organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(2-Fluoro­benzyl­­idene)butanoic acid

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Physics, University of Sargodha, Sagrodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 16 January 2008; accepted 15 March 2008; online 20 March 2008)

In the crystal structure of the title compound, C11H11FO2, the methine CH forms an intra­molecular hydrogen bond with the carboxyl­ O atom. The mol­ecules form dimers through hydrogen bonding between carboxyl­ groups. These dimers are linked to each other by C—H⋯O contacts between the benzene and carbonyl groups of adjoining mol­ecules. In addition, there are weak inter­molecular C—H⋯F contacts.

Related literature

For related literature, see: Burns & Hagaman (1993[Burns, J. H. & Hagaman, E. W. (1993). Acta Cryst. C49, 1393-1396.]); Burt (2004[Burt, S. (2004). Int. J. Food Microbiol. 94, 223-253.]); Forgó et al. (2005[Forgó, P., Felföldi, K. & Pálinkó, I. (2005). J. Mol. Struct. 744-747, 273-276.]); Hertog et al. (1995[Hertog, M. G., Kromhout, D., Aravanis, C., Blackburn, H., Buzina, R., Fidanza, F., Giampaoli, S., Jansen, A., Menotti, A. & Nedeljkovic, S. (1995). Arch. Intern. Med. 155, 381-386.]); Muhammad et al. (2007[Muhammad, N., Zia-ur-Rehman., Ali, S. & Meetsma, A. (2007). Acta Cryst. E63, o2174-o2175.]). For details of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11FO2

  • Mr = 194.20

  • Monoclinic, P 21 /c

  • a = 4.1895 (4) Å

  • b = 17.4362 (19) Å

  • c = 13.8134 (15) Å

  • β = 96.719 (3)°

  • V = 1002.12 (18) Å3

  • Z = 4

  • Mo Kα radiation radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.25 × 0.18 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.958

  • 8632 measured reflections

  • 2981 independent reflections

  • 1704 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.164

  • S = 1.04

  • 2981 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.97 (2) 1.66 (2) 2.6325 (18) 177.7 (12)
C3—H3⋯O1 0.93 2.32 2.713 (2) 105
C6—H6⋯O2ii 0.93 2.53 3.421 (2) 160
C8—H8⋯F1iii 0.93 2.55 3.266 (2) 134 (1)
Symmetry codes: (i) -x+2, -y, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Cinnamic acid derivatives are well known for their antibacterial, antifungal antiparasitic (Burt, 2004), and antitumor activity (Hertog et al., 1995). They are also used in the shikmic acid metabolic pathways of higher plants (Forgó et al., 2005).

In the structure of the title compound (I), there are two C-atoms between the carboxylate and 2-fluorophenyl C-atoms. A search of CCDC (Allen, 2002) shows that a structure of 2-amino-2-(2-fluorophenyl)acetic acid (Burns et al., 1993) has been published in which there is only a single C-atom between carboxylate and phenyl ring. Moreover, there is no structure of this kind with a different position for the F-atom.

The C1=O2 bond distance [1.2301 (18) Å], is significantly shorter than the C1—O1 distance [1.3006 (18) Å]. The C1—O1 bond lengthened due to the formation of intramolecular and intermolecular H-bonds. The value of C2=C3 is 1.334 (2) Å. The phenyl ring bond distances are in the normal range but the C4—C5—C6 bond angle is 124.27 (18)°, due to the influence of the F substituent attached to C5. The dihedral angle between the planes formed by (O1, C1, and O2) and (C2, C10, and C11) is 80.97 (18)°, and the dihedral angles between these planes and the phenyl ring are 52.88 (10)° and 67.17 (15)° respectively. The molecules are stabilized by intramolecular and intermolecular H-bonds. The title compound forms dimers through H-bonding, O1—H1···O2i [symmetry code i = -x + 2, -y, -z] as shown in Fig 2. These dimers are linked to each other through a C6—H6···O2ii interaction [symmetry code ii = -x + 1, y + 1/2, -z + 1/2]. Details of the H-bonding are given in Table 1. In addition there is a weak C8—H8···F1iii intermolecular interaction [symmetry code iii = x, 1/2 - y, 1/2 + z] with a distance 3.2658 (25) Å between C8 and F1iii.

Related literature top

For related literature, see: Burns & Hagaman (1993); Burt (2004); Forgó et al. (2005); Hertog et al. (1995); Muhammad et al. (2007). For details of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Compound (I) was synthesized as reported earlier (Niaz, et al., 2007). A mixture of 2-fluorobenzaldehyde (1.05 ml, 10 mmol), ethylmalonic acid (2.64 g, 20 mmol) and piperidine (1.98 ml, 20 mmol) in a pyridine (12.5 ml) solution was heated on a steam-bath for 24 h. The reaction mixture was cooled and added to a mixture of 25 ml of concentrated HCl and 50 g of ice. The precipitate formed in the acidified mixture was filtered off and washed with ice-cold water. The product was recrystallized from ethanol. The yield was 65%, m.p. 94 °C.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound, C11H11F1O2 with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The packing figure (PLATON: Spek, 2003) which shows the dimeric nature of the compound owing to inter molecular hydrogen bonding and also showing a link between dimers.
(E)-2-(2-Fluorobenzylidene)butanoic acid top
Crystal data top
C11H11FO2F(000) = 408
Mr = 194.20Dx = 1.287 Mg m3
Monoclinic, P21/cMo Kα radiation radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2981 reflections
a = 4.1895 (4) Åθ = 2.3–30.6°
b = 17.4362 (19) ŵ = 0.10 mm1
c = 13.8134 (15) ÅT = 296 K
β = 96.719 (3)°Prismatic, colourless
V = 1002.12 (18) Å30.25 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker KappaAPEXII CCD
diffractometer
2981 independent reflections
Radiation source: fine-focus sealed tube1704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 7.2 pixels mm-1θmax = 30.6°, θmin = 2.3°
ω scansh = 56
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2423
Tmin = 0.935, Tmax = 0.958l = 1919
8632 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.1527P]
where P = (Fo2 + 2Fc2)/3
2981 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H11FO2V = 1002.12 (18) Å3
Mr = 194.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.1895 (4) ŵ = 0.10 mm1
b = 17.4362 (19) ÅT = 296 K
c = 13.8134 (15) Å0.25 × 0.18 × 0.12 mm
β = 96.719 (3)°
Data collection top
Bruker KappaAPEXII CCD
diffractometer
2981 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1704 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.958Rint = 0.026
8632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.41 e Å3
2981 reflectionsΔρmin = 0.22 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.5705 (5)0.28288 (7)0.22076 (10)0.1113 (6)
O11.0669 (3)0.08331 (7)0.07503 (9)0.0575 (4)
H11.104 (5)0.0617 (11)0.0126 (15)0.069*
O20.8191 (3)0.02692 (7)0.09434 (9)0.0609 (4)
C10.8986 (4)0.03770 (8)0.12367 (11)0.0406 (4)
C20.8045 (3)0.06721 (8)0.21699 (11)0.0394 (4)
C30.8530 (4)0.14131 (9)0.23791 (12)0.0443 (4)
H30.95550.16990.19380.053*
C40.7616 (4)0.18258 (9)0.32326 (11)0.0449 (4)
C50.6226 (5)0.25413 (10)0.31195 (13)0.0593 (5)
C60.5260 (6)0.29671 (11)0.38672 (16)0.0705 (6)
H60.42860.34430.37490.085*
C70.5763 (6)0.26755 (11)0.47922 (15)0.0659 (6)
H70.51200.29530.53110.079*
C80.7214 (5)0.19750 (12)0.49543 (14)0.0691 (6)
H80.75860.17810.55850.083*
C90.8126 (5)0.15554 (11)0.41831 (13)0.0601 (5)
H90.91050.10810.43040.072*
C100.6348 (4)0.01081 (9)0.27580 (12)0.0458 (4)
H10A0.47790.01700.23190.055*
H10B0.51850.03920.32090.055*
C110.8524 (5)0.04706 (11)0.33354 (14)0.0614 (5)
H11A0.72480.08080.36820.092*
H11B1.00410.02050.37910.092*
H11C0.96570.07640.28970.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.2170 (19)0.0646 (8)0.0569 (8)0.0505 (10)0.0350 (9)0.0161 (6)
O10.0854 (9)0.0450 (7)0.0468 (7)0.0124 (6)0.0275 (6)0.0072 (5)
O20.0912 (10)0.0434 (7)0.0528 (7)0.0149 (6)0.0288 (7)0.0118 (5)
C10.0485 (8)0.0360 (8)0.0382 (8)0.0015 (6)0.0091 (7)0.0007 (6)
C20.0426 (8)0.0401 (8)0.0357 (7)0.0046 (6)0.0061 (6)0.0003 (6)
C30.0549 (9)0.0404 (8)0.0382 (8)0.0029 (6)0.0085 (7)0.0005 (6)
C40.0575 (10)0.0386 (8)0.0393 (8)0.0012 (7)0.0088 (7)0.0041 (6)
C50.0947 (14)0.0413 (9)0.0438 (10)0.0086 (9)0.0156 (9)0.0029 (7)
C60.1047 (17)0.0438 (10)0.0653 (13)0.0165 (10)0.0194 (12)0.0084 (9)
C70.0898 (15)0.0588 (12)0.0521 (11)0.0015 (10)0.0203 (10)0.0183 (9)
C80.0999 (16)0.0685 (13)0.0391 (9)0.0122 (11)0.0095 (10)0.0042 (9)
C90.0866 (14)0.0525 (10)0.0406 (9)0.0170 (9)0.0047 (9)0.0027 (8)
C100.0478 (9)0.0460 (9)0.0456 (9)0.0026 (7)0.0136 (7)0.0018 (7)
C110.0694 (12)0.0513 (10)0.0654 (12)0.0014 (8)0.0163 (10)0.0179 (9)
Geometric parameters (Å, º) top
F1—C51.350 (2)C6—H60.9300
O1—C11.3006 (18)C7—C81.371 (3)
O1—H10.97 (2)C7—H70.9300
O2—C11.2301 (18)C8—C91.383 (2)
C1—C21.483 (2)C8—H80.9300
C2—C31.334 (2)C9—H90.9300
C2—C101.506 (2)C10—C111.521 (2)
C3—C41.470 (2)C10—H10A0.9700
C3—H30.9300C10—H10B0.9700
C4—C51.378 (2)C11—H11A0.9600
C4—C91.388 (2)C11—H11B0.9600
C5—C61.371 (3)C11—H11C0.9600
C6—C71.368 (3)
C1—O1—H1112.0 (12)C6—C7—H7120.0
O2—C1—O1122.15 (14)C8—C7—H7120.0
O2—C1—C2120.97 (14)C7—C8—C9120.19 (18)
O1—C1—C2116.88 (13)C7—C8—H8119.9
C3—C2—C1118.35 (14)C9—C8—H8119.9
C3—C2—C10125.80 (14)C8—C9—C4121.56 (17)
C1—C2—C10115.63 (13)C8—C9—H9119.2
C2—C3—C4126.91 (15)C4—C9—H9119.2
C2—C3—H3116.5C2—C10—C11115.09 (14)
C4—C3—H3116.5C2—C10—H10A108.5
C5—C4—C9115.53 (15)C11—C10—H10A108.5
C5—C4—C3119.92 (15)C2—C10—H10B108.5
C9—C4—C3124.53 (14)C11—C10—H10B108.5
F1—C5—C6118.18 (17)H10A—C10—H10B107.5
F1—C5—C4117.52 (16)C10—C11—H11A109.5
C6—C5—C4124.27 (18)C10—C11—H11B109.5
C7—C6—C5118.38 (18)H11A—C11—H11B109.5
C7—C6—H6120.8C10—C11—H11C109.5
C5—C6—H6120.8H11A—C11—H11C109.5
C6—C7—C8120.03 (18)H11B—C11—H11C109.5
O2—C1—C2—C3169.70 (16)C3—C4—C5—C6179.3 (2)
O1—C1—C2—C310.1 (2)F1—C5—C6—C7179.6 (2)
O2—C1—C2—C105.2 (2)C4—C5—C6—C71.5 (4)
O1—C1—C2—C10174.93 (14)C5—C6—C7—C80.3 (4)
C1—C2—C3—C4176.46 (15)C6—C7—C8—C91.0 (4)
C10—C2—C3—C42.1 (3)C7—C8—C9—C40.1 (3)
C2—C3—C4—C5136.30 (19)C5—C4—C9—C81.5 (3)
C2—C3—C4—C945.5 (3)C3—C4—C9—C8179.80 (19)
C9—C4—C5—F1179.57 (19)C3—C2—C10—C11106.93 (19)
C3—C4—C5—F11.2 (3)C1—C2—C10—C1178.57 (19)
C9—C4—C5—C62.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.97 (2)1.66 (2)2.6325 (18)177.7 (12)
C3—H3···O10.932.322.713 (2)105
C6—H6···O2ii0.932.533.421 (2)160
C8—H8···F1iii0.932.553.266 (2)134 (1)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H11FO2
Mr194.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.1895 (4), 17.4362 (19), 13.8134 (15)
β (°) 96.719 (3)
V3)1002.12 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.18 × 0.12
Data collection
DiffractometerBruker KappaAPEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.935, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
8632, 2981, 1704
Rint0.026
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.164, 1.04
No. of reflections2981
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.97 (2)1.66 (2)2.6325 (18)177.7 (12)
C3—H3···O10.932.322.713 (2)105
C6—H6···O2ii0.932.533.421 (2)160
C8—H8···F1iii0.932.553.266 (2)133.67 (12)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Com­mision, Islamabad, Pakistan, for funding the purchase of the diffractometer and Bana International, Karachi, Pakistan, for technical support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBurns, J. H. & Hagaman, E. W. (1993). Acta Cryst. C49, 1393–1396.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurt, S. (2004). Int. J. Food Microbiol. 94, 223–253.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForgó, P., Felföldi, K. & Pálinkó, I. (2005). J. Mol. Struct. 744–747, 273–276.  Google Scholar
First citationHertog, M. G., Kromhout, D., Aravanis, C., Blackburn, H., Buzina, R., Fidanza, F., Giampaoli, S., Jansen, A., Menotti, A. & Nedeljkovic, S. (1995). Arch. Intern. Med. 155, 381–386.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMuhammad, N., Zia-ur-Rehman., Ali, S. & Meetsma, A. (2007). Acta Cryst. E63, o2174–o2175.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds