metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-2,4-di­fluoro­benzoato)bis­­[(2,4-di­fluoro­benzoato)(1,10-phenanthroline)gadolinium(III)]

aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475003, People's Republic of China, and bCollege of Medicine, Henan University, Kaifeng 475003, People's Republic of China
*Correspondence e-mail: wangsb6688@sina.com

(Received 2 February 2008; accepted 14 February 2008; online 5 March 2008)

In the title compound, [Gd2(C7H3F2O2)6(C12H8N2)2], the asymmetric unit comprises one Gd3+ cation chelated by two 2,4-difluoro­benzoate and one 1,10-phenanthroline ligands. Two cations are linked into a centrosymmetric dimer via three bridging carboxyl­ate groups of 2,4-difluoro­benzoate ligands. Each Gd3+ ion is nine-coordinated by seven O atoms and two N atoms.

Related literature

For related literature, see: Church & Halvorson (1959[Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124-125.]); Chung et al. (1971[Chung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J. 11, 469-475.]); Okabe & Oya (2000[Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416-1417.]); Serre et al. (2005[Serre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654-658.]); Pocker & Fong (1980[Pocker, Y. & Fong, C. T. O. (1980). Biochemistry, 19, 2045-2049.]); Scapin et al. (1997[Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081-15088.]).

[Scheme 1]

Experimental

Crystal data
  • [Gd2(C7H3F2O2)6(C12H8N2)2]

  • Mr = 1617.47

  • Monoclinic, P 21 /n

  • a = 15.132 (3) Å

  • b = 13.663 (3) Å

  • c = 15.286 (3) Å

  • β = 109.364 (2)°

  • V = 2981.6 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 295 (2) K

  • 0.33 × 0.14 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.516, Tmax = 0.837

  • 15634 measured reflections

  • 5535 independent reflections

  • 4598 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.095

  • S = 1.00

  • 5535 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 1.69 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, carboxylates have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe & Oya, 2000; Serre et al., 2005; Pocker & Fong, 1980; Scapin et al., 1997). Here we report the synthesis and X-ray crystal structure analysis of the title compound.

The molecular structure is shown in Fig. 1. Gd(III) is chelated by two 2,4-difluorobenzoate and one 1,10-phenanthroline ligands. Two cations are linked into a dimer via three bridging carboxylate groups of 2,4-difluorobenzoate ligands. Each Gd(III) ion is nine-coordinated by seven O atoms and two N atoms.

Related literature top

For related literature, see: Church & Halvorson (1959); Chung et al. (1971); Okabe & Oya (2000); Serre et al. (2005); Pocker & Fong (1980); Scapin et al. (1997).

Experimental top

A mixture of gadolinium(III) chloride (0.5 mmol), 2,4-difluorobenzoic acid (1 mmol), sodium hydroxide (1 mmol), 1,10-phenanthroline (0.5 mmol), water (8 ml) and ethanol (8 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 433 K for three days. Colorless crystals were obtained after cooling to room temperature, with a yield of 16%. Anal. Calc. for C33H17F6GdN2O6: C 48.98, H 2.10, N 3.46%; Found: C 48.88, H 2.12, N 3.98%.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. Unlabeled atoms are at the symmetry position (-x + 2, -y, -z + 2).
Tetrakis(µ-2,4-difluorobenzoato)bis[(2,4-difluorobenzoato)(1,10- phenanthroline)gadolinium(III)] top
Crystal data top
[Gd2(C7H3F2O2)6(C12H8N2)2]F(000) = 1580
Mr = 1617.47Dx = 1.802 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5535 reflections
a = 15.132 (3) Åθ = 2.1–25.5°
b = 13.663 (3) ŵ = 2.31 mm1
c = 15.286 (3) ÅT = 295 K
β = 109.364 (2)°Block, colourless
V = 2981.6 (9) Å30.33 × 0.14 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5535 independent reflections
Radiation source: fine-focus sealed tube4598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1418
Tmin = 0.516, Tmax = 0.837k = 1616
15634 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0528P)2 + 4.39P]
where P = (Fo2 + 2Fc2)/3
5535 reflections(Δ/σ)max = 0.008
433 parametersΔρmax = 1.69 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Gd2(C7H3F2O2)6(C12H8N2)2]V = 2981.6 (9) Å3
Mr = 1617.47Z = 2
Monoclinic, P21/nMo Kα radiation
a = 15.132 (3) ŵ = 2.31 mm1
b = 13.663 (3) ÅT = 295 K
c = 15.286 (3) Å0.33 × 0.14 × 0.08 mm
β = 109.364 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5535 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4598 reflections with I > 2σ(I)
Tmin = 0.516, Tmax = 0.837Rint = 0.037
15634 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.00Δρmax = 1.69 e Å3
5535 reflectionsΔρmin = 0.64 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.997885 (14)0.144628 (14)0.957975 (13)0.02862 (9)
C11.1346 (3)0.2166 (3)0.8849 (3)0.0373 (10)
C21.2110 (3)0.2446 (3)0.8476 (3)0.0428 (11)
C31.1982 (4)0.2280 (4)0.7539 (4)0.0530 (13)
H31.14110.20410.71520.064*
C41.2694 (5)0.2467 (5)0.7181 (4)0.0725 (19)
H41.26060.23530.65580.087*
C51.3513 (5)0.2816 (5)0.7747 (5)0.076 (2)
C61.3667 (5)0.2995 (6)0.8637 (6)0.095 (3)
H61.42430.32400.90090.113*
C71.2965 (4)0.2815 (5)0.9009 (4)0.0667 (17)
C80.9247 (3)0.0549 (3)0.8221 (3)0.0316 (9)
C90.9086 (3)0.0732 (3)0.7207 (3)0.0328 (9)
C100.9380 (3)0.0029 (3)0.6705 (3)0.0413 (11)
H100.97130.05120.70130.050*
C110.9189 (4)0.0117 (4)0.5764 (3)0.0573 (14)
H110.93990.03510.54370.069*
C120.8686 (5)0.0904 (5)0.5324 (3)0.0656 (17)
C130.8377 (4)0.1626 (4)0.5768 (3)0.0541 (14)
H130.80300.21530.54460.065*
C140.8605 (3)0.1536 (3)0.6721 (3)0.0407 (11)
C150.8390 (3)0.0592 (3)1.0120 (3)0.0344 (9)
C160.7585 (3)0.0448 (3)1.0482 (3)0.0422 (11)
C170.7753 (5)0.0095 (4)1.1374 (4)0.0631 (16)
H170.83470.01301.17170.076*
C180.7040 (6)0.0075 (5)1.1760 (5)0.085 (2)
H180.71500.01821.23500.102*
C190.6197 (6)0.0427 (6)1.1277 (6)0.092 (3)
C200.5978 (4)0.0755 (5)1.0382 (5)0.0761 (19)
H200.53780.09681.00480.091*
C210.6685 (4)0.0755 (4)0.9998 (4)0.0532 (13)
C220.9877 (4)0.3346 (4)1.1111 (3)0.0454 (12)
H221.02440.28951.15320.054*
C230.9628 (4)0.4212 (4)1.1453 (4)0.0553 (14)
H230.98090.43181.20890.066*
C240.9121 (4)0.4896 (4)1.0857 (4)0.0548 (14)
H240.89610.54791.10820.066*
C250.8838 (3)0.4726 (3)0.9899 (4)0.0440 (11)
C260.9099 (3)0.3819 (3)0.9608 (3)0.0371 (10)
C270.8324 (4)0.5425 (4)0.9223 (4)0.0569 (15)
H270.81560.60200.94180.068*
C280.8081 (4)0.5232 (4)0.8309 (4)0.0547 (14)
H280.77640.57040.78820.066*
C290.8303 (3)0.4316 (3)0.7986 (4)0.0452 (11)
C300.8798 (3)0.3602 (3)0.8629 (3)0.0361 (10)
C310.8017 (4)0.4072 (4)0.7045 (4)0.0551 (14)
H310.76960.45260.66000.066*
C320.8213 (4)0.3157 (5)0.6782 (4)0.0598 (15)
H320.80180.29800.61600.072*
C330.8708 (4)0.2504 (4)0.7466 (3)0.0480 (12)
H330.88360.18870.72810.058*
F11.3151 (4)0.3046 (6)0.9873 (4)0.153 (3)
F21.4208 (3)0.3002 (4)0.7394 (4)0.133 (2)
F30.8319 (2)0.2247 (2)0.71639 (19)0.0520 (7)
F40.8467 (4)0.0971 (4)0.4386 (2)0.1107 (16)
F50.6472 (2)0.1067 (3)0.9116 (2)0.0688 (9)
F60.5496 (4)0.0443 (4)1.1648 (4)0.141 (2)
N10.9615 (2)0.3134 (3)1.0209 (2)0.0331 (8)
N20.9010 (3)0.2706 (3)0.8367 (2)0.0355 (8)
O11.1385 (2)0.2404 (3)0.9662 (2)0.0486 (8)
O21.0671 (2)0.1674 (2)0.8334 (2)0.0418 (7)
O30.9197 (2)0.0335 (2)0.84238 (19)0.0360 (7)
O40.9422 (2)0.1250 (2)0.8774 (2)0.0398 (7)
O50.8436 (2)0.1391 (2)0.9743 (2)0.0440 (8)
O60.8994 (2)0.0069 (2)1.0241 (2)0.0449 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.03159 (14)0.02662 (13)0.02902 (13)0.00158 (8)0.01190 (9)0.00349 (8)
C10.043 (3)0.030 (2)0.045 (3)0.0028 (19)0.022 (2)0.0029 (19)
C20.046 (3)0.036 (3)0.055 (3)0.009 (2)0.029 (2)0.006 (2)
C30.060 (3)0.056 (3)0.054 (3)0.016 (3)0.034 (3)0.004 (2)
C40.087 (5)0.082 (5)0.071 (4)0.032 (4)0.056 (4)0.020 (3)
C50.075 (4)0.088 (5)0.094 (5)0.041 (4)0.065 (4)0.042 (4)
C60.060 (4)0.118 (7)0.118 (6)0.048 (4)0.047 (4)0.043 (5)
C70.062 (4)0.089 (5)0.058 (3)0.031 (3)0.031 (3)0.033 (3)
C80.028 (2)0.033 (2)0.034 (2)0.0040 (17)0.0107 (17)0.0075 (18)
C90.034 (2)0.034 (2)0.028 (2)0.0058 (18)0.0075 (17)0.0058 (17)
C100.049 (3)0.039 (3)0.039 (2)0.005 (2)0.020 (2)0.002 (2)
C110.081 (4)0.058 (3)0.042 (3)0.010 (3)0.032 (3)0.006 (3)
C120.095 (5)0.072 (4)0.031 (3)0.014 (3)0.021 (3)0.009 (3)
C130.067 (4)0.054 (3)0.034 (3)0.004 (3)0.006 (2)0.019 (2)
C140.046 (3)0.035 (3)0.038 (2)0.008 (2)0.011 (2)0.0043 (19)
C150.031 (2)0.040 (2)0.033 (2)0.0016 (19)0.0113 (18)0.0068 (19)
C160.047 (3)0.031 (2)0.057 (3)0.001 (2)0.029 (2)0.001 (2)
C170.089 (5)0.047 (3)0.071 (4)0.018 (3)0.051 (3)0.011 (3)
C180.117 (6)0.069 (4)0.103 (5)0.022 (4)0.081 (5)0.028 (4)
C190.104 (6)0.080 (5)0.134 (7)0.002 (4)0.095 (6)0.020 (5)
C200.049 (3)0.073 (4)0.120 (6)0.006 (3)0.047 (4)0.006 (4)
C210.044 (3)0.044 (3)0.079 (4)0.006 (2)0.030 (3)0.005 (3)
C220.053 (3)0.041 (3)0.045 (3)0.003 (2)0.020 (2)0.010 (2)
C230.065 (3)0.055 (3)0.056 (3)0.012 (3)0.033 (3)0.024 (3)
C240.057 (3)0.038 (3)0.078 (4)0.004 (2)0.034 (3)0.023 (3)
C250.035 (2)0.031 (2)0.070 (3)0.0048 (19)0.023 (2)0.010 (2)
C260.030 (2)0.032 (2)0.053 (3)0.0045 (18)0.018 (2)0.006 (2)
C270.044 (3)0.029 (3)0.095 (5)0.004 (2)0.019 (3)0.006 (3)
C280.040 (3)0.036 (3)0.082 (4)0.003 (2)0.012 (3)0.011 (3)
C290.035 (2)0.037 (3)0.062 (3)0.001 (2)0.014 (2)0.010 (2)
C300.030 (2)0.031 (2)0.049 (3)0.0040 (17)0.015 (2)0.0011 (19)
C310.049 (3)0.054 (3)0.059 (3)0.007 (3)0.015 (3)0.023 (3)
C320.062 (4)0.073 (4)0.039 (3)0.008 (3)0.010 (3)0.009 (3)
C330.055 (3)0.051 (3)0.037 (3)0.010 (2)0.013 (2)0.000 (2)
F10.123 (4)0.247 (7)0.102 (4)0.105 (5)0.056 (3)0.058 (4)
F20.114 (4)0.163 (5)0.174 (5)0.081 (4)0.116 (4)0.077 (4)
F30.0626 (18)0.0388 (15)0.0505 (16)0.0103 (13)0.0131 (14)0.0080 (13)
F40.176 (5)0.118 (4)0.0343 (18)0.005 (3)0.030 (2)0.014 (2)
F50.0458 (18)0.080 (2)0.076 (2)0.0011 (17)0.0149 (17)0.0107 (19)
F60.130 (4)0.150 (5)0.206 (6)0.017 (3)0.141 (4)0.043 (4)
N10.0321 (19)0.0286 (18)0.042 (2)0.0002 (15)0.0168 (16)0.0034 (16)
N20.038 (2)0.033 (2)0.0369 (19)0.0011 (16)0.0140 (16)0.0016 (16)
O10.053 (2)0.054 (2)0.0486 (19)0.0209 (17)0.0298 (17)0.0205 (16)
O20.0395 (18)0.0489 (19)0.0399 (17)0.0076 (15)0.0170 (15)0.0039 (15)
O30.0447 (18)0.0327 (16)0.0306 (15)0.0033 (13)0.0124 (13)0.0070 (12)
O40.057 (2)0.0307 (16)0.0282 (15)0.0037 (14)0.0100 (14)0.0012 (13)
O50.0467 (19)0.0359 (18)0.057 (2)0.0036 (14)0.0269 (17)0.0006 (15)
O60.0462 (19)0.049 (2)0.0405 (18)0.0153 (16)0.0155 (15)0.0000 (15)
Geometric parameters (Å, º) top
Gd1—O32.332 (3)C15—C161.509 (6)
Gd1—O4i2.391 (3)C16—C211.382 (7)
Gd1—O6i2.397 (3)C16—C171.388 (7)
Gd1—O52.429 (3)C17—C181.391 (9)
Gd1—O12.465 (3)C17—H170.930
Gd1—O22.479 (3)C18—C191.334 (11)
Gd1—N22.597 (4)C18—H180.930
Gd1—N12.627 (3)C19—F61.359 (7)
Gd1—O62.921 (4)C19—C201.372 (10)
C1—O21.257 (5)C20—C211.381 (8)
C1—O11.267 (5)C20—H200.930
C1—C21.499 (6)C21—F51.346 (6)
C2—C71.376 (7)C22—N11.334 (6)
C2—C31.398 (7)C22—C231.395 (7)
C3—C41.385 (7)C22—H220.930
C3—H30.930C23—C241.353 (8)
C4—C51.342 (9)C23—H230.930
C4—H40.930C24—C251.402 (7)
C5—C61.325 (10)C24—H240.930
C5—F21.355 (6)C25—C261.416 (6)
C6—C71.383 (9)C25—C271.431 (7)
C6—H60.930C26—N11.362 (6)
C7—F11.295 (7)C26—C301.444 (7)
C8—O41.246 (5)C27—C281.348 (8)
C8—O31.256 (5)C27—H270.930
C8—C91.507 (5)C28—C291.426 (7)
C9—C141.390 (6)C28—H280.930
C9—C101.391 (6)C29—C311.398 (8)
C10—C111.376 (6)C29—C301.411 (6)
C10—H100.930C30—N21.358 (5)
C11—C121.360 (8)C31—C321.375 (8)
C11—H110.930C31—H310.930
C12—C131.364 (9)C32—C331.390 (7)
C12—F41.364 (6)C32—H320.930
C13—C141.387 (7)C33—N21.329 (6)
C13—H130.930C33—H330.930
C14—F31.335 (6)O4—Gd1i2.391 (3)
C15—O51.247 (5)O6—Gd1i2.397 (3)
C15—O61.255 (5)
O3—Gd1—O4i130.13 (10)F3—C14—C13117.3 (4)
O3—Gd1—O6i73.87 (11)F3—C14—C9120.3 (4)
O4i—Gd1—O6i77.68 (10)C13—C14—C9122.4 (5)
O3—Gd1—O578.14 (11)O5—C15—O6123.2 (4)
O4i—Gd1—O585.99 (12)O5—C15—C16117.4 (4)
O6i—Gd1—O5124.91 (11)O6—C15—C16119.3 (4)
O3—Gd1—O1126.62 (10)C21—C16—C17117.4 (5)
O4i—Gd1—O189.20 (11)C21—C16—C15122.3 (4)
O6i—Gd1—O183.97 (12)C17—C16—C15119.9 (5)
O5—Gd1—O1148.60 (11)C16—C17—C18120.6 (6)
O3—Gd1—O274.75 (10)C16—C17—H17119.7
O4i—Gd1—O2135.54 (11)C18—C17—H17119.7
O6i—Gd1—O276.31 (11)C19—C18—C17119.5 (6)
O5—Gd1—O2138.42 (11)C19—C18—H18120.3
O1—Gd1—O252.79 (10)C17—C18—H18120.3
O3—Gd1—N282.32 (11)C18—C19—F6120.7 (7)
O4i—Gd1—N2138.85 (11)C18—C19—C20122.7 (6)
O6i—Gd1—N2142.42 (11)F6—C19—C20116.5 (8)
O5—Gd1—N276.13 (11)C19—C20—C21117.4 (6)
O1—Gd1—N287.58 (12)C19—C20—H20121.3
O2—Gd1—N269.53 (11)C21—C20—H20121.3
O3—Gd1—N1137.20 (11)F5—C21—C20117.7 (5)
O4i—Gd1—N176.43 (11)F5—C21—C16119.9 (5)
O6i—Gd1—N1148.65 (11)C20—C21—C16122.4 (6)
O5—Gd1—N170.40 (11)N1—C22—C23123.1 (5)
O1—Gd1—N178.31 (11)N1—C22—H22118.4
O2—Gd1—N1111.36 (11)C23—C22—H22118.4
N2—Gd1—N162.75 (11)C24—C23—C22119.8 (5)
O3—Gd1—O667.18 (9)C24—C23—H23120.1
O4i—Gd1—O667.33 (10)C22—C23—H23120.1
O6i—Gd1—O677.87 (11)C23—C24—C25119.9 (5)
O5—Gd1—O647.51 (10)C23—C24—H24120.1
O1—Gd1—O6152.79 (11)C25—C24—H24120.1
O2—Gd1—O6138.53 (10)C24—C25—C26116.9 (5)
N2—Gd1—O6119.04 (10)C24—C25—C27123.2 (5)
N1—Gd1—O6107.62 (10)C26—C25—C27119.8 (5)
O2—C1—O1121.1 (4)N1—C26—C25123.1 (4)
O2—C1—C2117.8 (4)N1—C26—C30118.1 (4)
O1—C1—C2121.1 (4)C25—C26—C30118.8 (4)
C7—C2—C3116.7 (5)C28—C27—C25121.0 (5)
C7—C2—C1124.1 (4)C28—C27—H27119.5
C3—C2—C1119.1 (4)C25—C27—H27119.5
C4—C3—C2120.9 (5)C27—C28—C29121.0 (5)
C4—C3—H3119.6C27—C28—H28119.5
C2—C3—H3119.6C29—C28—H28119.5
C5—C4—C3119.0 (5)C31—C29—C30117.6 (5)
C5—C4—H4120.5C31—C29—C28122.5 (5)
C3—C4—H4120.5C30—C29—C28119.9 (5)
C6—C5—C4122.6 (6)N2—C30—C29122.7 (4)
C6—C5—F2118.5 (6)N2—C30—C26117.8 (4)
C4—C5—F2118.9 (6)C29—C30—C26119.4 (4)
C5—C6—C7119.4 (6)C32—C31—C29119.7 (5)
C5—C6—H6120.3C32—C31—H31120.2
C7—C6—H6120.3C29—C31—H31120.2
F1—C7—C2122.5 (5)C31—C32—C33118.6 (5)
F1—C7—C6116.0 (6)C31—C32—H32120.7
C2—C7—C6121.4 (5)C33—C32—H32120.7
O4—C8—O3126.0 (4)N2—C33—C32124.1 (5)
O4—C8—C9119.7 (4)N2—C33—H33117.9
O3—C8—C9114.2 (4)C32—C33—H33117.9
C14—C9—C10117.2 (4)C22—N1—C26117.1 (4)
C14—C9—C8123.9 (4)C22—N1—Gd1122.8 (3)
C10—C9—C8118.7 (4)C26—N1—Gd1119.9 (3)
C11—C10—C9121.5 (5)C33—N2—C30117.3 (4)
C11—C10—H10119.3C33—N2—Gd1121.4 (3)
C9—C10—H10119.3C30—N2—Gd1121.3 (3)
C12—C11—C10118.3 (5)C1—O1—Gd193.1 (3)
C12—C11—H11120.8C1—O2—Gd192.7 (3)
C10—C11—H11120.8C8—O3—Gd1139.2 (3)
C11—C12—C13123.7 (5)C8—O4—Gd1i136.2 (3)
C11—C12—F4118.3 (6)C15—O5—Gd1106.2 (3)
C13—C12—F4118.1 (6)C15—O6—Gd1i174.2 (3)
C12—C13—C14116.8 (5)C15—O6—Gd182.5 (3)
C12—C13—H13121.6Gd1i—O6—Gd1102.13 (11)
C14—C13—H13121.6
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[Gd2(C7H3F2O2)6(C12H8N2)2]
Mr1617.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)15.132 (3), 13.663 (3), 15.286 (3)
β (°) 109.364 (2)
V3)2981.6 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.33 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.516, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
15634, 5535, 4598
Rint0.037
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.095, 1.00
No. of reflections5535
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.69, 0.64

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the financial support of Henan University (grant No. 05YBGG013).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J. 11, 469–475.  CrossRef CAS Web of Science PubMed Google Scholar
First citationChurch, B. S. & Halvorson, H. (1959). Nature (London), 183, 124–125.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOkabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPocker, Y. & Fong, C. T. O. (1980). Biochemistry, 19, 2045–2049.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15088.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSerre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654–658.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds