organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o765-o766

4,4′-[Thio­phene-2,5-diylbis(ethyne-2,1-di­yl)]dibenzo­nitrile

aCentro de Química da Madeira, LQCMM/MMRG, Departamento de Química da Universidade da Madeira, 9000-390 Funchal, Portugal, bVTT, Sinitaival 6, PO Box 1300, FI-33101 Tampere, Finland, and cNanoscience Center, Department of Chemistry, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland
*Correspondence e-mail: Kari.Rissanen@jyu.fi

(Received 5 March 2008; accepted 25 March 2008; online 29 March 2008)

In the solid state, the title compound, C22H10N2S, forms centrosymmetric dimers by pairs of non-classical C—H⋯S hydrogen bonds linking approximately coplanar mol­ecules. The benzene ring involved in this inter­action makes a dihedral angle of only 7.21 (16)° with the thio­phene ring, while the other benzene ring is twisted somewhat out of the plane, with a dihedral angle of 39.58 (9)°. The hydrogen-bonded dimers stack on top of each other with an inter­planar spacing of 3.44 Å. C—H⋯N hydrogen bonds link together stacks that run in approximately perpendicular directions. Each mol­ecule thus inter­acts with 12 adjacent mol­ecules, five of them approaching closer than the sum of the van der Waals radii for the relevant atoms. Optimization of the inter-stack contacts contributes to the non-planarity of the mol­ecule.

Related literature

For related literature, see: Rodríguez et al. (2004[Rodríguez, J. G., Lafuente, A., Rubio, L. & Esquivias, J. (2004). Tetrahedron Lett. 45, 7061-7064.], 2006[Rodríguez, J. G., Lafuente, A., Rubio, L. & Rubio, L. (2006). Tetrahedron, 62, 3112-3122.]); Lind et al. (2004[Lind, P., Lopes, C., Öberg, K. & Eliasson, B. (2004). Chem. Phys. Lett. 387, 238-242.]); Garcia et al. (2001[Garcia, M. H., Rodrigues, J. C., Dias, A. R., Piedade, M. F. M., Duarte, M. T., Robalo, M. P. & Lopes, N. (2001). J. Organomet. Chem. 632, 133-144.]); Ornelas et al. (2005[Ornelas, C., Gandum, C., Mesquita, J., Rodrigues, J., Garcia, M. H., Lopes, N., Robalo, M. P., Nättinen, K. & Rissanen, K. (2005). Inorg. Chim. Acta, 358, 2482-2488.], 2008[Ornelas, C., Ruiz, J., Rodrigues, J. & Astruc, D. (2008). Inorg. Chem. In the press, doi:10.1021/ic800100k.]); Tour (2003[Tour, M. J. (2003). Molecular Electronics, Commercial Insights, Chemistry, Devices, Architecture and Programming. Singapore: World ScientificPublishing Co. Pte. Ltd.]).

[Scheme 1]

Experimental

Crystal data
  • C22H10N2S

  • Mr = 334.38

  • Monoclinic, P 21 /n

  • a = 5.4557 (11) Å

  • b = 19.467 (4) Å

  • c = 15.592 (3) Å

  • β = 91.89 (3)°

  • V = 1655.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 (2) K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 19547 measured reflections

  • 2906 independent reflections

  • 1762 reflections with I > 2σ(I)

  • Rint = 0.102

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.107

  • S = 1.01

  • 2906 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N1i 0.95 2.65 3.246 (4) 121
C7—H7⋯N25ii 0.95 2.65 3.384 (4) 134
C20—H20⋯N25iii 0.95 2.55 3.453 (3) 159
C5—H5⋯S12iv 0.95 3.05 3.832 (3) 141
Symmetry codes: (i) [-x-{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{5\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+3, -y+1, -z+2; (iv) -x, -y+2, -z+2.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The preparation of highly conjugated molecules has been of great interest for their potential applications in fields such as nanoelectronics (Tour, 2003) or optoelectronics (Ornelas et al., 2005, 2008; Lind et al., 2004). Terminal cyano groups provide the ability to coordinate to transition metal centres such as RuCp (Cp = cyclopentadienyl; Garcia et al., 2001; Ornelas et al., 2005) which should result in an increase of the physical properties such as the first molecular hyperpolarizability β, which is reported to rise with the coordination to cyclopentadienylruthenium type centres (Ornelas et al., 2005, 2008). As such the preparation of the π-conjugated title compound was intended for the preparation of dinuclear ruthenium complexes for nanoelectronic application.

In the solid state the title compound, C22H10N2S, forms centrosymmetric dimers by pairs of non-classical C—H···S hydrogen bonds linking approximately coplanar molecules. The benzene ring involved in this interaction makes a dihedral angle of only 7.21 (16)° with the thiophene ring, while the other benzene ring is twisted somewhat out of plane with a dihedral angle of 39.58 (9)°. The hydrogen-bonded dimers stack on top of each other with an interplanar spacing of 3.44 Å. C—H···N hydrogen bonds link together stacks that run in approximately perpendicular directions. Each molecule thus interacts with twelve ajacent molecules, five of them approaching closer than the sum of van der Waals radii for the relevant atoms. Optimisation of the inter-stack contacts contributes to the non-planarity of the molecule.

Related literature top

For related literature, see: Rodríguez et al. (2004, 2006); Lind et al. (2004); Garcia et al. (2001); Ornelas et al. (2005, 2008); Tour (2003).

Experimental top

The title compound was prepared by Sonogashira cross-coupling (Rodríguez et al., 2004, 2006) of 4-ethynylbenzonitrile (0.901 g, 7.09 mmol) and 2,5-dibromothiophene (0.800 g, 3.30 mmol) in dry tetrahydrofuran (16 ml) and N-ethyldiisopropylamine (25 ml). The reaction was catalysed by PdCl2(PPh3)2 (0.250 g, 0.360 mmol) and CuI (0.068 g, 0.36 mmol). The mixture was left under N2 atmosphere at room temperature for 17 h and then heated for 2. 5 h at 333–343 K. The resulting reaction mixture was washed with aqueous NH4Cl and extracted (3 times) with CH2Cl2. The resulting solution was dried over Na2SO4 and evaporated to dryness. The resulting dark solid was column chromatographed (Silica S60, petroleum ether/CH2Cl2 2:2.5), yielding a pale yellow solid. Slow evaporation of a CH2Cl2 solution of the title compound resulted in yellow crystals in 41% yield. 1H NMR (500 MHz, CD2Cl2): δ 7.28 (2H, s, Ar); 7.62 (4H, d, Ar, JHH = 9 Hz); 7.67 (4H, d, Ar, JHH = 9 Hz); 13C NMR (126 MHz, CD2Cl2): δ 86.5, 93.4, 112.7, 118.9, 125.2, 127.8, 132.4, 132.8, 133.6, 133.7; IR (KBr): 2227 (m), 2207 (m), 1663 (w), 1600 (s), 1490 (w),1385 (s), 1110 (w), 865 (s), 839 (s), 802 (m), 555 (m), 536 (w) cm-1; Mp: decomposes above 393 K.

Refinement top

The H atoms were visible in electron density maps, but were placed in idealized positions and allowed to ride on their parent atoms at distances of 0.95 Å (aromatic and acetylinic), 0.98 Å (methyl) and 0.99 Å (methylene) with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of (I), viewed along the b axis.
[Figure 3] Fig. 3. An alternate view of the packing of (I), showing the close C—H···N contacts (less that 0.1 Å + sum of vDW radii).
4,4'-[Thiophene-2,5-diylbis(ethyne-2,1-diyl)]dibenzonitrile top
Crystal data top
C22H10N2SF(000) = 688
Mr = 334.38Dx = 1.342 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5465 reflections
a = 5.4557 (11) Åθ = 1.0–25.0°
b = 19.467 (4) ŵ = 0.20 mm1
c = 15.592 (3) ÅT = 173 K
β = 91.89 (3)°Block, colourless
V = 1655.1 (6) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.103
ω and ϕ scansθmax = 25.0°, θmin = 3.4°
19547 measured reflectionsh = 66
2906 independent reflectionsk = 2323
1762 reflections with I > 2σ(I)l = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.1608P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.18 e Å3
2906 reflectionsΔρmin = 0.23 e Å3
226 parameters
Crystal data top
C22H10N2SV = 1655.1 (6) Å3
Mr = 334.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.4557 (11) ŵ = 0.20 mm1
b = 19.467 (4) ÅT = 173 K
c = 15.592 (3) Å0.3 × 0.2 × 0.2 mm
β = 91.89 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1762 reflections with I > 2σ(I)
19547 measured reflectionsRint = 0.103
2906 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
2906 reflectionsΔρmin = 0.23 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C21.0858 (5)1.19052 (14)0.88637 (18)0.0381 (7)
C30.9079 (4)1.13708 (12)0.87250 (18)0.0321 (7)
C40.7199 (4)1.12636 (12)0.93351 (18)0.0350 (7)
H40.70621.15480.98290.042*
C50.5532 (4)1.07398 (13)0.92173 (17)0.0338 (7)
H50.4261.0660.96360.041*
C60.5711 (4)1.03261 (12)0.84841 (17)0.0300 (6)
C70.7592 (4)1.04450 (12)0.78771 (17)0.0341 (7)
H70.77161.01670.73760.041*
C80.9275 (4)1.09612 (13)0.79951 (18)0.0371 (7)
H81.05611.10370.7580.044*
C90.3976 (4)0.97811 (13)0.83651 (16)0.0328 (7)
C100.2514 (4)0.93344 (12)0.82613 (17)0.0318 (6)
C110.0771 (4)0.88054 (12)0.81401 (17)0.0302 (6)
C130.2619 (4)0.79650 (12)0.83234 (17)0.0313 (6)
C140.1422 (4)0.79222 (13)0.75409 (17)0.0395 (7)
H140.18510.76040.7110.047*
C150.0503 (5)0.83959 (13)0.74389 (18)0.0388 (7)
H150.15170.84280.69330.047*
C160.4557 (5)0.75490 (13)0.86692 (17)0.0342 (7)
C170.6095 (4)0.71891 (13)0.89930 (17)0.0329 (7)
C180.7787 (4)0.67373 (12)0.94359 (17)0.0303 (6)
C190.9777 (4)0.64472 (12)0.90311 (17)0.0332 (7)
H191.00490.65530.84470.04*
C201.1351 (4)0.60097 (13)0.94690 (17)0.0339 (7)
H201.27170.58190.9190.041*
C211.0941 (4)0.58472 (12)1.03170 (18)0.0298 (6)
C220.8960 (4)0.61295 (13)1.07333 (18)0.0346 (7)
H220.86820.60161.13150.041*
C230.7403 (4)0.65760 (12)1.02936 (18)0.0352 (7)
H230.6060.67751.05770.042*
C241.2582 (5)0.53837 (13)1.07783 (17)0.0330 (7)
N11.2285 (4)1.23260 (12)0.89832 (16)0.0495 (7)
N251.3868 (4)0.50197 (11)1.11512 (15)0.0434 (6)
S120.13508 (11)0.85961 (3)0.89414 (5)0.0369 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0375 (16)0.0321 (17)0.045 (2)0.0017 (13)0.0037 (14)0.0089 (14)
C30.0283 (14)0.0245 (14)0.0436 (19)0.0030 (12)0.0046 (13)0.0035 (14)
C40.0353 (15)0.0327 (16)0.0373 (18)0.0024 (12)0.0045 (13)0.0046 (13)
C50.0295 (14)0.0381 (16)0.0332 (18)0.0002 (12)0.0059 (13)0.0021 (14)
C60.0286 (14)0.0263 (15)0.0352 (18)0.0019 (12)0.0043 (12)0.0030 (13)
C70.0371 (15)0.0335 (16)0.0315 (18)0.0001 (13)0.0008 (13)0.0010 (13)
C80.0328 (15)0.0383 (17)0.040 (2)0.0002 (13)0.0031 (13)0.0054 (15)
C90.0314 (15)0.0358 (16)0.0313 (18)0.0013 (13)0.0019 (12)0.0007 (13)
C100.0332 (15)0.0312 (16)0.0310 (17)0.0008 (13)0.0029 (12)0.0005 (13)
C110.0296 (14)0.0265 (14)0.0347 (18)0.0017 (11)0.0027 (12)0.0045 (13)
C130.0303 (14)0.0275 (15)0.0363 (18)0.0030 (12)0.0043 (12)0.0054 (13)
C140.0504 (17)0.0369 (17)0.0312 (19)0.0158 (14)0.0024 (14)0.0009 (14)
C150.0492 (17)0.0386 (17)0.0285 (18)0.0105 (14)0.0014 (13)0.0016 (14)
C160.0343 (15)0.0315 (16)0.0369 (18)0.0015 (13)0.0047 (13)0.0001 (14)
C170.0315 (15)0.0305 (15)0.0367 (18)0.0017 (13)0.0018 (13)0.0007 (13)
C180.0304 (15)0.0245 (14)0.0360 (18)0.0026 (12)0.0010 (13)0.0010 (13)
C190.0339 (15)0.0325 (16)0.0333 (17)0.0018 (13)0.0036 (13)0.0032 (13)
C200.0301 (15)0.0325 (16)0.039 (2)0.0028 (12)0.0033 (13)0.0019 (14)
C210.0272 (14)0.0254 (15)0.0366 (19)0.0016 (11)0.0047 (12)0.0008 (13)
C220.0340 (15)0.0388 (16)0.0308 (17)0.0011 (13)0.0001 (13)0.0001 (13)
C230.0291 (14)0.0361 (17)0.0405 (19)0.0032 (12)0.0014 (13)0.0037 (14)
C240.0324 (15)0.0314 (16)0.0350 (18)0.0016 (13)0.0026 (13)0.0064 (14)
N10.0471 (15)0.0394 (15)0.0626 (19)0.0092 (12)0.0082 (13)0.0070 (13)
N250.0435 (14)0.0459 (15)0.0405 (16)0.0087 (12)0.0057 (12)0.0037 (12)
S120.0353 (4)0.0392 (4)0.0360 (5)0.0052 (3)0.0028 (3)0.0052 (3)
Geometric parameters (Å, º) top
C2—N11.149 (3)C13—S121.721 (3)
C2—C31.444 (4)C14—C151.403 (3)
C3—C81.391 (4)C14—H140.95
C3—C41.392 (4)C15—H150.95
C4—C51.383 (3)C16—C171.192 (3)
C4—H40.95C17—C181.436 (3)
C5—C61.399 (3)C18—C191.393 (3)
C5—H50.95C18—C231.396 (3)
C6—C71.392 (3)C19—C201.375 (3)
C6—C91.438 (3)C19—H190.95
C7—C81.378 (3)C20—C211.385 (3)
C7—H70.95C20—H200.95
C8—H80.95C21—C221.392 (3)
C9—C101.195 (3)C21—C241.446 (4)
C10—C111.418 (3)C22—C231.382 (3)
C11—C151.365 (3)C22—H220.95
C11—S121.724 (3)C23—H230.95
C13—C141.367 (3)C24—N251.143 (3)
C13—C161.424 (4)
N1—C2—C3179.1 (3)C13—C14—H14123.4
C8—C3—C4120.6 (2)C15—C14—H14123.4
C8—C3—C2120.1 (2)C11—C15—C14113.1 (2)
C4—C3—C2119.3 (2)C11—C15—H15123.4
C5—C4—C3119.5 (2)C14—C15—H15123.4
C5—C4—H4120.2C17—C16—C13176.4 (3)
C3—C4—H4120.2C16—C17—C18174.9 (3)
C4—C5—C6120.3 (2)C19—C18—C23119.1 (2)
C4—C5—H5119.8C19—C18—C17121.9 (2)
C6—C5—H5119.8C23—C18—C17118.9 (2)
C7—C6—C5119.3 (2)C20—C19—C18120.6 (2)
C7—C6—C9120.6 (2)C20—C19—H19119.7
C5—C6—C9120.1 (2)C18—C19—H19119.7
C8—C7—C6120.7 (2)C19—C20—C21119.8 (2)
C8—C7—H7119.7C19—C20—H20120.1
C6—C7—H7119.7C21—C20—H20120.1
C7—C8—C3119.6 (2)C20—C21—C22120.5 (2)
C7—C8—H8120.2C20—C21—C24120.1 (2)
C3—C8—H8120.2C22—C21—C24119.5 (2)
C10—C9—C6179.1 (3)C23—C22—C21119.4 (3)
C9—C10—C11179.8 (3)C23—C22—H22120.3
C15—C11—C10128.4 (2)C21—C22—H22120.3
C15—C11—S12110.82 (18)C22—C23—C18120.5 (2)
C10—C11—S12120.8 (2)C22—C23—H23119.8
C14—C13—C16129.1 (2)C18—C23—H23119.8
C14—C13—S12110.75 (18)N25—C24—C21179.2 (3)
C16—C13—S12120.1 (2)C13—S12—C1192.05 (12)
C13—C14—C15113.3 (2)
C8—C3—C4—C50.8 (4)C23—C18—C19—C200.2 (4)
C2—C3—C4—C5178.2 (2)C17—C18—C19—C20179.2 (2)
C3—C4—C5—C60.9 (4)C18—C19—C20—C210.9 (4)
C4—C5—C6—C70.4 (4)C19—C20—C21—C220.7 (4)
C4—C5—C6—C9179.9 (2)C19—C20—C21—C24179.6 (2)
C5—C6—C7—C80.4 (4)C20—C21—C22—C230.2 (4)
C9—C6—C7—C8179.2 (2)C24—C21—C22—C23179.6 (2)
C6—C7—C8—C30.5 (4)C21—C22—C23—C180.8 (4)
C4—C3—C8—C70.0 (4)C19—C18—C23—C220.6 (4)
C2—C3—C8—C7178.9 (2)C17—C18—C23—C22178.4 (2)
C16—C13—C14—C15176.4 (2)C14—C13—S12—C110.5 (2)
S12—C13—C14—C150.1 (3)C16—C13—S12—C11177.2 (2)
C10—C11—C15—C14179.9 (2)C15—C11—S12—C130.8 (2)
S12—C11—C15—C140.8 (3)C10—C11—S12—C13179.9 (2)
C13—C14—C15—C110.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N1i0.952.653.246 (4)121
C7—H7···N25ii0.952.653.384 (4)134
C20—H20···N25iii0.952.553.453 (3)159
C5—H5···S12iv0.953.053.832 (3)141
Symmetry codes: (i) x3/2, y1/2, z+3/2; (ii) x5/2, y+3/2, z1/2; (iii) x+3, y+1, z+2; (iv) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC22H10N2S
Mr334.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)5.4557 (11), 19.467 (4), 15.592 (3)
β (°) 91.89 (3)
V3)1655.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19547, 2906, 1762
Rint0.103
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.107, 1.01
No. of reflections2906
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.23

Computer programs: COLLECT (Hooft, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N1i0.952.653.246 (4)121.4
C7—H7···N25ii0.952.653.384 (4)134.4
C20—H20···N25iii0.952.553.453 (3)159.4
C5—H5···S12iv0.953.053.832 (3)140.7
Symmetry codes: (i) x3/2, y1/2, z+3/2; (ii) x5/2, y+3/2, z1/2; (iii) x+3, y+1, z+2; (iv) x, y+2, z+2.
 

Acknowledgements

This research was supported by Fundação para a Ciência e a Tecnologia (Portugal) through FEDER-funded project POCTI/CTM/41495/2001 (JF and JR), the PhD grant SFRH/BD/29325/2006 (JF) and by the sabbatical research grant SFRH/BSAB/632/2006 (JR). JR and JF thank the University of Jyväskylä for supporting their visits, respectively, as a visiting professor and as a PhD student at the Nanoscience Center, Department of Chemistry. The Academy of Finland is gratefully acknowledged for a research grant (No. 122350, KR).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGarcia, M. H., Rodrigues, J. C., Dias, A. R., Piedade, M. F. M., Duarte, M. T., Robalo, M. P. & Lopes, N. (2001). J. Organomet. Chem. 632, 133–144.  CSD CrossRef CAS Google Scholar
First citationHooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLind, P., Lopes, C., Öberg, K. & Eliasson, B. (2004). Chem. Phys. Lett. 387, 238–242.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOrnelas, C., Gandum, C., Mesquita, J., Rodrigues, J., Garcia, M. H., Lopes, N., Robalo, M. P., Nättinen, K. & Rissanen, K. (2005). Inorg. Chim. Acta, 358, 2482–2488.  Web of Science CSD CrossRef CAS Google Scholar
First citationOrnelas, C., Ruiz, J., Rodrigues, J. & Astruc, D. (2008). Inorg. Chem. In the press, doi:10.1021/ic800100k.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRodríguez, J. G., Lafuente, A., Rubio, L. & Esquivias, J. (2004). Tetrahedron Lett. 45, 7061–7064.  Google Scholar
First citationRodríguez, J. G., Lafuente, A., Rubio, L. & Rubio, L. (2006). Tetrahedron, 62, 3112–3122.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTour, M. J. (2003). Molecular Electronics, Commercial Insights, Chemistry, Devices, Architecture and Programming. Singapore: World ScientificPublishing Co. Pte. Ltd.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o765-o766
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds