organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o661-o662

tert-Butyl 5-(4-meth­oxy­phen­yl)-1-methyl-2-oxopyrrolidin-3-yl carbonate

aInstitute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 5 February 2008; accepted 27 February 2008; online 5 March 2008)

In the title compound, C17H23NO5, the pyrrolidinone ring is in an envelope conformation. The tert-butyl carbonate and 4-methoxy­phenyl groups are arranged on the same side of the pyrrolidinone ring. The meth­oxy group is coplanar with the attached benzene ring. The mol­ecules are linked into chains along the b axis via C—H⋯O hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the biological properties of pyrrolidine alkaloids, see: Iida et al. (1986[Iida, H., Yamazaki, N. & Kibayashi, C. (1986). Tetrahedron Lett. 27, 5393-5396.]); Matkhalikova et al. (1969[Matkhalikova, S. F., Malikov, V. M. & Yunusov, S. Y. (1969). Chem Abstr. 71, 13245z.]); Reddy & Rao (2006[Reddy, J. S. & Rao, B. V. (2006). J. Org. Chem. 76, 2224-2227.]); Royles (1996[Royles, B. J. L. (1996). Chem. Rev. 95, 1961-2001.]). For syntheses of compounds containing a tetra­mic acid ring, see: Chandrasekhar et al. (2005[Chandrasekhar, S., Jagadeshwar, V. & Prakash, S. J. (2005). Tetrahedron Lett. 46, 3127-3129.], 2006[Chandrasekhar, S., Saritha, B., Jagadeshwar, V. & Prakash, S. J. (2006). Tetrahedron Asymmetry, 17, 1380-1386.]); Gurjar et al. (2006[Gurjar, M. K., Borhade, R. G., Puranik, V. G. & Ramana, C. V. (2006). Tetrahedron Lett. 47, 6979-6981.]); Yoda et al. (1996[Yoda, H., Nakajima, T. & Takabe, K. (1996). Tetrahedron Lett. 31, 5531-5534.]). For a related structure, see: Mohammat et al. (2008[Mohammat, M. F., Shaameri, Z., Hamzah, A. S., Fun, H.-K. & Chantrapromma, S. (2008). Acta Cryst. E64, o578-o579.]).

[Scheme 1]

Experimental

Crystal data
  • C17H23NO5

  • Mr = 321.36

  • Monoclinic, C 2/c

  • a = 23.9157 (4) Å

  • b = 6.2788 (1) Å

  • c = 24.1224 (4) Å

  • β = 101.971 (1)°

  • V = 3543.49 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100.0 (1) K

  • 0.49 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.986

  • 21759 measured reflections

  • 5155 independent reflections

  • 3632 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.125

  • S = 1.09

  • 5155 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 1.00 2.35 2.9633 (15) 119
C4—H4⋯O1ii 1.00 2.56 3.5238 (15) 162
C11—H11A⋯O1 0.98 2.47 2.8652 (16) 104
C15—H15A⋯O3 0.98 2.45 3.011 (3) 116
C16—H16B⋯O3 0.98 2.44 2.9904 (19) 115
C17—H17A⋯O3iii 0.98 2.38 3.324 (2) 161
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chiral polyhydroxy alkaloids show remarkable biological properties. Among these, pyrrolidine alkaloids carrying an aromatic substituent on the ring are of a rare class found in nature (Reddy & Rao, 2006). The title compound, C17H23NO5, can act as an essential intermediate in the synthesis of such a hydroxyl alkaloid unit (Chandrasekhar et al., 2005; 2006; Gurjar et al., 2006; Yoda et al., 1996), which eventually can be used as a template in multi-step syntheses of natural products such as codonopsinine isolated from Codonopsis clematidae. Codonopsinine exhibits antibiotic and hypotensive activities without affecting the central nervous system (Matkhalikova et al., 1969). We have synthesized the title compound and its structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The pyrrolidinone ring adopts an envelope conformation, with atom C3 displaced from the C1/C2/C4/N1 plane by 0.310 (2) Å; the puckering parameters (Cremer & Pople, 1975) are Q = 0.194 (1) Å and ϕ = 111.1 (4)°. The methoxy group is coplanar with the benzene ring as indicated by the torsion angle C17–O5–C8–C7 of -2.06 (19)°. In the tert-butylcarbonate moiety, atoms C12, C13, C14, O2, O3 and O4 lie on the same plane, with O4 deviating by a maximum of 0.019 (1) Å. All bond lengths and angles show normal values (Allen et al., 1987) and are comparable with those observed in a related structure (Mohammat et al., 2008).

Weak C—H···O intramolecular interactions are observed in the molecular structure. In the crystal packing (Fig. 2), the molecules are linked into chains along the b axis via C2—H2···O1i, C4—H4···O1ii and C17—H17A···O3iii hydrogen bonds (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For biological properties of pyrrolidine alkaloids, see: Iida et al. (1986); Matkhalikova et al. (1969); Reddy & Rao (2006); Royles (1996). For syntheses of compounds containing a tetramic acid ring, see: Chandrasekhar et al. (2005, 2006); Gurjar et al. (2006); Yoda et al. (1996). For a related structure, see: Mohammat et al. (2008).

Experimental top

Equimolar amount of diethyloxalacetate sodium salt (20.00 g, 95.2 mmol), anisaldehyde (11.60 ml, 95.2 mmol) and methylamine (11.74 ml, 95.2 mmol) in ethanol (200 ml) was refluxed to obtain an α,β-diketo ester (7.78 g, 28%). Diethoxycarbonylation of this α,β-diketo ester (2.62 g, 8.94 mmol) was then successfully carried out by refluxing in 10% HCl solution to give a basic pyrrolidinone ring skeleton (0.86 g, 44%). Reduction of this diketone (0.32 g, 1.46 mmol) was carried out in sodium borohydride/methanol at 273 K to give the hydroxy keto amide (0.29 g, 92%). Protection of the hydroxyl group (0.29 g, 1.3 mmol) was successfully carried out using tert-butoxycarbonyl (Boc2O), and 4-dimethylaminopyridine (DMAP) in tetrahydrofuran (THF) via stirring at room temperature for 24 h to obtain the title compound in 76% yield (0.31 g). Colourless block-shaped single crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethyl acetate-petroleum ether (1:1 v/v) solution after several days.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95 Å (aromatic), 0.98 Å (CH3), 0.99 Å (CH2) and 1.00 Å (CH), and with Uiso = 1.5Ueq(C) for CH3 atoms and 1.2Ueq(C) for other H atoms. A rotating group model was used for methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the b axis. Hydrogen bonds are shown as dashed lines.
tert-Butyl 5-(4-methoxyphenyl)-1-methyl-2-oxopyrrolidin-3-yl carbonate top
Crystal data top
C17H23NO5F(000) = 1376
Mr = 321.36Dx = 1.205 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5155 reflections
a = 23.9157 (4) Åθ = 1.7–30.0°
b = 6.2788 (1) ŵ = 0.09 mm1
c = 24.1224 (4) ÅT = 100 K
β = 101.971 (1)°Block, colourless
V = 3543.49 (10) Å30.49 × 0.18 × 0.16 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5155 independent reflections
Radiation source: fine-focus sealed tube3632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.7°
ω scansh = 3333
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 88
Tmin = 0.958, Tmax = 0.986l = 3333
21759 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.7489P]
where P = (Fo2 + 2Fc2)/3
5155 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H23NO5V = 3543.49 (10) Å3
Mr = 321.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.9157 (4) ŵ = 0.09 mm1
b = 6.2788 (1) ÅT = 100 K
c = 24.1224 (4) Å0.49 × 0.18 × 0.16 mm
β = 101.971 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5155 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3632 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.986Rint = 0.035
21759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.10Δρmax = 0.30 e Å3
5155 reflectionsΔρmin = 0.27 e Å3
213 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.74746 (4)1.13213 (14)0.78815 (4)0.0273 (2)
O20.62826 (4)1.08149 (14)0.74372 (3)0.0269 (2)
O30.58372 (4)0.94891 (18)0.65973 (4)0.0389 (3)
O40.55809 (4)1.25800 (16)0.69566 (4)0.0339 (2)
O50.63462 (4)0.40108 (16)1.02990 (4)0.0344 (2)
N10.73427 (4)0.81417 (16)0.83037 (4)0.0214 (2)
C10.72075 (5)0.9674 (2)0.79119 (5)0.0210 (2)
C20.66622 (5)0.90078 (19)0.75060 (5)0.0215 (2)
H20.67470.85860.71320.026*
C30.64411 (5)0.7111 (2)0.77840 (5)0.0264 (3)
H3A0.63000.59910.75010.032*
H3B0.61250.75410.79680.032*
C40.69576 (5)0.6296 (2)0.82289 (5)0.0212 (2)
H40.71420.50770.80680.025*
C50.68121 (5)0.56408 (19)0.87850 (5)0.0207 (2)
C60.69206 (5)0.3607 (2)0.89980 (5)0.0237 (3)
H60.70950.26050.87920.028*
C70.67799 (5)0.2985 (2)0.95081 (5)0.0261 (3)
H70.68610.15830.96490.031*
C80.65208 (5)0.4434 (2)0.98043 (5)0.0260 (3)
C90.64158 (6)0.6501 (2)0.96005 (5)0.0301 (3)
H90.62430.75050.98070.036*
C100.65630 (5)0.7092 (2)0.90992 (5)0.0273 (3)
H100.64940.85100.89650.033*
C110.78953 (5)0.8054 (2)0.86899 (6)0.0310 (3)
H11A0.81140.93390.86440.046*
H11B0.81050.67950.86050.046*
H11C0.78400.79700.90810.046*
C120.58881 (5)1.0836 (2)0.69533 (5)0.0235 (3)
C130.50992 (5)1.3048 (2)0.64753 (6)0.0335 (3)
C140.48639 (8)1.5091 (3)0.66671 (10)0.0726 (7)
H14A0.47321.48350.70200.109*
H14B0.45431.55850.63740.109*
H14C0.51641.61790.67320.109*
C150.53223 (8)1.3349 (4)0.59443 (9)0.0818 (8)
H15A0.54621.19850.58300.123*
H15B0.56361.43830.60140.123*
H15C0.50151.38780.56420.123*
C160.46593 (6)1.1316 (3)0.64296 (8)0.0547 (5)
H16A0.45711.10580.68030.082*
H16B0.48081.00080.62930.082*
H16C0.43111.17530.61630.082*
C170.64211 (8)0.1904 (3)1.05145 (7)0.0444 (4)
H17A0.62830.18161.08690.067*
H17B0.68280.15301.05860.067*
H17C0.62040.09131.02370.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0283 (5)0.0219 (5)0.0342 (5)0.0031 (4)0.0121 (4)0.0018 (4)
O20.0266 (4)0.0269 (5)0.0260 (4)0.0102 (4)0.0026 (3)0.0026 (4)
O30.0367 (5)0.0479 (7)0.0282 (5)0.0156 (5)0.0021 (4)0.0096 (5)
O40.0270 (5)0.0296 (5)0.0414 (5)0.0104 (4)0.0019 (4)0.0008 (4)
O50.0511 (6)0.0321 (6)0.0239 (4)0.0066 (5)0.0167 (4)0.0021 (4)
N10.0198 (5)0.0218 (5)0.0217 (5)0.0030 (4)0.0023 (4)0.0007 (4)
C10.0222 (5)0.0204 (6)0.0224 (6)0.0020 (5)0.0098 (4)0.0017 (5)
C20.0228 (6)0.0201 (6)0.0216 (5)0.0064 (5)0.0046 (4)0.0001 (5)
C30.0241 (6)0.0279 (7)0.0248 (6)0.0042 (5)0.0002 (5)0.0015 (5)
C40.0234 (6)0.0180 (6)0.0222 (6)0.0025 (5)0.0050 (4)0.0011 (5)
C50.0202 (5)0.0207 (6)0.0210 (5)0.0027 (5)0.0037 (4)0.0009 (5)
C60.0260 (6)0.0212 (6)0.0250 (6)0.0007 (5)0.0075 (5)0.0001 (5)
C70.0316 (6)0.0206 (6)0.0262 (6)0.0006 (5)0.0064 (5)0.0019 (5)
C80.0294 (6)0.0281 (7)0.0209 (6)0.0071 (5)0.0060 (5)0.0031 (5)
C90.0389 (7)0.0252 (7)0.0287 (6)0.0007 (6)0.0128 (5)0.0065 (6)
C100.0347 (7)0.0208 (6)0.0272 (6)0.0004 (5)0.0083 (5)0.0003 (5)
C110.0228 (6)0.0358 (8)0.0312 (7)0.0027 (6)0.0014 (5)0.0025 (6)
C120.0206 (5)0.0274 (7)0.0240 (6)0.0037 (5)0.0083 (5)0.0038 (5)
C130.0204 (6)0.0369 (8)0.0409 (8)0.0074 (6)0.0011 (5)0.0119 (6)
C140.0545 (11)0.0502 (12)0.0977 (16)0.0303 (10)0.0199 (11)0.0041 (11)
C150.0520 (10)0.134 (2)0.0651 (12)0.0401 (13)0.0254 (9)0.0665 (14)
C160.0263 (7)0.0538 (11)0.0761 (12)0.0002 (7)0.0078 (7)0.0168 (10)
C170.0646 (10)0.0396 (9)0.0351 (8)0.0043 (8)0.0242 (7)0.0091 (7)
Geometric parameters (Å, º) top
O1—C11.2257 (15)C7—H70.95
O2—C121.3403 (14)C8—C91.3917 (19)
O2—C21.4411 (14)C9—C101.3788 (18)
O3—C121.1934 (15)C9—H90.95
O4—C121.3195 (15)C10—H100.95
O4—C131.4854 (15)C11—H11A0.98
O5—C81.3694 (15)C11—H11B0.98
O5—C171.4188 (18)C11—H11C0.98
N1—C11.3404 (15)C13—C151.498 (2)
N1—C111.4516 (15)C13—C161.501 (2)
N1—C41.4679 (15)C13—C141.512 (2)
C1—C21.5182 (16)C14—H14A0.98
C2—C31.5150 (18)C14—H14B0.98
C2—H21.00C14—H14C0.98
C3—C41.5459 (16)C15—H15A0.98
C3—H3A0.99C15—H15B0.98
C3—H3B0.99C15—H15C0.98
C4—C51.5112 (16)C16—H16A0.98
C4—H41.00C16—H16B0.98
C5—C61.3807 (17)C16—H16C0.98
C5—C101.3951 (17)C17—H17A0.98
C6—C71.3970 (17)C17—H17B0.98
C6—H60.95C17—H17C0.98
C7—C81.3807 (18)
C12—O2—C2114.90 (9)C9—C10—C5121.08 (12)
C12—O4—C13120.12 (11)C9—C10—H10119.5
C8—O5—C17117.54 (11)C5—C10—H10119.5
C1—N1—C11122.27 (10)N1—C11—H11A109.5
C1—N1—C4115.26 (9)N1—C11—H11B109.5
C11—N1—C4120.90 (10)H11A—C11—H11B109.5
O1—C1—N1126.54 (11)N1—C11—H11C109.5
O1—C1—C2125.62 (11)H11A—C11—H11C109.5
N1—C1—C2107.83 (10)H11B—C11—H11C109.5
O2—C2—C3113.61 (10)O3—C12—O4128.22 (11)
O2—C2—C1107.08 (9)O3—C12—O2124.61 (11)
C3—C2—C1105.26 (9)O4—C12—O2107.17 (10)
O2—C2—H2110.2O4—C13—C15109.70 (11)
C3—C2—H2110.2O4—C13—C16109.42 (12)
C1—C2—H2110.2C15—C13—C16113.41 (17)
C2—C3—C4105.40 (9)O4—C13—C14101.90 (12)
C2—C3—H3A110.7C15—C13—C14112.05 (16)
C4—C3—H3A110.7C16—C13—C14109.72 (14)
C2—C3—H3B110.7C13—C14—H14A109.5
C4—C3—H3B110.7C13—C14—H14B109.5
H3A—C3—H3B108.8H14A—C14—H14B109.5
N1—C4—C5111.08 (9)C13—C14—H14C109.5
N1—C4—C3102.39 (10)H14A—C14—H14C109.5
C5—C4—C3114.10 (10)H14B—C14—H14C109.5
N1—C4—H4109.7C13—C15—H15A109.5
C5—C4—H4109.7C13—C15—H15B109.5
C3—C4—H4109.7H15A—C15—H15B109.5
C6—C5—C10118.05 (11)C13—C15—H15C109.5
C6—C5—C4121.46 (11)H15A—C15—H15C109.5
C10—C5—C4120.49 (11)H15B—C15—H15C109.5
C5—C6—C7121.68 (12)C13—C16—H16A109.5
C5—C6—H6119.2C13—C16—H16B109.5
C7—C6—H6119.2H16A—C16—H16B109.5
C8—C7—C6119.19 (12)C13—C16—H16C109.5
C8—C7—H7120.4H16A—C16—H16C109.5
C6—C7—H7120.4H16B—C16—H16C109.5
O5—C8—C7125.01 (12)O5—C17—H17A109.5
O5—C8—C9115.06 (12)O5—C17—H17B109.5
C7—C8—C9119.93 (12)H17A—C17—H17B109.5
C10—C9—C8120.04 (12)O5—C17—H17C109.5
C10—C9—H9120.0H17A—C17—H17C109.5
C8—C9—H9120.0H17B—C17—H17C109.5
C11—N1—C1—O112.17 (19)C3—C4—C5—C1058.06 (15)
C4—N1—C1—O1177.97 (11)C10—C5—C6—C70.94 (18)
C11—N1—C1—C2167.57 (11)C4—C5—C6—C7179.13 (11)
C4—N1—C1—C21.77 (13)C5—C6—C7—C80.63 (18)
C12—O2—C2—C388.44 (12)C17—O5—C8—C72.06 (19)
C12—O2—C2—C1155.79 (10)C17—O5—C8—C9177.48 (13)
O1—C1—C2—O248.13 (15)C6—C7—C8—O5177.96 (11)
N1—C1—C2—O2132.13 (10)C6—C7—C8—C91.56 (19)
O1—C1—C2—C3169.34 (11)O5—C8—C9—C10178.65 (12)
N1—C1—C2—C310.92 (12)C7—C8—C9—C100.9 (2)
O2—C2—C3—C4135.30 (10)C8—C9—C10—C50.7 (2)
C1—C2—C3—C418.46 (12)C6—C5—C10—C91.61 (18)
C1—N1—C4—C5135.47 (11)C4—C5—C10—C9178.45 (11)
C11—N1—C4—C558.52 (14)C13—O4—C12—O30.5 (2)
C1—N1—C4—C313.27 (13)C13—O4—C12—O2179.21 (10)
C11—N1—C4—C3179.29 (11)C2—O2—C12—O30.52 (18)
C2—C3—C4—N118.89 (12)C2—O2—C12—O4179.77 (9)
C2—C3—C4—C5139.01 (11)C12—O4—C13—C1563.23 (18)
N1—C4—C5—C6122.88 (12)C12—O4—C13—C1661.79 (16)
C3—C4—C5—C6122.01 (12)C12—O4—C13—C14177.89 (14)
N1—C4—C5—C1057.05 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i1.002.352.9633 (15)119
C4—H4···O1ii1.002.563.5238 (15)162
C11—H11A···O10.982.472.8652 (16)104
C15—H15A···O30.982.453.011 (3)116
C16—H16B···O30.982.442.9904 (19)115
C17—H17A···O3iii0.982.383.324 (2)161
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x, y1, z; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H23NO5
Mr321.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)23.9157 (4), 6.2788 (1), 24.1224 (4)
β (°) 101.971 (1)
V3)3543.49 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.958, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
21759, 5155, 3632
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.10
No. of reflections5155
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i1.002.34812.9633 (15)119
C4—H4···O1ii1.002.55823.5238 (15)162
C11—H11A···O10.982.47062.8652 (16)104
C15—H15A···O30.982.44913.011 (3)116
C16—H16B···O30.982.44012.9904 (19)115
C17—H17A···O3iii0.982.38153.324 (2)161
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x, y1, z; (iii) x, y+1, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors acknowledge the generous support of Universiti Teknologi MARA and Universiti Sains Malaysia, and the financial support of the Ministry of Science, Technology and Innovation (E-Science grant No. SF0050–02-01–01). HKF and SC thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekhar, S., Jagadeshwar, V. & Prakash, S. J. (2005). Tetrahedron Lett. 46, 3127–3129.  Web of Science CrossRef CAS Google Scholar
First citationChandrasekhar, S., Saritha, B., Jagadeshwar, V. & Prakash, S. J. (2006). Tetrahedron Asymmetry, 17, 1380–1386.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGurjar, M. K., Borhade, R. G., Puranik, V. G. & Ramana, C. V. (2006). Tetrahedron Lett. 47, 6979–6981.  Web of Science CSD CrossRef CAS Google Scholar
First citationIida, H., Yamazaki, N. & Kibayashi, C. (1986). Tetrahedron Lett. 27, 5393–5396.  CSD CrossRef Web of Science Google Scholar
First citationMatkhalikova, S. F., Malikov, V. M. & Yunusov, S. Y. (1969). Chem Abstr. 71, 13245z.  Google Scholar
First citationMohammat, M. F., Shaameri, Z., Hamzah, A. S., Fun, H.-K. & Chantrapromma, S. (2008). Acta Cryst. E64, o578–o579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReddy, J. S. & Rao, B. V. (2006). J. Org. Chem. 76, 2224–2227.  Google Scholar
First citationRoyles, B. J. L. (1996). Chem. Rev. 95, 1961–2001.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoda, H., Nakajima, T. & Takabe, K. (1996). Tetrahedron Lett. 31, 5531–5534.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o661-o662
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds