organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(piperazinediium) benzene-1,2,4,5-tetra­carboxyl­ate hexa­hydrate

aFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Ave., Tehran, Iran, and bDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 6 August 2007; accepted 17 March 2008; online 29 March 2008)

The title compound, 2C4H12N22+·C10H2O84−·6H2O or (pipzH2)2(btc)·6H2O, was formed from the reaction between benzene-1,2,4,5-tetra­carboxylic acid (btcH4) as a proton donor and piperazine (pipz) as a proton acceptor. A variety of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, as well as C—H⋯π inter­actions, are present in the crystal structure. Two water O atoms are each disordered over two positions; for both the site occupany factors are ca 0.66 and 0.34.

Related literature

For related literature, see: Aghabozorg et al. (2006[Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174-o3176.], 2007[Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985-o2986.]); Arora & Pedireddi (2003[Arora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 68, 9177-9185.]); Biradha & Zaworotko (1998[Biradha, K. & Zaworotko, M. J. (1998). Cryst. Eng. 1, 67-78.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H12N22+·C10H2O84−·6H2O

  • Mr = 534.52

  • Triclinic, [P \overline 1]

  • a = 6.7420 (4) Å

  • b = 12.4636 (7) Å

  • c = 16.0100 (9) Å

  • α = 99.0920 (10)°

  • β = 90.3470 (10)°

  • γ = 105.5280 (10)°

  • V = 1278.27 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 (2) K

  • 0.23 × 0.21 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.982

  • 13995 measured reflections

  • 5839 independent reflections

  • 4805 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.159

  • S = 1.02

  • 5839 reflections

  • 323 parameters

  • H-atom parameters constrained

  • Δρmax = 2.20 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O5i 0.92 1.74 2.642 (2) 166
N1—H1D⋯O7ii 0.92 1.84 2.763 (2) 178
N2—H2C⋯O1iii 0.92 1.82 2.723 (2) 165
N2—H2D⋯O4 0.92 1.72 2.635 (2) 179
N3—H3C⋯O2iii 0.92 1.90 2.787 (2) 163
N3—H3D⋯O6 0.92 1.92 2.690 (2) 141
N4—H4C⋯O8iv 0.92 1.85 2.753 (2) 168
N4—H4D⋯O3 0.92 2.00 2.748 (2) 138
O1S—H1SA⋯O5SA 0.82 2.02 2.837 (2) 172
O1S—H1SA⋯O5SA 0.82 2.02 2.837 (2) 172
O1S—H1SB⋯O2v 0.82 1.95 2.763 (2) 172
O2S—H2SA⋯O4Siii 0.82 2.04 2.839 (2) 165
O2S—H2SB⋯O8vi 0.82 2.05 2.835 (2) 160
O3S—H3SA⋯O2S 0.82 1.90 2.722 (2) 176
O3S—H3SB⋯O5ii 0.82 2.00 2.817 (2) 171
O4S—H4SA⋯O1 0.82 1.95 2.772 (2) 175
O4S—H4SB⋯O3S 0.82 1.95 2.764 (2) 170
C5—H5A⋯O6SA 0.99 2.50 3.288 (4) 136
C5—H5B⋯O7iv 0.99 2.35 3.272 (3) 154
C7—H7A⋯O1iii 0.99 2.48 3.414 (3) 156
C8—H8B⋯O4Siii 0.99 2.51 3.299 (3) 137
C4—H4BCg1ii 0.99 2.64 3.518 (2) 148
C4—H4BCg1vi 0.99 2.64 3.518 (2) 148
Symmetry codes: (i) x-1, y-1, z; (ii) x, y-1, z; (iii) x-1, y, z; (iv) x+1, y, z; (v) -x+2, -y+1, -z+1; (vi) -x, -y+1, -z+1. Cg1 is the centroid of the C14,C15,C16,C14′,C15′,C16′ benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Continuing the path to synthesize proton transfer compounds, our team works have recently been focused on forming ion pairs between benzene-1,2,4,5-tetracarboxylic acid and various organic bases such as propane-1,3-diamine (Aghabozorg et al., 2007) and 1,10-phenanthroline (Aghabozorg et al., 2006). Due to its flat and symmetric structure and four proton donor sites, benzene-1,2,4,5-tetracarboxylic acid has a potential of constructing a supramolecular network. Supramolecular assemblies of 1,2,4,5-benzenetetracarboxylic acid, with aza donor molecules such as 1,10-phenanthroline, 1,7-phenanthroline, phenazine, 4-(N,N-dimethylamino)pyridine, 1,2-bis(4-pyridyl)ethene, and 1,2-bis(4- pyridyl)ethane have been synthesized and characterized by single-crystal X-ray diffraction methods (Arora et al., 2003). Among the known structures, cyclic network mediated supramolecular assemblies of benzene-1,2,4,5-tetracarboxylic acid with pyridine and some of its derivatives is quite significant (Biradha et al., 1998). The title compound has a structure constituted of one fully deprotonated benzene-1,2,4,5-tetracarboxylic acid unit, two doubly protonated piperazine units and six water molecules, two of which are disordered.

Various hydrogen bonds are formed between the named fragments, the water molecules are hydrogen bonded to each other and to carboxylate groups by O—H···O bonds, piperazinium ions are linked to carboxylate groups by N—H···O bonds, also the carbon atoms of piperaziniedium ion have C—H···O hydrogen bonds to oxygen atoms of water molecules and carboxyl groups. It is notable that the shortest hydrogen bond N2—H2D···O4 has the least deviation i.e. 1° from linearity. As shown in Fig. 2, in the cell packing there are six water molecules surrounded by cationic and anionic fragments. So if the structure expanded and the layers appeared, it can be seen a channel in which water molecules are trapped. This is previously observed for ion pairs of the tetraacid (Arora et al., 2003), in which the three-dimensional arrangement of the layers are stacked such that the cavities align to yield channels. It appears that the size and direction of water molecules plays an important role in constructing of channel structures in the supramolecular assemblies of acid.

As shown in Fig. 3, there are C—H···π interactions between C4—H4B bond of piperazinium ion and two benzene rings containing C14, C15 and C16 atoms with different symmetry codes [(x, y - 1, z), (-x, -y + 1, 1 - z)] for which the C—H···π distance and angle are 3.518 (2) Å and 148°, respectively.

Finally in Fig. 4, it can be seen how ribbons of constituents of the compound are arranged.

Related literature top

For related literature, see: Aghabozorg et al. (2006,2007); Arora & Pedireddi (2003); Biradha & Zaworotko (1998).

Experimental top

For synthesizing the title compoud, a solution of 2540 mg (10 mmol) benzene-1,2,4,5-tetracarboxylic acid in 10 ml tetrahydrofuran and another solution of 860 mg (10 mmol) of piperazine in 10 ml of the same solvent were prepared and mixed. By heating, a white precipitate was obtained. The colorless prisms of the compound were obtained by recrystallization from water solution.

Refinement top

The hydrogen atoms of NH2 groups and water molecules (with exception of disordered ones) were found in difference Fourier synthesis. The positions of the H atoms bonded to C were calculated. All hydrogen atoms were refined in isotropic approximation in riding model with with the Uiso(H) parameters equal to 1.2 Ueq(C), 1.2 Ueq(N) and 1.2 Ueq(O) where U(C), U(N), U(O) are respectively the equivalent thermal parameters of the carbon, nitrogen and oxygen atoms to which corresponding H atoms are bonded.

Two water molecules are disordered over two positions with site occupation factor ratios of 0.663 (9)/0.337 (9) and 0.666 (6)/0.334 (6). It was impossible to locate hydrogen atoms on disordered water molecules.

There are two residual electron density peaks of 2.20 and 1.84 e Å-3 at 1.05 and 0.78%A near O6SB and O6SA atoms, respectively. It was impossible to refine these peaks as disordered water molecules.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the ion pair (C4H12N2)24+(C10H2O8)4-.6H2O. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title compound, hydrogen bonds are shown as dashed lines and disordered atoms are omitted.
[Figure 3] Fig. 3. The C—H···π interaction between C4—H4B and benzene ring, distance from the H atom to the ring centroid is drawn as a dashed line.
[Figure 4] Fig. 4. Crystal packing of the title compound, Anions, cations and water molecules are shown in different colours.
Bis(piperazinediium) benzene-1,2,4,5-tetracarboxylate hexahydrate top
Crystal data top
2C4H12N22+·C10H2O84·6H2OZ = 2
Mr = 534.52F(000) = 572
Triclinic, P1Dx = 1.389 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7420 (4) ÅCell parameters from 614 reflections
b = 12.4636 (7) Åθ = 3–29°
c = 16.0100 (9) ŵ = 0.12 mm1
α = 99.092 (1)°T = 100 K
β = 90.347 (1)°Prism, colorless
γ = 105.528 (1)°0.23 × 0.21 × 0.17 mm
V = 1278.27 (13) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5839 independent reflections
Radiation source: fine-focus sealed tube4805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.970, Tmax = 0.982k = 1616
13995 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: mixed
wR(F2) = 0.159H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.07P)2 + 2P]
where P = (Fo2 + 2Fc2)/3
5839 reflections(Δ/σ)max < 0.001
323 parametersΔρmax = 2.20 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
2C4H12N22+·C10H2O84·6H2Oγ = 105.528 (1)°
Mr = 534.52V = 1278.27 (13) Å3
Triclinic, P1Z = 2
a = 6.7420 (4) ÅMo Kα radiation
b = 12.4636 (7) ŵ = 0.12 mm1
c = 16.0100 (9) ÅT = 100 K
α = 99.092 (1)°0.23 × 0.21 × 0.17 mm
β = 90.347 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5839 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4805 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.982Rint = 0.027
13995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.02Δρmax = 2.20 e Å3
5839 reflectionsΔρmin = 0.60 e Å3
323 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.1642 (3)0.13752 (14)0.70314 (11)0.0148 (4)
H1C0.28120.11730.66800.018*
H1D0.12270.07350.70580.018*
N20.1462 (3)0.30353 (14)0.81088 (11)0.0141 (3)
H2C0.10560.36770.80770.017*
H2D0.26320.32390.84600.017*
C10.2126 (3)0.18509 (18)0.78933 (14)0.0179 (4)
H1A0.31950.12740.81220.022*
H1B0.26740.25060.78620.022*
C20.0202 (3)0.22196 (18)0.84771 (13)0.0163 (4)
H2A0.05150.25800.90390.020*
H2B0.02670.15520.85550.020*
C30.1944 (3)0.25478 (18)0.72488 (13)0.0158 (4)
H3A0.24590.18820.72820.019*
H3B0.30320.31140.70180.019*
C40.0012 (3)0.22030 (17)0.66729 (13)0.0150 (4)
H4A0.04540.28770.66150.018*
H4B0.03120.18600.61030.018*
N30.3335 (3)0.76396 (16)0.71554 (12)0.0178 (4)
H3C0.22660.72160.74190.021*
H3D0.28850.81940.69600.021*
N40.6573 (3)0.65653 (16)0.73462 (11)0.0171 (4)
H4C0.76310.69950.70820.021*
H4D0.70390.60160.75410.021*
C50.5109 (3)0.81764 (19)0.77813 (14)0.0194 (4)
H5A0.46480.86190.82740.023*
H5B0.61990.87010.75170.023*
C60.5976 (3)0.7297 (2)0.80781 (14)0.0201 (4)
H6A0.72000.76750.84650.024*
H6B0.49330.68230.83960.024*
C70.4797 (3)0.60208 (18)0.67239 (14)0.0185 (4)
H7A0.37120.54960.69910.022*
H7B0.52570.55770.62320.022*
C80.3916 (3)0.69016 (19)0.64249 (14)0.0185 (4)
H8A0.49500.73710.61010.022*
H8B0.26840.65210.60430.022*
O11.0470 (2)0.48871 (13)0.77274 (9)0.0169 (3)
O21.0471 (2)0.66537 (12)0.82508 (9)0.0148 (3)
O30.6122 (2)0.48861 (14)0.83124 (10)0.0204 (3)
O40.4782 (2)0.36214 (14)0.91348 (10)0.0233 (4)
C91.1854 (3)0.55782 (16)0.97230 (12)0.0115 (4)
H9A1.31290.59730.95300.014*
C101.0075 (3)0.53211 (15)0.91992 (12)0.0100 (4)
C110.8194 (3)0.47309 (16)0.94750 (12)0.0109 (4)
C121.0312 (3)0.56437 (16)0.83241 (12)0.0113 (4)
C130.6225 (3)0.44016 (17)0.89245 (12)0.0131 (4)
O50.5182 (2)1.11219 (12)0.59735 (10)0.0182 (3)
O60.3881 (2)0.94917 (13)0.64244 (10)0.0197 (3)
O70.0392 (2)0.94673 (12)0.71610 (9)0.0152 (3)
O80.0657 (2)0.77912 (12)0.63610 (9)0.0145 (3)
C140.1873 (3)1.06607 (16)0.47969 (12)0.0108 (4)
H14A0.31611.11130.46570.013*
C150.1797 (3)1.00875 (16)0.54829 (12)0.0105 (4)
C160.0101 (3)0.94157 (16)0.56864 (12)0.0104 (4)
C170.3760 (3)1.02308 (17)0.60026 (12)0.0121 (4)
C180.0362 (3)0.88465 (17)0.64644 (12)0.0116 (4)
O1S0.8540 (4)0.15919 (16)0.03938 (14)0.0422 (5)
H1SA0.74410.16450.02070.051*
H1SB0.88980.21480.07660.051*
O2S0.2052 (3)0.36605 (15)0.52006 (11)0.0276 (4)
H2SA0.12740.40490.53580.033*
H2SB0.13640.32660.47830.033*
O3S0.5686 (3)0.33661 (14)0.57282 (12)0.0276 (4)
H3SA0.45660.34180.55650.033*
H3SB0.54330.26940.57630.033*
O4S0.9503 (3)0.49208 (14)0.60483 (10)0.0234 (4)
H4SA0.97220.49230.65530.028*
H4SB0.83290.45180.59220.028*
O5SA0.4646 (6)0.1816 (3)0.0094 (3)0.0453 (12)*0.663 (9)
O6SA0.2705 (5)1.0084 (3)0.8494 (2)0.0431 (10)*0.666 (6)
O5SB0.5326 (8)0.1596 (4)0.0451 (4)0.0246 (18)*0.337 (9)
O6SB0.8058 (10)0.9423 (5)0.9689 (4)0.0419 (19)*0.334 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0127 (8)0.0119 (8)0.0179 (9)0.0019 (6)0.0054 (6)0.0000 (6)
N20.0115 (8)0.0146 (8)0.0145 (8)0.0011 (6)0.0032 (6)0.0012 (6)
C10.0127 (9)0.0178 (10)0.0215 (10)0.0020 (8)0.0012 (8)0.0017 (8)
C20.0164 (10)0.0172 (10)0.0144 (9)0.0025 (8)0.0003 (8)0.0038 (8)
C30.0131 (9)0.0173 (10)0.0163 (10)0.0030 (8)0.0007 (7)0.0023 (8)
C40.0180 (10)0.0130 (9)0.0135 (9)0.0035 (8)0.0020 (7)0.0019 (7)
N30.0121 (8)0.0212 (9)0.0236 (9)0.0048 (7)0.0015 (7)0.0137 (7)
N40.0123 (8)0.0236 (9)0.0200 (9)0.0068 (7)0.0031 (7)0.0133 (7)
C50.0163 (10)0.0213 (11)0.0205 (10)0.0024 (8)0.0016 (8)0.0082 (8)
C60.0148 (10)0.0303 (12)0.0172 (10)0.0063 (9)0.0003 (8)0.0094 (9)
C70.0141 (10)0.0201 (10)0.0224 (11)0.0034 (8)0.0007 (8)0.0088 (8)
C80.0143 (10)0.0240 (11)0.0184 (10)0.0032 (8)0.0008 (8)0.0103 (8)
O10.0226 (8)0.0186 (7)0.0100 (7)0.0064 (6)0.0002 (6)0.0027 (5)
O20.0152 (7)0.0153 (7)0.0152 (7)0.0032 (5)0.0020 (5)0.0080 (5)
O30.0152 (7)0.0261 (8)0.0202 (8)0.0006 (6)0.0046 (6)0.0138 (6)
O40.0137 (7)0.0287 (9)0.0237 (8)0.0066 (6)0.0078 (6)0.0154 (7)
C90.0104 (9)0.0118 (9)0.0125 (9)0.0025 (7)0.0007 (7)0.0037 (7)
C100.0117 (9)0.0095 (8)0.0095 (8)0.0032 (7)0.0007 (7)0.0031 (7)
C110.0110 (9)0.0102 (8)0.0117 (9)0.0025 (7)0.0009 (7)0.0027 (7)
C120.0064 (8)0.0153 (9)0.0117 (9)0.0010 (7)0.0013 (7)0.0042 (7)
C130.0109 (9)0.0155 (9)0.0127 (9)0.0026 (7)0.0007 (7)0.0038 (7)
O50.0132 (7)0.0163 (7)0.0238 (8)0.0008 (6)0.0068 (6)0.0082 (6)
O60.0133 (7)0.0232 (8)0.0260 (8)0.0039 (6)0.0004 (6)0.0162 (6)
O70.0181 (7)0.0159 (7)0.0118 (7)0.0040 (6)0.0007 (5)0.0042 (5)
O80.0153 (7)0.0127 (7)0.0169 (7)0.0040 (5)0.0023 (5)0.0066 (5)
C140.0093 (8)0.0107 (8)0.0126 (9)0.0022 (7)0.0010 (7)0.0034 (7)
C150.0092 (9)0.0105 (8)0.0121 (9)0.0028 (7)0.0002 (7)0.0023 (7)
C160.0129 (9)0.0095 (8)0.0098 (8)0.0041 (7)0.0009 (7)0.0023 (7)
C170.0109 (9)0.0157 (9)0.0107 (9)0.0049 (7)0.0010 (7)0.0033 (7)
C180.0066 (8)0.0154 (9)0.0142 (9)0.0027 (7)0.0003 (7)0.0073 (7)
O1S0.0552 (13)0.0269 (10)0.0427 (12)0.0156 (9)0.0075 (10)0.0071 (8)
O2S0.0277 (9)0.0299 (9)0.0262 (9)0.0132 (7)0.0097 (7)0.0012 (7)
O3S0.0208 (8)0.0188 (8)0.0422 (10)0.0022 (6)0.0072 (7)0.0076 (7)
O4S0.0250 (8)0.0263 (8)0.0159 (7)0.0003 (7)0.0050 (6)0.0069 (6)
Geometric parameters (Å, º) top
N1—C11.488 (3)C7—H7B0.9900
N1—C41.489 (3)C8—H8A0.9900
N1—H1C0.9200C8—H8B0.9900
N1—H1D0.9200O1—C121.258 (2)
N2—C31.489 (3)O2—C121.259 (2)
N2—C21.492 (3)O3—C131.241 (2)
N2—H2C0.9200O4—C131.268 (2)
N2—H2D0.9200C9—C101.393 (3)
C1—C21.516 (3)C9—C11i1.396 (3)
C1—H1A0.9900C9—H9A0.9500
C1—H1B0.9900C10—C111.398 (3)
C2—H2A0.9900C10—C121.515 (3)
C2—H2B0.9900C11—C9i1.396 (3)
C3—C41.514 (3)C11—C131.512 (3)
C3—H3A0.9900O5—C171.266 (2)
C3—H3B0.9900O6—C171.244 (2)
C4—H4A0.9900O7—C181.256 (2)
C4—H4B0.9900O8—C181.260 (2)
N3—C81.492 (3)C14—C16ii1.392 (3)
N3—C51.493 (3)C14—C151.396 (3)
N3—H3C0.9200C14—H14A0.9500
N3—H3D0.9200C15—C161.401 (3)
N4—C71.491 (3)C15—C171.513 (3)
N4—C61.494 (3)C16—C14ii1.392 (3)
N4—H4C0.9200C16—C181.517 (3)
N4—H4D0.9200O1S—H1SA0.8201
C5—C61.508 (3)O1S—H1SB0.8200
C5—H5A0.9900O2S—H2SA0.8197
C5—H5B0.9900O2S—H2SB0.8206
C6—H6A0.9900O3S—H3SA0.8199
C6—H6B0.9900O3S—H3SB0.8201
C7—C81.516 (3)O4S—H4SA0.8201
C7—H7A0.9900O4S—H4SB0.8201
C1—N1—C4111.54 (15)H5A—C5—H5B108.0
C1—N1—H1C109.3N4—C6—C5111.00 (17)
C4—N1—H1C109.3N4—C6—H6A109.4
C1—N1—H1D109.3C5—C6—H6A109.4
C4—N1—H1D109.3N4—C6—H6B109.4
H1C—N1—H1D108.0C5—C6—H6B109.4
C3—N2—C2111.88 (16)H6A—C6—H6B108.0
C3—N2—H2C109.2N4—C7—C8110.76 (18)
C2—N2—H2C109.2N4—C7—H7A109.5
C3—N2—H2D109.2C8—C7—H7A109.5
C2—N2—H2D109.2N4—C7—H7B109.5
H2C—N2—H2D107.9C8—C7—H7B109.5
N1—C1—C2110.14 (17)H7A—C7—H7B108.1
N1—C1—H1A109.6N3—C8—C7111.08 (17)
C2—C1—H1A109.6N3—C8—H8A109.4
N1—C1—H1B109.6C7—C8—H8A109.4
C2—C1—H1B109.6N3—C8—H8B109.4
H1A—C1—H1B108.1C7—C8—H8B109.4
N2—C2—C1109.93 (16)H8A—C8—H8B108.0
N2—C2—H2A109.7C10—C9—C11i121.56 (18)
C1—C2—H2A109.7C10—C9—H9A119.2
N2—C2—H2B109.7C11i—C9—H9A119.2
C1—C2—H2B109.7C9—C10—C11119.63 (17)
H2A—C2—H2B108.2C9—C10—C12117.35 (17)
N2—C3—C4109.19 (16)C11—C10—C12122.92 (17)
N2—C3—H3A109.8C9i—C11—C10118.81 (17)
C4—C3—H3A109.8C9i—C11—C13119.25 (17)
N2—C3—H3B109.8C10—C11—C13121.93 (17)
C4—C3—H3B109.8O1—C12—O2124.58 (18)
H3A—C3—H3B108.3O1—C12—C10116.78 (17)
N1—C4—C3109.85 (16)O2—C12—C10118.47 (17)
N1—C4—H4A109.7O3—C13—O4124.84 (18)
C3—C4—H4A109.7O3—C13—C11119.64 (17)
N1—C4—H4B109.7O4—C13—C11115.51 (17)
C3—C4—H4B109.7C16ii—C14—C15121.44 (17)
H4A—C4—H4B108.2C16ii—C14—H14A119.3
C8—N3—C5111.59 (16)C15—C14—H14A119.3
C8—N3—H3C109.3C14—C15—C16119.25 (17)
C5—N3—H3C109.3C14—C15—C17119.16 (17)
C8—N3—H3D109.3C16—C15—C17121.57 (17)
C5—N3—H3D109.3C14ii—C16—C15119.31 (17)
H3C—N3—H3D108.0C14ii—C16—C18117.57 (17)
C7—N4—C6111.34 (16)C15—C16—C18122.87 (17)
C7—N4—H4C109.4O6—C17—O5124.55 (18)
C6—N4—H4C109.4O6—C17—C15119.42 (17)
C7—N4—H4D109.4O5—C17—C15116.03 (16)
C6—N4—H4D109.4O7—C18—O8125.13 (18)
H4C—N4—H4D108.0O7—C18—C16116.50 (17)
N3—C5—C6110.95 (18)O8—C18—C16118.21 (17)
N3—C5—H5A109.4H1SA—O1S—H1SB102.8
C6—C5—H5A109.4H2SA—O2S—H2SB98.8
N3—C5—H5B109.4H3SA—O3S—H3SB102.2
C6—C5—H5B109.4H4SA—O4S—H4SB106.6
C4—N1—C1—C257.4 (2)C9—C10—C12—O279.7 (2)
C3—N2—C2—C157.4 (2)C11—C10—C12—O2103.9 (2)
N1—C1—C2—N255.7 (2)C9i—C11—C13—O3162.78 (19)
C2—N2—C3—C458.4 (2)C10—C11—C13—O318.3 (3)
C1—N1—C4—C358.7 (2)C9i—C11—C13—O417.7 (3)
N2—C3—C4—N157.9 (2)C10—C11—C13—O4161.22 (19)
C8—N3—C5—C655.5 (2)C16ii—C14—C15—C160.4 (3)
C7—N4—C6—C556.4 (2)C16ii—C14—C15—C17178.07 (17)
N3—C5—C6—N455.7 (2)C14—C15—C16—C14ii0.4 (3)
C6—N4—C7—C856.0 (2)C17—C15—C16—C14ii178.04 (17)
C5—N3—C8—C755.3 (2)C14—C15—C16—C18174.45 (18)
N4—C7—C8—N355.3 (2)C17—C15—C16—C183.9 (3)
C11i—C9—C10—C110.6 (3)C14—C15—C17—O6157.34 (19)
C11i—C9—C10—C12177.06 (17)C16—C15—C17—O624.3 (3)
C9—C10—C11—C9i0.6 (3)C14—C15—C17—O522.9 (3)
C12—C10—C11—C9i176.84 (17)C16—C15—C17—O5155.48 (18)
C9—C10—C11—C13178.33 (17)C14ii—C16—C18—O797.7 (2)
C12—C10—C11—C132.1 (3)C15—C16—C18—O776.5 (2)
C9—C10—C12—O195.7 (2)C14ii—C16—C18—O878.0 (2)
C11—C10—C12—O180.6 (2)C15—C16—C18—O8107.8 (2)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O5iii0.921.742.642 (2)166
N1—H1D···O7iv0.921.842.763 (2)178
N2—H2C···O1v0.921.822.723 (2)165
N2—H2D···O40.921.722.635 (2)179
N3—H3C···O2v0.921.902.787 (2)163
N3—H3D···O60.921.922.690 (2)141
N4—H4C···O8vi0.921.852.753 (2)168
N4—H4D···O30.922.002.748 (2)138
O1S—H1SA···O5SA0.822.022.837 (2)172
O1S—H1SA···O5SA0.822.022.837 (2)172
O1S—H1SB···O2vii0.821.952.763 (2)172
O2S—H2SA···O4Sv0.822.042.839 (2)165
O2S—H2SB···O8viii0.822.052.835 (2)160
O3S—H3SA···O2S0.821.902.722 (2)176
O3S—H3SB···O5iv0.822.002.817 (2)171
O4S—H4SA···O10.821.952.772 (2)175
O4S—H4SB···O3S0.821.952.764 (2)170
C5—H5A···O6SA0.992.503.288 (4)136
C5—H5B···O7vi0.992.353.272 (3)154
C7—H7A···O1v0.992.483.414 (3)156
C8—H8B···O4Sv0.992.513.299 (3)137
C4—H4B···Cg1iv0.992.643.518 (2)148
C4—H4B···Cg1viii0.992.643.518 (2)148
Symmetry codes: (iii) x1, y1, z; (iv) x, y1, z; (v) x1, y, z; (vi) x+1, y, z; (vii) x+2, y+1, z+1; (viii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C4H12N22+·C10H2O84·6H2O
Mr534.52
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.7420 (4), 12.4636 (7), 16.0100 (9)
α, β, γ (°)99.092 (1), 90.347 (1), 105.528 (1)
V3)1278.27 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.23 × 0.21 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.970, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
13995, 5839, 4805
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.159, 1.02
No. of reflections5839
No. of parameters323
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.20, 0.60

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O5i0.921.7392.642 (2)166
N1—H1D···O7ii0.921.8442.763 (2)178
N2—H2C···O1iii0.921.8242.723 (2)165
N2—H2D···O40.921.7152.635 (2)179
N3—H3C···O2iii0.921.8952.787 (2)163
N3—H3D···O60.921.9152.690 (2)141
N4—H4C···O8iv0.921.8472.753 (2)168
N4—H4D···O30.921.9962.748 (2)138
O1S—H1SA···O5SA0.822.0222.837 (2)172
O1S—H1SA···O5SA0.822.0222.837 (2)172
O1S—H1SB···O2v0.821.9492.763 (2)172
O2S—H2SA···O4Siii0.822.0392.839 (2)165
O2S—H2SB···O8vi0.822.0522.835 (2)160
O3S—H3SA···O2S0.821.9032.722 (2)176
O3S—H3SB···O5ii0.822.0032.817 (2)171
O4S—H4SA···O10.821.9542.772 (2)175
O4S—H4SB···O3S0.821.9542.764 (2)170
C5—H5A···O6SA0.992.5003.288 (4)136
C5—H5B···O7iv0.992.3503.272 (3)154
C7—H7A···O1iii0.992.4803.414 (3)156
C8—H8B···O4Siii0.992.5103.299 (3)137
C4—H4B···Cg1ii0.992.643.518 (2)148
C4—H4B···Cg1vi0.992.643.518 (2)148
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x+2, y+1, z+1; (vi) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge Tarbiat Moallem University for supporting this work.

References

First citationAghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174–o3176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985–o2986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 68, 9177–9185.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBiradha, K. & Zaworotko, M. J. (1998). Cryst. Eng. 1, 67–78.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds