organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo­meth­yl-2-chloro­meth­yl-1-phenyl­sulfon­yl-1H-indole

aDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com

(Received 19 March 2008; accepted 20 March 2008; online 29 March 2008)

In the title compound, C16H13BrClNO2S, the indole mean plane forms a dihedral angle of 73.59 (19)° with the phenyl ring. The mol­ecular structure is stabilized by weak intra­molecular C—H⋯O inter­actions. The Br atom is disordered over two positions with site occupancy factors of 0.7 and 0.3.

Related literature

For related crystal structures, see: Chakkaravarthi et al. (2007[Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.], 2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]). For the biological activities of indole derivatives, see: Chai et al. (2006[Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.]); Nieto et al. (2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]); Olgen & Coban (2003[Olgen, S. & Coban, T. (2003). Biol. Pharm. Bull. 26, 736-738.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrClNO2S

  • Mr = 398.69

  • Monoclinic, P 21 /c

  • a = 11.8501 (9) Å

  • b = 16.3525 (13) Å

  • c = 8.5793 (6) Å

  • β = 108.766 (3)°

  • V = 1574.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 295 (2) K

  • 0.16 × 0.14 × 0.14 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.559, Tmax = 0.665

  • 14367 measured reflections

  • 2770 independent reflections

  • 1822 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.231

  • S = 1.06

  • 2770 reflections

  • 209 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2 0.93 2.51 2.877 (9) 104
C13—H13⋯O1 0.93 2.31 2.873 (10) 118
C15—H15B⋯O2 0.97 2.17 2.939 (10) 136

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our studies of indole derivatives, which are known to exhibit anti-oxidant activity (Olgen & Coban, 2003), antihepatitis B virus activities (Chai et al., 2006) and antibacterial (Nieto et al., 2005) activities, we report the crystal structure of the title compound (I).

The geometric parameters of the molecule of (I) (Fig. 1) agree well with the reported structures (Chakkaravarthi et al., 2007, 2008). The indole mean plane forms a dihedral angle of 73.59 (19)° with the phenyl ring. The N1—S1—C1 plane is almost orthogonal to indole ring (dihedral angle 82.30 (22)°) and makes 76.93 (22)° with the phenyl ring. The indole mean plane and C8—C16—BR1 plane are nearly orthogonal to each other forming a dihedral angle of 82.23 (0.29)°.

The sum of bond angles around N1 (359.99°) shows that N1 is sp2-hybridized. The torsion angles O1—S1—N1—C14 and O2—S1—N1—C7 [17.8 (6)° and -33.4 (6)°, respectively] indicate the syn conformation of the sulfonyl moiety. The molecular structure is stabilized by weak intramolecular C—H···O interactions.

Related literature top

For related crystal structures, see: Chakkaravarthi et al. (2007, 2008). For the biological activities of indole derivatives, see: Chai et al. (2006); Nieto et al. (2005); Olgen & Coban (2003).

Experimental top

1-(Phenylsulfonyl)-3-(bromomethyl)-2-methylindole (0.5 g, 1.37 mmol) was dissolved in dry ccl4(10 ml) and then powdered N-chloro succinimide was added. To this, azobisisobutyronitrle (50 mg) was also added and then refluxed for 2 h on a waterbath. After the reaction was completed, succinimide was floated on the surface of the reaction mixture. It was then filtered off and washed with CCl4 (3 ml). The solvent was removed carefully under vacuo. The crude product was recrystallized from CCl4. Yield:76 percentage.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2. The Br atom is disordered over two positions with the occupancies of 0.709 (16) and 0.291 (16), respectively. The distances C1—C2, C2—C3, C3—C4, C4—C5, C10—C11 and C11—C12 were restrained to 1.395 (1) Å, the distances C16—BR1 and C16—Br1A were restrained to 1.91 (10) Å and the distance CL1—C15 was restrained to 1.76 (5) Å. The anisotropic thermal parameters of C15, C16, BR1, BR1A, CL1 atoms were restrained with DELU in the final cycles of the refinement (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic labels and 50% probability displacement ellipsoids for non-H atoms. Only major parts of the disordered atoms are drawn. Intramolecular H-bonds are shown as dashed lines.
3-Bromomethyl-2-chloromethyl-1-phenylsulfonyl-1H-indole top
Crystal data top
C16H13BrClNO2SF(000) = 800
Mr = 398.69Dx = 1.682 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4037 reflections
a = 11.8501 (9) Åθ = 2.5–25.0°
b = 16.3525 (13) ŵ = 2.92 mm1
c = 8.5793 (6) ÅT = 295 K
β = 108.766 (3)°Block, colourless
V = 1574.1 (2) Å30.16 × 0.14 × 0.14 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
2770 independent reflections
Radiation source: fine-focus sealed tube1822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω and ϕ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.559, Tmax = 0.665k = 1919
14367 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.127P)2 + 1.9456P]
where P = (Fo2 + 2Fc2)/3
2770 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.42 e Å3
12 restraintsΔρmin = 0.92 e Å3
Crystal data top
C16H13BrClNO2SV = 1574.1 (2) Å3
Mr = 398.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.8501 (9) ŵ = 2.92 mm1
b = 16.3525 (13) ÅT = 295 K
c = 8.5793 (6) Å0.16 × 0.14 × 0.14 mm
β = 108.766 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
2770 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1822 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.665Rint = 0.045
14367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06612 restraints
wR(F2) = 0.231H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
2770 reflectionsΔρmin = 0.92 e Å3
209 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.90925 (16)0.10531 (12)0.5085 (3)0.0872 (6)
Br10.8135 (6)0.1043 (5)0.3205 (5)0.1572 (16)0.709 (16)
Br1A0.7901 (4)0.1251 (3)0.3139 (9)0.093 (2)0.291 (16)
S10.70049 (14)0.13649 (11)0.8192 (2)0.0743 (6)
O10.6340 (5)0.1191 (4)0.9258 (8)0.114 (2)
O20.6743 (5)0.2077 (3)0.7212 (8)0.109 (2)
N10.6795 (4)0.0573 (3)0.6922 (5)0.0539 (11)
C10.8512 (6)0.1369 (4)0.9320 (7)0.0655 (17)
C20.8952 (7)0.0826 (5)1.0604 (8)0.097 (2)
H20.84490.04491.08540.117*
C31.0161 (8)0.0849 (8)1.1523 (11)0.127 (4)
H31.04740.04851.23870.153*
C41.0885 (9)0.1418 (7)1.1133 (13)0.122 (4)
H41.16880.14411.17530.147*
C51.0442 (8)0.1951 (6)0.9845 (13)0.113 (3)
H51.09470.23250.95900.135*
C60.9256 (7)0.1932 (5)0.8934 (10)0.086 (2)
H60.89530.22950.80650.103*
C70.7000 (5)0.0556 (3)0.5384 (7)0.0574 (14)
C80.6681 (5)0.0197 (3)0.4715 (6)0.0535 (14)
C90.6288 (5)0.0680 (3)0.5809 (5)0.0463 (12)
C100.5887 (6)0.1477 (4)0.5707 (7)0.0622 (15)
H100.58370.17960.47900.075*
C110.5563 (6)0.1790 (4)0.6984 (8)0.078 (2)
H110.52950.23270.69390.094*
C120.5633 (7)0.1313 (5)0.8332 (9)0.083 (2)
H120.54060.15370.91820.099*
C130.6026 (6)0.0519 (5)0.8471 (6)0.0687 (18)
H130.60640.02030.93880.082*
C140.6365 (4)0.0206 (3)0.7184 (6)0.0468 (12)
C150.7557 (4)0.1232 (4)0.4743 (11)0.086 (2)
H15A0.71510.12940.35720.103*
H15B0.74640.17390.52780.103*
C160.6722 (5)0.0443 (4)0.3064 (7)0.084 (2)
H16A0.60300.07770.25200.101*0.709 (16)
H16B0.66860.00420.24000.101*0.709 (16)
H16C0.60520.08020.25600.101*0.291 (16)
H16D0.66450.00330.23630.101*0.291 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0663 (11)0.0872 (13)0.1176 (15)0.0181 (9)0.0429 (10)0.0109 (10)
Br10.235 (3)0.159 (3)0.106 (2)0.112 (2)0.095 (2)0.0245 (15)
Br1A0.063 (4)0.105 (3)0.098 (3)0.014 (2)0.008 (2)0.041 (3)
S10.0540 (9)0.0688 (11)0.0926 (12)0.0071 (8)0.0129 (8)0.0402 (9)
O10.082 (3)0.142 (5)0.130 (5)0.015 (3)0.053 (3)0.087 (4)
O20.087 (3)0.059 (3)0.144 (5)0.029 (3)0.016 (3)0.035 (3)
N10.057 (3)0.049 (3)0.052 (2)0.000 (2)0.012 (2)0.013 (2)
C10.061 (4)0.067 (4)0.065 (4)0.010 (3)0.015 (3)0.028 (3)
C20.100 (6)0.123 (7)0.058 (4)0.002 (5)0.010 (4)0.011 (4)
C30.123 (8)0.145 (10)0.079 (6)0.039 (8)0.016 (6)0.010 (6)
C40.077 (6)0.138 (9)0.121 (8)0.020 (6)0.010 (6)0.051 (7)
C50.076 (6)0.116 (7)0.139 (8)0.024 (5)0.025 (6)0.041 (7)
C60.072 (5)0.077 (5)0.096 (5)0.011 (4)0.009 (4)0.019 (4)
C70.064 (4)0.051 (3)0.059 (3)0.005 (3)0.023 (3)0.008 (3)
C80.070 (4)0.053 (3)0.039 (3)0.007 (3)0.020 (2)0.002 (2)
C90.047 (3)0.052 (3)0.034 (2)0.002 (2)0.005 (2)0.001 (2)
C100.066 (4)0.050 (3)0.061 (3)0.006 (3)0.007 (3)0.005 (3)
C110.066 (4)0.066 (4)0.095 (5)0.014 (3)0.014 (4)0.021 (4)
C120.071 (4)0.106 (6)0.073 (4)0.003 (4)0.028 (4)0.036 (4)
C130.062 (4)0.104 (5)0.037 (3)0.001 (4)0.013 (3)0.002 (3)
C140.043 (3)0.057 (3)0.038 (2)0.003 (2)0.009 (2)0.004 (2)
C150.079 (3)0.074 (5)0.110 (6)0.007 (4)0.039 (4)0.026 (4)
C160.134 (5)0.073 (4)0.051 (3)0.026 (4)0.038 (4)0.001 (3)
Geometric parameters (Å, º) top
Cl1—C151.772 (4)C7—C81.359 (8)
Br1—C161.9114 (11)C7—C151.481 (9)
Br1A—C161.9084 (11)C8—C91.415 (8)
S1—O21.411 (6)C8—C161.489 (7)
S1—O11.415 (6)C9—C101.381 (8)
S1—N11.659 (4)C9—C141.390 (7)
S1—C11.737 (6)C10—C111.371 (7)
N1—C141.417 (7)C10—H100.9300
N1—C71.417 (7)C11—C121.375 (8)
C1—C21.380 (8)C11—H110.9300
C1—C61.386 (10)C12—C131.372 (10)
C2—C31.396 (8)C12—H120.9300
C2—H20.9300C13—C141.387 (8)
C3—C41.379 (9)C13—H130.9300
C3—H30.9300C15—H15A0.9700
C4—C51.371 (9)C15—H15B0.9700
C4—H40.9300C16—H16A0.9700
C5—C61.371 (12)C16—H16B0.9700
C5—H50.9300C16—H16C0.9700
C6—H60.9300C16—H16D0.9700
O2—S1—O1119.3 (4)C9—C10—H10120.6
O2—S1—N1107.2 (3)C10—C11—C12120.3 (6)
O1—S1—N1105.7 (3)C10—C11—H11119.9
O2—S1—C1108.5 (3)C12—C11—H11119.9
O1—S1—C1109.1 (4)C13—C12—C11122.5 (6)
N1—S1—C1106.2 (3)C13—C12—H12118.8
C14—N1—C7108.0 (4)C11—C12—H12118.8
C14—N1—S1125.7 (4)C12—C13—C14117.1 (6)
C7—N1—S1126.3 (4)C12—C13—H13121.4
C2—C1—C6120.8 (7)C14—C13—H13121.4
C2—C1—S1119.9 (6)C13—C14—C9120.9 (5)
C6—C1—S1119.3 (5)C13—C14—N1131.9 (5)
C1—C2—C3119.3 (8)C9—C14—N1107.2 (4)
C1—C2—H2120.4C7—C15—Cl1111.8 (4)
C3—C2—H2120.4C7—C15—H15A109.3
C4—C3—C2119.1 (9)Cl1—C15—H15A109.3
C4—C3—H3120.4C7—C15—H15B109.3
C2—C3—H3120.4Cl1—C15—H15B109.3
C5—C4—C3121.2 (9)H15A—C15—H15B107.9
C5—C4—H4119.4C8—C16—Br1A113.8 (4)
C3—C4—H4119.4C8—C16—Br1112.0 (4)
C6—C5—C4120.1 (9)C8—C16—H16A109.2
C6—C5—H5119.9Br1A—C16—H16A97.1
C4—C5—H5119.9Br1—C16—H16A109.2
C5—C6—C1119.5 (8)C8—C16—H16B109.2
C5—C6—H6120.3Br1A—C16—H16B118.6
C1—C6—H6120.3Br1—C16—H16B109.2
C8—C7—N1107.6 (5)H16A—C16—H16B107.9
C8—C7—C15128.1 (6)C8—C16—H16C108.4
N1—C7—C15124.2 (6)Br1A—C16—H16C94.7
C7—C8—C9109.4 (5)Br1—C16—H16C107.0
C7—C8—C16123.8 (6)H16B—C16—H16C111.0
C9—C8—C16126.7 (5)C8—C16—H16D110.3
C10—C9—C14120.5 (5)Br1A—C16—H16D119.9
C10—C9—C8131.7 (5)Br1—C16—H16D110.9
C14—C9—C8107.8 (5)H16A—C16—H16D104.9
C11—C10—C9118.7 (5)H16C—C16—H16D108.0
C11—C10—H10120.6
O2—S1—N1—C14146.0 (5)C15—C7—C8—C167.1 (9)
O1—S1—N1—C1417.8 (6)C7—C8—C9—C10179.3 (6)
C1—S1—N1—C1498.1 (5)C16—C8—C9—C102.1 (10)
O2—S1—N1—C733.4 (6)C7—C8—C9—C140.3 (6)
O1—S1—N1—C7161.6 (5)C16—C8—C9—C14178.3 (5)
C1—S1—N1—C782.5 (5)C14—C9—C10—C110.2 (8)
O2—S1—C1—C2167.5 (6)C8—C9—C10—C11179.8 (6)
O1—S1—C1—C236.0 (6)C9—C10—C11—C120.4 (10)
N1—S1—C1—C277.6 (6)C10—C11—C12—C130.3 (11)
O2—S1—C1—C611.3 (6)C11—C12—C13—C140.4 (10)
O1—S1—C1—C6142.8 (5)C12—C13—C14—C90.9 (8)
N1—S1—C1—C6103.7 (5)C12—C13—C14—N1179.4 (6)
C6—C1—C2—C30.2 (11)C10—C9—C14—C130.9 (8)
S1—C1—C2—C3178.6 (7)C8—C9—C14—C13179.4 (5)
C1—C2—C3—C40.5 (15)C10—C9—C14—N1179.7 (5)
C2—C3—C4—C51.1 (17)C8—C9—C14—N10.6 (6)
C3—C4—C5—C61.0 (16)C7—N1—C14—C13179.9 (6)
C4—C5—C6—C10.3 (13)S1—N1—C14—C130.4 (8)
C2—C1—C6—C50.2 (11)C7—N1—C14—C91.3 (6)
S1—C1—C6—C5178.5 (6)S1—N1—C14—C9178.2 (4)
C14—N1—C7—C81.5 (6)C8—C7—C15—Cl176.0 (8)
S1—N1—C7—C8178.0 (4)N1—C7—C15—Cl198.7 (7)
C14—N1—C7—C15174.1 (5)C7—C8—C16—Br1A112.1 (6)
S1—N1—C7—C156.4 (8)C9—C8—C16—Br1A69.5 (8)
N1—C7—C8—C91.1 (6)C7—C8—C16—Br198.2 (7)
C15—C7—C8—C9174.3 (5)C9—C8—C16—Br183.4 (8)
N1—C7—C8—C16177.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.932.512.877 (9)104
C13—H13···O10.932.312.873 (10)118
C15—H15B···O20.972.172.939 (10)136

Experimental details

Crystal data
Chemical formulaC16H13BrClNO2S
Mr398.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.8501 (9), 16.3525 (13), 8.5793 (6)
β (°) 108.766 (3)
V3)1574.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.16 × 0.14 × 0.14
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.559, 0.665
No. of measured, independent and
observed [I > 2σ(I)] reflections
14367, 2770, 1822
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.231, 1.06
No. of reflections2770
No. of parameters209
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.92

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.932.512.877 (9)104
C13—H13···O10.932.312.873 (10)118
C15—H15B···O20.972.172.939 (10)136
 

Acknowledgements

The authors acknowledge the Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Madras, for the data collection.

References

First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlgen, S. & Coban, T. (2003). Biol. Pharm. Bull. 26, 736–738.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds