organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3aS,9bR)-Methyl 1-methyl-3-phenyl-1,2,3,3a,4,9b-hexa­hydro­chromeno[4,3-b]pyrrole-3a-carboxyl­ate

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 16 February 2008; accepted 24 February 2008; online 5 March 2008)

In the title compound, C20H21NO3, the heterocyclic six-membered ring adopts a half-chair conformation and the pyrrolidine ring adopts an envelope conformation. The mol­ecular conformation is stabilized by C—H⋯O and C—H⋯N inter­actions.

Related literature

For related literature, see: Brockmann & Tour (1995[Brockmann, T. W. & Tour, J. M. (1995). J. Am. Chem. Soc. 117, 4437-4447.]); Caine (1993[Caine, B. (1993). Science, 260, 1814.]); Carlson (1993[Carlson, J. (1993). Neur. Transm. 94, 11.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Di Natale et al. (1998[Di Natale, C., Paolesse, R., Macagnano, A., Mantini, A., Goletti, C., Tarizzo, E. & D'Amico, A. (1998). Sens. Actuators B, 50, 162-168.]); Nirmala et al. (2008[Nirmala, S., Kamala, E. T. S., Sudha, L., Ramesh, E. & Raghunathan, R. (2008). Acta Cryst. E64, o73.]); Sobral & Rocha Gonsalves (2001a[Sobral, A. J. F. N. & Rocha Gonsalves, A. M. d′A. (2001a). J. Porphyrins Phthalocyanines, 5, 428-430.],b[Sobral, A. J. F. N. & Rocha Gonsalves, A. M. d′A. (2001b). J. Porphyrins Phthalocyanines, 5, 861-866.]); Sokoloff et al. (1990[Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147.]); Suslick et al. (1992[Suslick, K. S., Chen, C.-T., Meredith, G. R. & Cheng, L.-T. (1992). J. Am. Chem. Soc. 114, 6928-6930.]); Tidey (1992[Tidey, J. W. (1992). Behav. Pharm., 3, 553.]); Wilner (1985[Wilner, P. (1985). Clinical Neuropharm. 18, Suppl. 1, 549-556.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21NO3

  • Mr = 323.38

  • Triclinic, [P \overline 1]

  • a = 7.9557 (4) Å

  • b = 10.2575 (7) Å

  • c = 10.2993 (8) Å

  • α = 79.626 (5)°

  • β = 87.361 (5)°

  • γ = 88.744 (4)°

  • V = 825.79 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.12 mm

Data collection
  • Bruker Kappa APEX2 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.983, Tmax = 0.990

  • 18704 measured reflections

  • 4126 independent reflections

  • 3051 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.143

  • S = 1.03

  • 4126 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯N1 0.97 2.55 2.887 (2) 100
C12—H12⋯O2 0.98 2.43 2.781 (2) 101

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2/SAINT (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT/XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993), aggressiveness (Tidey, 1992), parkinson's disease (Carlson, 1993), psychoses, memory disorders (Sokoloff et al., 1990), anxiety and depression (Wilner, 1985). Pyrroles are also very useful precursors in porphyrin synthesis (Sobral & Rocha Gonsalves, 2001a, Sobral & Rocha Gonsalves, 2001b), and as monomers for polymer chemistry (Brockmann & Tour, 1995), with applications ranging from non – linear optical materials (Suslick et al., 1992) to electronic noses (Di Natale et al., 1998).

The bond lengths, bond angles and torsion angles of the title compound are comparable with the similar structure solved earlier (Nirmala et al., 2008). The sum of bond angles around atom N1(331.7°) is in accordance with sp3 hybridization. The aromatic six-membered rings are oriented at an angle of 72.9 (5)° with respect to each other. The six-membered heterocyclic ring of the chromenopyrrole moiety adopts a half-chair conformation with puckering parameters of q2 = 0.357 (1) Å, q3 = -0.314 (1) Å and ϕ= -157.9 (2)° (Cremer and Pople, 1975). Atom C4 deviates by 0.631 Å from the least – square plane through the remaining five atoms. The pyrrolidine ring adopts an envelope conformation with puckering parameters of q2 = 0.438 (1) Å and ϕ = -39.8 (2)° (Cremer and Pople, 1975). Atom C12 deviates by 0.659 (4) Å from the least – square plane through the remaining four atoms.

No significant intermolecular ππ interactions are observed between two phenyl rings. Their centroids are separated by 3.9165 (1) Å. The molecular conformation is stabilized C— H···O and C— H···N interactions.

Related literature top

For related literature, see: Brockmann & Tour (1995); Caine (1993); Carlson (1993); Cremer & Pople (1975); Di Natale, Paolesse, Macagnano, Mantini, Goletti, Tarizzo & D'Amico (1998); Nirmala et al. (2008); Sobral & Rocha Gonsalves (2001a,b); Sokoloff et al. (1990); Suslick et al. (1992); Tidey (1992); Wilner (1985).

Experimental top

A solution of (Z)-methyl 2-((2 - formylphenoxy) methyl)-3- phenylacrylate (1 mmol), sarcosine (1 mmol), in anhydrous methanol (10 ml), was refluxed. Completion of the reaction was evidenced by TLC analysis. The solvent was removed in vacuum. The crude product was subjected to column chromatography on silica gel (100–200 mesh) using petroleum ether – ethyl acetate (7:3) as the eluent. Compound was recrystallized from methanol.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H respectively, and Uiso(H) = 1.5Ueq(C) for methyl H, and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids
[Figure 2] Fig. 2. The packing of the molecules viewed down the a axis.
(3aS,9bR)-Methyl 1-methyl-3-phenyl-1,2,3,3a,4,9 b-hexahydrochromeno[4,3-b]pyrrole-3a-carboxylate top
Crystal data top
C20H21NO3Z = 2
Mr = 323.38F(000) = 344
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9557 (4) ÅCell parameters from 5117 reflections
b = 10.2575 (7) Åθ = 2.6–28.1°
c = 10.2993 (8) ŵ = 0.09 mm1
α = 79.626 (5)°T = 293 K
β = 87.361 (5)°Prism, colourless
γ = 88.744 (4)°0.20 × 0.20 × 0.12 mm
V = 825.79 (9) Å3
Data collection top
Bruker KappaAPEX2
diffractometer
4126 independent reflections
Radiation source: fine-focus sealed tube3051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1010
Tmin = 0.983, Tmax = 0.990k = 1313
18704 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.1492P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4126 reflectionsΔρmax = 0.23 e Å3
218 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (5)
Crystal data top
C20H21NO3γ = 88.744 (4)°
Mr = 323.38V = 825.79 (9) Å3
Triclinic, P1Z = 2
a = 7.9557 (4) ÅMo Kα radiation
b = 10.2575 (7) ŵ = 0.09 mm1
c = 10.2993 (8) ÅT = 293 K
α = 79.626 (5)°0.20 × 0.20 × 0.12 mm
β = 87.361 (5)°
Data collection top
Bruker KappaAPEX2
diffractometer
4126 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3051 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.990Rint = 0.030
18704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
4126 reflectionsΔρmin = 0.21 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.58609 (18)0.33276 (15)0.84198 (19)0.0553 (4)
H2A0.63210.31610.92910.066*
H2B0.66510.29890.78110.066*
C30.41543 (16)0.26557 (14)0.84521 (15)0.0396 (3)
H30.42050.21490.77300.047*
C40.29028 (15)0.38426 (13)0.80439 (13)0.0347 (3)
C50.22346 (17)0.44251 (15)0.92274 (14)0.0416 (3)
H5A0.15120.37860.97850.050*
H5B0.31700.45950.97420.050*
C60.19789 (18)0.65300 (15)0.78280 (15)0.0437 (3)
C70.1233 (2)0.77835 (17)0.7635 (2)0.0589 (5)
H70.03570.79750.82030.071*
C80.1789 (3)0.87321 (18)0.6611 (2)0.0681 (5)
H80.12990.95740.64940.082*
C90.3069 (3)0.84568 (17)0.5748 (2)0.0649 (5)
H90.34380.91060.50490.078*
C100.3803 (2)0.72004 (15)0.59337 (16)0.0496 (4)
H100.46550.70100.53450.060*
C110.32870 (17)0.62246 (13)0.69811 (14)0.0378 (3)
C120.40618 (15)0.48584 (13)0.71947 (13)0.0342 (3)
H120.43350.45900.63420.041*
C130.36182 (15)0.17036 (13)0.96874 (14)0.0366 (3)
C140.4024 (2)0.18592 (16)1.09382 (16)0.0493 (4)
H140.46790.25711.10410.059*
C150.3472 (2)0.09747 (18)1.20362 (17)0.0581 (4)
H150.37620.10921.28720.070*
C160.2497 (2)0.00770 (16)1.19071 (18)0.0549 (4)
H160.21210.06691.26520.066*
C170.2083 (2)0.02486 (16)1.06844 (19)0.0545 (4)
H170.14170.09571.05900.065*
C180.26509 (19)0.06275 (14)0.95821 (16)0.0457 (4)
H180.23760.04910.87490.055*
C190.70301 (18)0.53858 (16)0.72905 (17)0.0475 (4)
H19A0.67920.63140.70170.071*
H19B0.73140.49950.65280.071*
H19C0.79580.52740.78660.071*
C200.14592 (16)0.33900 (14)0.73480 (15)0.0402 (3)
C210.0540 (3)0.2860 (3)0.5379 (2)0.0892 (8)
H21A0.09320.28780.44800.134*
H21B0.04600.33990.53940.134*
H21C0.02930.19650.57900.134*
N10.55638 (13)0.47446 (11)0.79846 (12)0.0380 (3)
O10.13061 (13)0.56333 (11)0.88343 (11)0.0525 (3)
O20.18247 (17)0.33696 (15)0.60870 (12)0.0735 (4)
O30.01458 (14)0.30253 (14)0.78731 (13)0.0663 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0314 (7)0.0475 (9)0.0774 (12)0.0001 (6)0.0029 (7)0.0128 (8)
C30.0345 (6)0.0368 (7)0.0449 (8)0.0008 (5)0.0034 (5)0.0021 (6)
C40.0303 (6)0.0362 (7)0.0352 (7)0.0009 (5)0.0013 (5)0.0008 (5)
C50.0375 (7)0.0475 (8)0.0367 (7)0.0044 (6)0.0044 (5)0.0014 (6)
C60.0445 (7)0.0421 (8)0.0459 (8)0.0049 (6)0.0105 (6)0.0102 (6)
C70.0607 (10)0.0490 (9)0.0705 (12)0.0145 (8)0.0175 (8)0.0182 (8)
C80.0816 (13)0.0407 (9)0.0842 (14)0.0108 (8)0.0357 (11)0.0102 (9)
C90.0842 (13)0.0419 (9)0.0646 (11)0.0123 (8)0.0285 (10)0.0087 (8)
C100.0588 (9)0.0441 (8)0.0440 (8)0.0119 (7)0.0114 (7)0.0008 (6)
C110.0410 (7)0.0357 (7)0.0369 (7)0.0036 (5)0.0096 (5)0.0045 (5)
C120.0335 (6)0.0364 (7)0.0319 (7)0.0044 (5)0.0026 (5)0.0044 (5)
C130.0317 (6)0.0327 (6)0.0436 (8)0.0012 (5)0.0033 (5)0.0023 (5)
C140.0550 (9)0.0426 (8)0.0505 (9)0.0078 (6)0.0114 (7)0.0055 (7)
C150.0734 (11)0.0560 (10)0.0427 (9)0.0043 (8)0.0094 (8)0.0016 (7)
C160.0571 (9)0.0445 (9)0.0544 (10)0.0041 (7)0.0048 (7)0.0118 (7)
C170.0491 (8)0.0374 (8)0.0730 (12)0.0097 (6)0.0068 (8)0.0034 (7)
C180.0488 (8)0.0376 (7)0.0502 (9)0.0050 (6)0.0110 (6)0.0039 (6)
C190.0357 (7)0.0492 (8)0.0560 (9)0.0088 (6)0.0068 (6)0.0059 (7)
C200.0356 (6)0.0371 (7)0.0452 (8)0.0037 (5)0.0020 (6)0.0007 (6)
C210.0921 (15)0.122 (2)0.0567 (12)0.0647 (15)0.0106 (11)0.0160 (12)
N10.0288 (5)0.0415 (6)0.0416 (6)0.0025 (4)0.0015 (4)0.0022 (5)
O10.0496 (6)0.0525 (6)0.0521 (7)0.0144 (5)0.0101 (5)0.0058 (5)
O20.0680 (8)0.1103 (11)0.0448 (7)0.0518 (8)0.0016 (6)0.0162 (7)
O30.0368 (6)0.0932 (10)0.0680 (8)0.0181 (6)0.0043 (5)0.0116 (7)
Geometric parameters (Å, º) top
C2—N11.4593 (19)C11—C121.5020 (18)
C2—C31.532 (2)C12—N11.4672 (17)
C2—H2A0.9700C12—H120.9800
C2—H2B0.9700C13—C141.380 (2)
C3—C131.5083 (19)C13—C181.382 (2)
C3—C41.5657 (17)C14—C151.377 (2)
C3—H30.9800C14—H140.9300
C4—C201.5058 (19)C15—C161.371 (3)
C4—C51.5211 (19)C15—H150.9300
C4—C121.5298 (17)C16—C171.358 (3)
C5—O11.4326 (16)C16—H160.9300
C5—H5A0.9700C17—C181.380 (2)
C5—H5B0.9700C17—H170.9300
C6—O11.3542 (19)C18—H180.9300
C6—C71.389 (2)C19—N11.4464 (17)
C6—C111.394 (2)C19—H19A0.9600
C7—C81.364 (3)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C8—C91.379 (3)C20—O31.1901 (17)
C8—H80.9300C20—O21.3215 (19)
C9—C101.388 (2)C21—O21.442 (2)
C9—H90.9300C21—H21A0.9600
C10—C111.386 (2)C21—H21B0.9600
C10—H100.9300C21—H21C0.9600
N1—C2—C3106.72 (11)N1—C12—C4101.59 (10)
N1—C2—H2A110.4C11—C12—C4111.76 (10)
C3—C2—H2A110.4N1—C12—H12110.0
N1—C2—H2B110.4C11—C12—H12110.0
C3—C2—H2B110.4C4—C12—H12110.0
H2A—C2—H2B108.6C14—C13—C18117.52 (13)
C13—C3—C2118.02 (13)C14—C13—C3123.24 (13)
C13—C3—C4114.69 (10)C18—C13—C3119.23 (13)
C2—C3—C4103.54 (11)C15—C14—C13120.87 (15)
C13—C3—H3106.6C15—C14—H14119.6
C2—C3—H3106.6C13—C14—H14119.6
C4—C3—H3106.6C16—C15—C14120.52 (16)
C20—C4—C5109.80 (11)C16—C15—H15119.7
C20—C4—C12115.64 (11)C14—C15—H15119.7
C5—C4—C12108.18 (11)C17—C16—C15119.55 (15)
C20—C4—C3109.63 (11)C17—C16—H16120.2
C5—C4—C3112.03 (11)C15—C16—H16120.2
C12—C4—C3101.36 (10)C16—C17—C18120.03 (15)
O1—C5—C4111.89 (11)C16—C17—H17120.0
O1—C5—H5A109.2C18—C17—H17120.0
C4—C5—H5A109.2C17—C18—C13121.50 (15)
O1—C5—H5B109.2C17—C18—H18119.3
C4—C5—H5B109.2C13—C18—H18119.3
H5A—C5—H5B107.9N1—C19—H19A109.5
O1—C6—C7115.99 (14)N1—C19—H19B109.5
O1—C6—C11123.19 (12)H19A—C19—H19B109.5
C7—C6—C11120.76 (15)N1—C19—H19C109.5
C8—C7—C6119.85 (17)H19A—C19—H19C109.5
C8—C7—H7120.1H19B—C19—H19C109.5
C6—C7—H7120.1O3—C20—O2122.50 (14)
C7—C8—C9120.78 (16)O3—C20—C4124.50 (14)
C7—C8—H8119.6O2—C20—C4112.91 (11)
C9—C8—H8119.6O2—C21—H21A109.5
C8—C9—C10119.33 (17)O2—C21—H21B109.5
C8—C9—H9120.3H21A—C21—H21B109.5
C10—C9—H9120.3O2—C21—H21C109.5
C11—C10—C9121.17 (17)H21A—C21—H21C109.5
C11—C10—H10119.4H21B—C21—H21C109.5
C9—C10—H10119.4C19—N1—C2111.63 (11)
C10—C11—C6118.09 (14)C19—N1—C12114.08 (11)
C10—C11—C12121.91 (13)C2—N1—C12105.98 (11)
C6—C11—C12119.97 (12)C6—O1—C5117.33 (11)
N1—C12—C11113.14 (11)C20—O2—C21115.98 (14)
N1—C2—C3—C13129.88 (13)C3—C4—C12—C11164.30 (11)
N1—C2—C3—C41.93 (17)C2—C3—C13—C1433.72 (19)
C13—C3—C4—C2079.76 (15)C4—C3—C13—C1488.74 (16)
C2—C3—C4—C20150.25 (13)C2—C3—C13—C18147.30 (14)
C13—C3—C4—C542.41 (16)C4—C3—C13—C1890.25 (16)
C2—C3—C4—C587.58 (14)C18—C13—C14—C150.4 (2)
C13—C3—C4—C12157.53 (12)C3—C13—C14—C15178.62 (14)
C2—C3—C4—C1227.54 (14)C13—C14—C15—C160.4 (3)
C20—C4—C5—O167.14 (15)C14—C15—C16—C170.4 (3)
C12—C4—C5—O159.90 (14)C15—C16—C17—C180.4 (3)
C3—C4—C5—O1170.79 (11)C16—C17—C18—C131.1 (2)
O1—C6—C7—C8177.44 (15)C14—C13—C18—C171.1 (2)
C11—C6—C7—C80.4 (2)C3—C13—C18—C17177.91 (13)
C6—C7—C8—C91.0 (3)C5—C4—C20—O328.52 (19)
C7—C8—C9—C100.4 (3)C12—C4—C20—O3151.25 (15)
C8—C9—C10—C110.9 (3)C3—C4—C20—O394.97 (17)
C9—C10—C11—C61.6 (2)C5—C4—C20—O2154.86 (13)
C9—C10—C11—C12179.79 (14)C12—C4—C20—O232.13 (17)
O1—C6—C11—C10175.95 (13)C3—C4—C20—O281.65 (15)
C7—C6—C11—C100.9 (2)C3—C2—N1—C19150.89 (14)
O1—C6—C11—C122.3 (2)C3—C2—N1—C1226.14 (16)
C7—C6—C11—C12179.18 (13)C11—C12—N1—C1972.87 (15)
C10—C11—C12—N187.51 (16)C4—C12—N1—C19167.17 (11)
C6—C11—C12—N194.28 (15)C11—C12—N1—C2163.91 (12)
C10—C11—C12—C4158.54 (13)C4—C12—N1—C243.96 (13)
C6—C11—C12—C419.67 (18)C7—C6—O1—C5168.00 (14)
C20—C4—C12—N1161.84 (11)C11—C6—O1—C515.0 (2)
C5—C4—C12—N174.57 (12)C4—C5—O1—C644.61 (17)
C3—C4—C12—N143.38 (12)O3—C20—O2—C210.8 (3)
C20—C4—C12—C1177.23 (14)C4—C20—O2—C21175.94 (17)
C5—C4—C12—C1146.35 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···N10.972.552.887 (2)100
C12—H12···O20.982.432.781 (2)101

Experimental details

Crystal data
Chemical formulaC20H21NO3
Mr323.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9557 (4), 10.2575 (7), 10.2993 (8)
α, β, γ (°)79.626 (5), 87.361 (5), 88.744 (4)
V3)825.79 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.12
Data collection
DiffractometerBruker KappaAPEX2
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.983, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
18704, 4126, 3051
Rint0.030
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.143, 1.03
No. of reflections4126
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: APEX2 (Bruker, 2004), APEX2/SAINT (Bruker, 2004), SAINT/XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···N10.972.552.887 (2)100
C12—H12···O20.982.432.781 (2)101
 

Acknowledgements

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions. SN thanks SRM management, India, for their support.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrockmann, T. W. & Tour, J. M. (1995). J. Am. Chem. Soc. 117, 4437–4447.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaine, B. (1993). Science, 260, 1814.  CrossRef PubMed Web of Science Google Scholar
First citationCarlson, J. (1993). Neur. Transm. 94, 11.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDi Natale, C., Paolesse, R., Macagnano, A., Mantini, A., Goletti, C., Tarizzo, E. & D'Amico, A. (1998). Sens. Actuators B, 50, 162–168.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNirmala, S., Kamala, E. T. S., Sudha, L., Ramesh, E. & Raghunathan, R. (2008). Acta Cryst. E64, o73.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSobral, A. J. F. N. & Rocha Gonsalves, A. M. d′A. (2001a). J. Porphyrins Phthalocyanines, 5, 428–430.  Web of Science CrossRef CAS Google Scholar
First citationSobral, A. J. F. N. & Rocha Gonsalves, A. M. d′A. (2001b). J. Porphyrins Phthalocyanines, 5, 861–866.  Web of Science CrossRef CAS Google Scholar
First citationSokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuslick, K. S., Chen, C.-T., Meredith, G. R. & Cheng, L.-T. (1992). J. Am. Chem. Soc. 114, 6928–6930.  CrossRef CAS Web of Science Google Scholar
First citationTidey, J. W. (1992). Behav. Pharm., 3, 553.  CrossRef Google Scholar
First citationWilner, P. (1985). Clinical Neuropharm. 18, Suppl. 1, 549–556.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds