sulfanilamide (Hämäläinen et al., 1986).

During the refinement of 4-Chloro-2-[(E)-({4-[(3,4-dimethylisoxazol-5-yl) sulfamoyl]phenyl}iminio)methyl]phenolate (Shad et al., 2008) prepared from 5-chlorosalicylaldehyde and sulfisoxazole: [N-(3,4-dimethyl-5-isoxazol) sulfanilamide], it was observed that H-atom of hydroxy group shifts to N-atom of Schiff base moiety. To see the effect of sulfisoxazole on 5-Bromosalicylaldehyde, the title compound (I) has been prepared. The X-ray structure analysis clearly shows that again a zwitterion is formed due to the reaction of 5-Bromosalicylaldehyde and sulfisoxazole. The values of bond lengths and bond angles are similar to the chloro isomer and also similar to the reported by Hämäläinen et al., 1986. There exist π interaction at a distance of 3.6333 (15) Å C5—Br1···CgAi [symmetry code i = x - 1/2, -y + 1/2, z - 1/2], where CgA is the center of gravity of the (A) five-membered heterocyclic ring containing O4. The π - π interaction also exists between the aromatic rings (B) and (C), containing C10 and C3 respectively. The distance between the centroids of neighbouring rings have value of 3.7538 (18) Å, CgB···CgCii [symmetry code ii = x, y - 1, z], here CgB and CgC represent the center of gravity of ring (B) and ring (C) respectively. The dihedral angles between the rings A/B, A/C, B/C have values of 43.30 (18)°, 44.30 (18)° and 5.56 (15)° respectively. The molecules form dimers through H-bonding between N2—H2···O1iii [symmetry code iii = -x + 1, -y + 1, -z + 1]. These dimers are linked to each other by C7—H7···N3iv [symmetry code iv = -x + 1/2, y - 1/2, -z + 3/2] and form a three-dimensional polymeric network. The intermolecular H-bond [C—H···O] between methyl C-atom and O-atom of aromatic ring with Bromom group. The detail of H-bonding is given in Table 1.

Related literature top

For related literature, see: Chohan et al. (2008); Hämäläinen et al. (1986); Shad et al. (2008).

Experimental top

Sulfisoxazole (0.5346 g, 2 mmol) in ethanol (20 ml) was mixed with ethanolic solution (10 ml) of 5-Bromosalicylaldehyde (0.402 g, 2 mmol). After refluxing for 3 h, the solution turned orange red. The solution was cooled to room temperature, filtered and volume reduced to about one-third using rotary evaporator. It was then allowed to stand for 10 days and obtained crystals of title compound. m.p; 481 K.

Refinement top

The coordinates of H-atoms attached to N-atoms were refined. H-atoms were positioned geometrically, with C—H = 0.93 Å for aromatic like, 0.96 Å for methyl and constrained to ride on their parent atoms. The Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C18H16BrN3O4S, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonding is shown by dashed lines.
[Figure 2] Fig. 2. The interaction diagram of (I) (Spek, 2003) showing the intramolecular and intermolecular hydrogen bonding which leads to dimers and a three-dimensional polymeric network.
4-Bromo-2-((E)-{4-[(3,4-dimethylisoxazol-5- yl)sulfamoyl]phenyl}iminiomethyl)phenolate top
Crystal data top
C18H16BrN3O4SF(000) = 912
Mr = 450.31Dx = 1.629 Mg m3
Monoclinic, P21/nMelting point: 481 K
Hall symbol: -P 2ynMo Kα radiation radiation, λ = 0.71073 Å
a = 15.3846 (10) ÅCell parameters from 2704 reflections
b = 7.2235 (5) Åθ = 1.8–27.0°
c = 16.5520 (11) ŵ = 2.38 mm1
β = 93.201 (4)°T = 296 K
V = 1836.6 (2) Å3Prismatic, red
Z = 40.18 × 0.14 × 0.10 mm
Data collection top
Bruker KappaAPEXII CCD
diffractometer
3955 independent reflections
Radiation source: fine-focus sealed tube2704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 7.40 pixels mm-1θmax = 27.0°, θmin = 1.8°
ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.685, Tmax = 0.793l = 2118
18874 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.00.057P)2 + 0.7324P]
where P = (Fo2 + 2Fc2)/3
3955 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C18H16BrN3O4SV = 1836.6 (2) Å3
Mr = 450.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.3846 (10) ŵ = 2.38 mm1
b = 7.2235 (5) ÅT = 296 K
c = 16.5520 (11) Å0.18 × 0.14 × 0.10 mm
β = 93.201 (4)°
Data collection top
Bruker KappaAPEXII CCD
diffractometer
3955 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2704 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.793Rint = 0.058
18874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.46 e Å3
3955 reflectionsΔρmin = 0.62 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11987 (2)0.44715 (5)0.41651 (3)0.05783 (16)
S10.39184 (6)0.99341 (12)0.67050 (5)0.0440 (2)
O10.38204 (15)0.1394 (3)0.34949 (14)0.0491 (6)
O20.4329 (2)1.1298 (3)0.62307 (15)0.0647 (7)
O30.31683 (17)1.0380 (4)0.71321 (17)0.0645 (8)
O40.40342 (15)0.8167 (3)0.85228 (14)0.0514 (6)
N10.32829 (17)0.3238 (4)0.47030 (16)0.0365 (6)
H10.364 (2)0.300 (5)0.439 (2)0.044*
N20.46806 (18)0.9255 (4)0.73775 (17)0.0380 (6)
H20.510 (2)0.918 (5)0.717 (2)0.046*
N30.3987 (2)0.6529 (5)0.89824 (19)0.0669 (10)
C10.26586 (19)0.0371 (4)0.42687 (18)0.0352 (7)
C20.3239 (2)0.0154 (4)0.36301 (19)0.0382 (7)
C30.3146 (2)0.1448 (5)0.3150 (2)0.0466 (8)
H30.35010.16040.27180.056*
C40.2547 (2)0.2782 (5)0.33041 (19)0.0449 (8)
H40.25030.38390.29840.054*
C50.1997 (2)0.2558 (5)0.3945 (2)0.0416 (7)
C60.2043 (2)0.1014 (5)0.4411 (2)0.0407 (8)
H60.16660.08710.48260.049*
C70.2714 (2)0.1925 (4)0.47838 (19)0.0383 (7)
H70.23300.20170.51970.046*
C80.34005 (19)0.4812 (4)0.52001 (18)0.0329 (7)
C90.39958 (18)0.6121 (4)0.49609 (18)0.0349 (7)
H90.42950.59260.44950.042*
C100.41460 (19)0.7704 (4)0.54089 (18)0.0375 (7)
H100.45490.85770.52550.045*
C110.3682 (2)0.7976 (4)0.60991 (18)0.0361 (7)
C120.3092 (2)0.6689 (5)0.63357 (19)0.0414 (8)
H120.27860.68930.67970.050*
C130.2952 (2)0.5096 (5)0.5892 (2)0.0411 (8)
H130.25580.42140.60560.049*
C140.45153 (18)0.7779 (4)0.78862 (17)0.0346 (7)
C150.4783 (2)0.6014 (5)0.7904 (2)0.0410 (8)
C160.4434 (3)0.5296 (5)0.8609 (2)0.0572 (10)
C170.5315 (3)0.5017 (5)0.7328 (3)0.0692 (13)
H17A0.50860.37920.72420.104*
H17B0.59060.49380.75460.104*
H17C0.53000.56720.68230.104*
C180.4540 (4)0.3344 (6)0.8916 (3)0.0978 (18)
H18A0.39960.29140.91030.147*
H18B0.49760.33140.93540.147*
H18C0.47140.25590.84860.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0474 (2)0.0454 (2)0.0799 (3)0.01217 (17)0.00429 (19)0.00371 (19)
S10.0541 (5)0.0327 (4)0.0448 (5)0.0070 (4)0.0016 (4)0.0070 (4)
O10.0517 (13)0.0490 (14)0.0487 (13)0.0079 (12)0.0226 (11)0.0059 (11)
O20.105 (2)0.0305 (13)0.0578 (16)0.0076 (14)0.0076 (15)0.0067 (12)
O30.0561 (15)0.0677 (18)0.0693 (17)0.0268 (13)0.0017 (13)0.0284 (14)
O40.0569 (14)0.0549 (15)0.0449 (13)0.0158 (12)0.0248 (12)0.0003 (12)
N10.0342 (14)0.0397 (15)0.0362 (15)0.0020 (12)0.0080 (11)0.0048 (12)
N20.0384 (14)0.0388 (15)0.0372 (15)0.0013 (12)0.0068 (12)0.0050 (12)
N30.083 (2)0.062 (2)0.059 (2)0.0189 (19)0.0412 (18)0.0139 (17)
C10.0343 (15)0.0365 (17)0.0350 (17)0.0005 (13)0.0044 (13)0.0045 (14)
C20.0399 (17)0.0392 (18)0.0357 (17)0.0051 (14)0.0052 (14)0.0004 (14)
C30.058 (2)0.046 (2)0.0358 (18)0.0073 (17)0.0095 (16)0.0042 (16)
C40.056 (2)0.0372 (18)0.0403 (19)0.0041 (16)0.0072 (16)0.0082 (15)
C50.0401 (17)0.0379 (18)0.0461 (19)0.0026 (14)0.0036 (15)0.0010 (15)
C60.0347 (16)0.0437 (19)0.0440 (19)0.0029 (14)0.0059 (14)0.0044 (15)
C70.0359 (16)0.0411 (18)0.0384 (17)0.0021 (14)0.0066 (14)0.0043 (15)
C80.0318 (15)0.0353 (16)0.0315 (16)0.0006 (12)0.0007 (12)0.0019 (13)
C90.0348 (16)0.0408 (17)0.0294 (16)0.0005 (13)0.0057 (13)0.0017 (14)
C100.0394 (16)0.0372 (17)0.0363 (17)0.0053 (14)0.0058 (14)0.0014 (14)
C110.0398 (16)0.0340 (17)0.0338 (17)0.0032 (13)0.0032 (13)0.0038 (13)
C120.0407 (17)0.048 (2)0.0365 (17)0.0022 (15)0.0117 (14)0.0057 (15)
C130.0414 (17)0.0431 (18)0.0399 (18)0.0120 (14)0.0126 (15)0.0035 (15)
C140.0329 (15)0.0420 (18)0.0294 (15)0.0027 (13)0.0068 (13)0.0095 (14)
C150.0448 (17)0.0390 (18)0.0405 (18)0.0009 (14)0.0132 (15)0.0056 (14)
C160.067 (2)0.049 (2)0.058 (2)0.0105 (19)0.025 (2)0.0077 (18)
C170.096 (3)0.041 (2)0.076 (3)0.005 (2)0.048 (3)0.008 (2)
C180.140 (5)0.066 (3)0.094 (3)0.028 (3)0.065 (3)0.029 (3)
Geometric parameters (Å, º) top
Br1—C51.898 (3)C6—H60.9300
S1—O31.424 (3)C7—H70.9300
S1—O21.429 (3)C8—C131.385 (4)
S1—N21.646 (3)C8—C91.389 (4)
S1—C111.760 (3)C9—C101.375 (4)
O1—C21.294 (4)C9—H90.9300
O4—C141.350 (3)C10—C111.395 (4)
O4—N31.411 (4)C10—H100.9300
N1—C71.302 (4)C11—C121.371 (4)
N1—C81.409 (4)C12—C131.376 (5)
N1—H10.80 (3)C12—H120.9300
N2—C141.391 (4)C13—H130.9300
N2—H20.75 (4)C14—C151.339 (4)
N3—C161.302 (5)C15—C161.410 (5)
C1—C61.406 (4)C15—C171.478 (5)
C1—C71.409 (4)C16—C181.504 (6)
C1—C21.429 (4)C17—H17A0.9600
C2—C31.406 (5)C17—H17B0.9600
C3—C41.368 (5)C17—H17C0.9600
C3—H30.9300C18—H18A0.9600
C4—C51.402 (5)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
C5—C61.355 (5)
O3—S1—O2120.84 (18)C9—C8—N1116.6 (3)
O3—S1—N2107.36 (15)C10—C9—C8120.4 (3)
O2—S1—N2104.87 (16)C10—C9—H9119.8
O3—S1—C11108.49 (16)C8—C9—H9119.8
O2—S1—C11108.95 (16)C9—C10—C11118.7 (3)
N2—S1—C11105.22 (14)C9—C10—H10120.7
C14—O4—N3107.1 (2)C11—C10—H10120.7
C7—N1—C8126.3 (3)C12—C11—C10121.1 (3)
C7—N1—H1114 (3)C12—C11—S1120.1 (2)
C8—N1—H1119 (3)C10—C11—S1118.7 (2)
C14—N2—S1119.4 (2)C11—C12—C13120.0 (3)
C14—N2—H2114 (3)C11—C12—H12120.0
S1—N2—H2108 (3)C13—C12—H12120.0
C16—N3—O4105.9 (3)C12—C13—C8119.7 (3)
C6—C1—C7119.0 (3)C12—C13—H13120.2
C6—C1—C2119.9 (3)C8—C13—H13120.2
C7—C1—C2121.0 (3)C15—C14—O4111.2 (3)
O1—C2—C3121.4 (3)C15—C14—N2132.6 (3)
O1—C2—C1121.2 (3)O4—C14—N2116.1 (3)
C3—C2—C1117.4 (3)C14—C15—C16103.8 (3)
C4—C3—C2121.5 (3)C14—C15—C17129.1 (3)
C4—C3—H3119.3C16—C15—C17127.2 (3)
C2—C3—H3119.3N3—C16—C15112.1 (3)
C3—C4—C5120.1 (3)N3—C16—C18122.1 (3)
C3—C4—H4120.0C15—C16—C18125.8 (3)
C5—C4—H4120.0C15—C17—H17A109.5
C6—C5—C4120.7 (3)C15—C17—H17B109.5
C6—C5—Br1120.2 (3)H17A—C17—H17B109.5
C4—C5—Br1119.0 (3)C15—C17—H17C109.5
C5—C6—C1120.3 (3)H17A—C17—H17C109.5
C5—C6—H6119.8H17B—C17—H17C109.5
C1—C6—H6119.8C16—C18—H18A109.5
N1—C7—C1122.4 (3)C16—C18—H18B109.5
N1—C7—H7118.8H18A—C18—H18B109.5
C1—C7—H7118.8C16—C18—H18C109.5
C13—C8—C9120.1 (3)H18A—C18—H18C109.5
C13—C8—N1123.3 (3)H18B—C18—H18C109.5
O3—S1—N2—C1456.9 (3)C9—C10—C11—S1176.4 (2)
O2—S1—N2—C14173.4 (2)O3—S1—C11—C1229.4 (3)
C11—S1—N2—C1458.5 (3)O2—S1—C11—C12162.7 (3)
C14—O4—N3—C160.5 (4)N2—S1—C11—C1285.3 (3)
C6—C1—C2—O1178.9 (3)O3—S1—C11—C10154.8 (3)
C7—C1—C2—O11.4 (5)O2—S1—C11—C1021.5 (3)
C6—C1—C2—C31.8 (5)N2—S1—C11—C1090.5 (3)
C7—C1—C2—C3179.3 (3)C10—C11—C12—C130.2 (5)
O1—C2—C3—C4178.3 (3)S1—C11—C12—C13175.5 (3)
C1—C2—C3—C42.3 (5)C11—C12—C13—C80.9 (5)
C2—C3—C4—C51.0 (5)C9—C8—C13—C120.7 (5)
C3—C4—C5—C60.9 (5)N1—C8—C13—C12178.7 (3)
C3—C4—C5—Br1177.9 (3)N3—O4—C14—C150.2 (4)
C4—C5—C6—C11.4 (5)N3—O4—C14—N2176.6 (3)
Br1—C5—C6—C1177.4 (2)S1—N2—C14—C15105.7 (4)
C7—C1—C6—C5177.5 (3)S1—N2—C14—O478.9 (3)
C2—C1—C6—C50.0 (5)O4—C14—C15—C160.1 (4)
C8—N1—C7—C1178.3 (3)N2—C14—C15—C16175.5 (4)
C6—C1—C7—N1178.1 (3)O4—C14—C15—C17179.7 (4)
C2—C1—C7—N10.6 (5)N2—C14—C15—C174.7 (7)
C7—N1—C8—C134.9 (5)O4—N3—C16—C150.6 (5)
C7—N1—C8—C9174.5 (3)O4—N3—C16—C18180.0 (4)
C13—C8—C9—C100.1 (5)C14—C15—C16—N30.5 (5)
N1—C8—C9—C10179.6 (3)C17—C15—C16—N3179.4 (4)
C8—C9—C10—C110.8 (5)C14—C15—C16—C18179.8 (5)
C9—C10—C11—C120.6 (5)C17—C15—C16—C180.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.80 (3)1.91 (3)2.577 (4)141 (3)
N2—H2···O1i0.75 (3)2.092.828 (4)171 (4)
C17—H17C···O1i0.962.583.248 (5)126
C7—H7···N3ii0.932.533.420 (4)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H16BrN3O4S
Mr450.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.3846 (10), 7.2235 (5), 16.5520 (11)
β (°) 93.201 (4)
V3)1836.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.18 × 0.14 × 0.10
Data collection
DiffractometerBruker KappaAPEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.685, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
18874, 3955, 2704
Rint0.058
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.01
No. of reflections3955
No. of parameters252
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.62

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.80 (3)1.91 (3)2.577 (4)141 (3)
N2—H2···O1i0.75 (3)2.092.828 (4)171 (4)
C17—H17C···O1i0.962.583.248 (5)126
C7—H7···N3ii0.932.533.420 (4)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer.

References

First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationChohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o648.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHämäläinen, R., Lehtinen, M. & Turpeinen, U. (1986). Arch. Pharm. 319, 415–420.  Google Scholar
First citationShad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds