metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­zinc(II) dipicrate

aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, bDepartment of Physics, The Madura College, Madurai 625 011, India, and cDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk

(Received 9 February 2008; accepted 10 March 2008; online 29 March 2008)

In the title compound, [Zn(H2O)6](C6H2N3O7)2, the ZnII ion is located on an inversion center and is coordinated by six water mol­ecules in an octa­hedral geometry. The picrate anions have no coordination inter­actions with the ZnII atom. The three nitro groups are twisted away from the attached benzene ring by19.8 (3), 6.5 (4) and 28.6 (3)°. There are numerous O—H⋯O hydrogen bonds in the crystal structure.

Related literature

For related literature, see: Gartland et al. (1974[Gartland, G. L., Freeman, G. R. & Bugg, C. E. (1974). Acta Cryst. B30, 1841-1849.]); Herbstein et al. (1977[Herbstein, F. H., Kapon, M. & Wielinski, S. (1977). Acta Cryst. B33, 649-654.]); Liu et al. (2008[Liu, C., Shi, X., Du, B., Wu, C. & Zhang, M. (2008). Acta Cryst. E64, m270-m271.]); Maartmann-Moe (1969[Maartmann-Moe, K. (1969). Acta Cryst. B25, 1452-1460.]); Yang et al. (2001[Yang, L., Zhang, T. L., Feng, C. G., Zhang, J. G. & Yu, K. B. (2001). Energ. Mater. 9, 37-39.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(H2O)6](C6H2N3O7)2

  • Mr = 629.68

  • Triclinic, [P \overline 1]

  • a = 7.8571 (4) Å

  • b = 8.3311 (6) Å

  • c = 8.9897 (7) Å

  • α = 89.8350 (11)°

  • β = 83.097 (1)°

  • γ = 72.8370 (9)°

  • V = 557.84 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 293 (2) K

  • 0.13 × 0.11 × 0.10 mm

Data collection
  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.854, Tmax = 0.886

  • 2441 measured reflections

  • 1971 independent reflections

  • 1908 reflections with I > 2σ(I)

  • Rint = 0.006

  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.087

  • S = 1.14

  • 1971 reflections

  • 196 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3W—H3WB⋯O1i 0.82 (2) 2.02 (2) 2.781 (2) 153 (3)
O3W—H3WB⋯O2i 0.82 (2) 2.38 (3) 2.972 (3) 130 (3)
O3W—H3WA⋯O2ii 0.84 (2) 2.07 (2) 2.880 (3) 164 (3)
O2W—H2WB⋯O3ii 0.82 (2) 2.48 (3) 3.083 (3) 131 (3)
O1W—H1WA⋯O6iii 0.83 (4) 1.99 (4) 2.799 (3) 164 (3)
O1W—H1WB⋯O1iv 0.80 (4) 1.99 (4) 2.705 (2) 149 (3)
O1W—H1WB⋯O6iv 0.80 (4) 2.24 (4) 2.839 (2) 132 (3)
O2W—H2WB⋯O4v 0.82 (2) 2.22 (3) 2.931 (3) 144 (3)
O2W—H2WA⋯O5v 0.82 (2) 2.57 (3) 3.097 (3) 123 (3)
O2W—H2WA⋯O7vi 0.82 (2) 2.46 (2) 3.223 (3) 154 (3)
Symmetry codes: (i) x-1, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) -x+1, -y, -z+1; (v) x, y, z+1; (vi) -x, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Picric acid forms salts with many organic and metallic cations (Gartland et al., 1974). Picrates with various degrees of hydration are formed by metals (e.g. Li, Na), the alkaline earths (e.g. Cd, Hg) and various transition metals (e.g. Al, Y). Crystal structures have been reported for isomorphous NH4 and K picrates (Maartmann-Moe, 1969), thallium picrate (Herbstein et al., 1977) and recently for manganese picrate (Liu et al., 2008). The present work reports the crystal structure of the title compound, a zinc picrate. This work is part of a systematic investigation on the structures of the metal complexes of picric acid.

In the crystal structure of the title compound, each ZnII ion is coordinated by the O atoms of six water molecules and not by the O atoms from the picrate anions. The Zn—O distances range from 2.0297 (16) to 2.1126 (17) Å. The coordination polyhedra around the ZnII ion can be described as a distorted octahedron. The picrate anion adopts a keto form with a C1—O1 bond distance of 1.242 (3) Å; the C6—C1 [1.457 (3) Å] and C2—C1 [1.456 (3) Å] bond distances are longer than the other C—C bond lengths of the benzene ring. The three nitro groups are twisted out of the attached benzene ring by 19.8 (3)° [N1/O2/O3], 6.5 (4)° [N2/O4/O5] and 28.6 (3)° [N3/O6/O7]. The twisting of the nitro groups may be attributed to the O—H···O hydrogen bonding interactions taking place between water and picrate O atoms. The C2—C1—C6 bond angle of 111.20 (18)° is narrower than the corresponding angle in picric acid (116.4 (5)°; Yang et al., 2001).

The packing of molecules is governed by large number of O—H···O hydrogen bonds (Table 1). π···π interactions are observed between the benzene rings of inversion related picrate ions, with a centroid to centroid distance of 3.6268 (11) Å (Fig. 2).

Related literature top

For related literature, see: Gartland et al. (1974); Herbstein et al. (1977); Liu et al. (2008); Maartmann-Moe (1969); Yang et al. (2001).

Experimental top

Colourless needle shaped single crystals of the title compound were grown from a saturated aqueous solution containing picric acid and zinc chloride in a 1:1 stoichiometric ratio.

Refinement top

O-bound H atoms were located in a difference Fourier map and their positional parameters were refined, with Uiso(H) = 1.5Ueq(O). Some of the O—H distances were restrained to 0.85 (2) Å. C-bound H atoms were placed at calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93 Å, and Uiso = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Atoms labeled with the suffix a and double prime (") are generated by the symmetry operations (-x, 1 - y, 1 - z) and (1 - x,1 - y, 1 - z), respectively.
[Figure 2] Fig. 2. A packing diagram of the title compound. Dashed lines indicate π-π interactions.
Hexaaquazinc(II) dipicrate top
Crystal data top
[Zn(H2O)6](C6H2N3O7)2Z = 1
Mr = 629.68F(000) = 320
Triclinic, P1Dx = 1.874 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8571 (4) ÅCell parameters from 25 reflections
b = 8.3311 (6) Åθ = 2–25°
c = 8.9897 (7) ŵ = 1.22 mm1
α = 89.8350 (11)°T = 293 K
β = 83.097 (1)°Needle, colourless
γ = 72.8370 (9)°0.13 × 0.11 × 0.10 mm
V = 557.84 (7) Å3
Data collection top
Nonius MACH-3
diffractometer
1908 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.006
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω–2θ scansh = 19
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.854, Tmax = 0.886l = 1010
2441 measured reflections2 standard reflections every 60 min
1971 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.2704P]
where P = (Fo2 + 2Fc2)/3
1971 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.43 e Å3
4 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Zn(H2O)6](C6H2N3O7)2γ = 72.8370 (9)°
Mr = 629.68V = 557.84 (7) Å3
Triclinic, P1Z = 1
a = 7.8571 (4) ÅMo Kα radiation
b = 8.3311 (6) ŵ = 1.22 mm1
c = 8.9897 (7) ÅT = 293 K
α = 89.8350 (11)°0.13 × 0.11 × 0.10 mm
β = 83.097 (1)°
Data collection top
Nonius MACH-3
diffractometer
1908 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.006
Tmin = 0.854, Tmax = 0.8862 standard reflections every 60 min
2441 measured reflections intensity decay: none
1971 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0314 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.43 e Å3
1971 reflectionsΔρmin = 0.71 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.50000.50000.02629 (14)
O1W0.2724 (2)0.4246 (2)0.4648 (2)0.0388 (4)
H1WA0.325 (5)0.498 (5)0.458 (4)0.058*
H1WB0.328 (5)0.351 (5)0.513 (4)0.058*
O2W0.0055 (3)0.5054 (2)0.73549 (19)0.0421 (4)
H2WB0.085 (3)0.504 (5)0.774 (4)0.063*
H2WA0.055 (5)0.439 (4)0.775 (4)0.063*
O3W0.0111 (2)0.7546 (2)0.4830 (2)0.0404 (4)
H3WA0.014 (5)0.812 (4)0.549 (3)0.061*
H3WB0.104 (3)0.817 (4)0.455 (4)0.061*
O10.6551 (2)0.1387 (2)0.37983 (19)0.0378 (4)
O20.8538 (3)0.0707 (2)0.3227 (3)0.0595 (6)
O30.7109 (3)0.3187 (3)0.2651 (3)0.0595 (6)
O40.2551 (3)0.3894 (2)0.0507 (2)0.0517 (5)
O50.0834 (3)0.2284 (3)0.0310 (2)0.0547 (5)
O60.4083 (3)0.3049 (3)0.3983 (2)0.0514 (5)
O70.2971 (3)0.3042 (3)0.1909 (2)0.0571 (5)
N10.7226 (3)0.1697 (2)0.2785 (2)0.0353 (4)
N20.2129 (3)0.2680 (3)0.0013 (2)0.0380 (5)
N30.3679 (3)0.2413 (3)0.2789 (2)0.0350 (4)
C10.5553 (3)0.0462 (3)0.2971 (2)0.0265 (4)
C20.5767 (3)0.1112 (3)0.2393 (2)0.0275 (4)
C30.4649 (3)0.2134 (3)0.1486 (2)0.0303 (5)
H30.48330.31430.11780.036*
C40.3249 (3)0.1648 (3)0.1037 (2)0.0302 (5)
C50.2933 (3)0.0163 (3)0.1492 (2)0.0304 (5)
H50.19930.01540.11730.037*
C60.4035 (3)0.0836 (3)0.2424 (2)0.0278 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0234 (2)0.0250 (2)0.0316 (2)0.00531 (14)0.01323 (14)0.00959 (13)
O1W0.0258 (8)0.0363 (9)0.0567 (11)0.0088 (7)0.0161 (7)0.0218 (8)
O2W0.0460 (11)0.0465 (10)0.0327 (9)0.0074 (8)0.0172 (8)0.0094 (7)
O3W0.0395 (10)0.0272 (9)0.0598 (11)0.0089 (7)0.0290 (8)0.0117 (8)
O10.0341 (9)0.0369 (9)0.0472 (10)0.0110 (7)0.0233 (7)0.0217 (7)
O20.0513 (12)0.0418 (11)0.0980 (16)0.0184 (9)0.0471 (11)0.0189 (10)
O30.0736 (14)0.0418 (11)0.0806 (15)0.0325 (10)0.0394 (12)0.0258 (10)
O40.0565 (12)0.0461 (11)0.0510 (11)0.0064 (9)0.0245 (9)0.0264 (9)
O50.0469 (11)0.0612 (12)0.0593 (12)0.0097 (10)0.0363 (10)0.0197 (10)
O60.0471 (11)0.0599 (12)0.0616 (12)0.0293 (9)0.0297 (9)0.0399 (10)
O70.0721 (14)0.0606 (13)0.0585 (12)0.0428 (11)0.0275 (11)0.0166 (10)
N10.0406 (11)0.0325 (10)0.0379 (10)0.0134 (9)0.0182 (9)0.0084 (8)
N20.0372 (11)0.0385 (11)0.0298 (10)0.0053 (9)0.0136 (8)0.0075 (8)
N30.0278 (10)0.0398 (11)0.0412 (11)0.0128 (8)0.0119 (8)0.0136 (9)
C10.0245 (10)0.0266 (10)0.0260 (10)0.0023 (8)0.0079 (8)0.0063 (8)
C20.0292 (11)0.0272 (10)0.0267 (10)0.0065 (9)0.0105 (8)0.0047 (8)
C30.0359 (12)0.0257 (10)0.0262 (10)0.0028 (9)0.0083 (9)0.0058 (8)
C40.0292 (11)0.0316 (11)0.0244 (10)0.0022 (9)0.0107 (8)0.0065 (8)
C50.0232 (10)0.0387 (12)0.0270 (10)0.0034 (9)0.0087 (8)0.0046 (9)
C60.0257 (10)0.0300 (11)0.0272 (10)0.0062 (8)0.0069 (8)0.0083 (8)
Geometric parameters (Å, º) top
Zn1—O1Wi2.0297 (16)O4—N21.228 (3)
Zn1—O1W2.0297 (16)O5—N21.224 (3)
Zn1—O3Wi2.1025 (16)O6—N31.230 (3)
Zn1—O3W2.1025 (16)O7—N31.221 (3)
Zn1—O2Wi2.1126 (17)N1—C21.451 (3)
Zn1—O2W2.1126 (17)N2—C41.451 (3)
O1W—H1WA0.83 (4)N3—C61.451 (3)
O1W—H1WB0.80 (4)C1—C21.456 (3)
O2W—H2WB0.822 (18)C1—C61.457 (3)
O2W—H2WA0.825 (18)C2—C31.374 (3)
O3W—H3WA0.837 (18)C3—C41.381 (3)
O3W—H3WB0.824 (19)C3—H30.93
O1—C11.242 (3)C4—C51.383 (3)
O2—N11.223 (3)C5—C61.374 (3)
O3—N11.224 (3)C5—H50.93
O1Wi—Zn1—O1W180.0O3—N1—C2118.43 (19)
O1Wi—Zn1—O3Wi92.05 (7)O5—N2—O4123.3 (2)
O1W—Zn1—O3Wi87.95 (7)O5—N2—C4118.6 (2)
O1Wi—Zn1—O3W87.95 (7)O4—N2—C4118.1 (2)
O1W—Zn1—O3W92.05 (7)O7—N3—O6122.8 (2)
O3Wi—Zn1—O3W180.0O7—N3—C6118.70 (19)
O1Wi—Zn1—O2Wi92.82 (8)O6—N3—C6118.5 (2)
O1W—Zn1—O2Wi87.18 (8)O1—C1—C2124.7 (2)
O3Wi—Zn1—O2Wi93.38 (8)O1—C1—C6124.1 (2)
O3W—Zn1—O2Wi86.62 (8)C2—C1—C6111.20 (18)
O1Wi—Zn1—O2W87.18 (8)C3—C2—N1115.76 (19)
O1W—Zn1—O2W92.82 (8)C3—C2—C1124.3 (2)
O3Wi—Zn1—O2W86.62 (8)N1—C2—C1119.89 (18)
O3W—Zn1—O2W93.38 (8)C2—C3—C4119.3 (2)
O2Wi—Zn1—O2W180.0C2—C3—H3120.3
Zn1—O1W—H1WA118 (2)C4—C3—H3120.3
Zn1—O1W—H1WB120 (3)C3—C4—C5121.54 (19)
H1WA—O1W—H1WB107 (3)C3—C4—N2119.3 (2)
Zn1—O2W—H2WB121 (3)C5—C4—N2119.1 (2)
Zn1—O2W—H2WA111 (3)C6—C5—C4118.8 (2)
H2WB—O2W—H2WA112 (4)C6—C5—H5120.6
Zn1—O3W—H3WA125 (3)C4—C5—H5120.6
Zn1—O3W—H3WB116 (2)C5—C6—N3115.6 (2)
H3WA—O3W—H3WB104 (3)C5—C6—C1124.8 (2)
O2—N1—O3121.6 (2)N3—C6—C1119.51 (18)
O2—N1—C2119.98 (19)
O2—N1—C2—C3160.3 (2)O5—N2—C4—C56.7 (3)
O3—N1—C2—C319.3 (3)O4—N2—C4—C5172.1 (2)
O2—N1—C2—C120.3 (3)C3—C4—C5—C60.6 (3)
O3—N1—C2—C1160.1 (2)N2—C4—C5—C6177.90 (19)
O1—C1—C2—C3179.5 (2)C4—C5—C6—N3176.93 (19)
C6—C1—C2—C31.8 (3)C4—C5—C6—C10.7 (3)
O1—C1—C2—N10.2 (3)O7—N3—C6—C526.2 (3)
C6—C1—C2—N1178.87 (19)O6—N3—C6—C5152.9 (2)
N1—C2—C3—C4178.65 (19)O7—N3—C6—C1150.2 (2)
C1—C2—C3—C42.0 (3)O6—N3—C6—C130.7 (3)
C2—C3—C4—C50.7 (3)O1—C1—C6—C5179.1 (2)
C2—C3—C4—N2176.59 (19)C2—C1—C6—C50.4 (3)
O5—N2—C4—C3176.0 (2)O1—C1—C6—N33.0 (3)
O4—N2—C4—C35.2 (3)C2—C1—C6—N3175.65 (19)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3WB···O1ii0.82 (2)2.02 (2)2.781 (2)153 (3)
O3W—H3WB···O2ii0.82 (2)2.38 (3)2.972 (3)130 (3)
O3W—H3WA···O2iii0.84 (2)2.07 (2)2.880 (3)164 (3)
O2W—H2WB···O3iii0.82 (2)2.48 (3)3.083 (3)131 (3)
O1W—H1WA···O6iv0.83 (4)1.99 (4)2.799 (3)164 (3)
O1W—H1WB···O1v0.80 (4)1.99 (4)2.705 (2)149 (3)
O1W—H1WB···O6v0.80 (4)2.24 (4)2.839 (2)132 (3)
O2W—H2WB···O4vi0.82 (2)2.22 (3)2.931 (3)144 (3)
O2W—H2WA···O5vi0.82 (2)2.57 (3)3.097 (3)123 (3)
O2W—H2WA···O7vii0.82 (2)2.46 (2)3.223 (3)154 (3)
Symmetry codes: (ii) x1, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x+1, y, z+1; (vi) x, y, z+1; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(H2O)6](C6H2N3O7)2
Mr629.68
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8571 (4), 8.3311 (6), 8.9897 (7)
α, β, γ (°)89.8350 (11), 83.097 (1), 72.8370 (9)
V3)557.84 (7)
Z1
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.13 × 0.11 × 0.10
Data collection
DiffractometerNonius MACH-3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.854, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
2441, 1971, 1908
Rint0.006
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.087, 1.14
No. of reflections1971
No. of parameters196
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.71

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3WB···O1i0.82 (2)2.02 (2)2.781 (2)153 (3)
O3W—H3WB···O2i0.82 (2)2.38 (3)2.972 (3)130 (3)
O3W—H3WA···O2ii0.84 (2)2.07 (2)2.880 (3)164 (3)
O2W—H2WB···O3ii0.82 (2)2.48 (3)3.083 (3)131 (3)
O1W—H1WA···O6iii0.83 (4)1.99 (4)2.799 (3)164 (3)
O1W—H1WB···O1iv0.80 (4)1.99 (4)2.705 (2)149 (3)
O1W—H1WB···O6iv0.80 (4)2.24 (4)2.839 (2)132 (3)
O2W—H2WB···O4v0.82 (2)2.22 (3)2.931 (3)144 (3)
O2W—H2WA···O5v0.82 (2)2.57 (3)3.097 (3)123 (3)
O2W—H2WA···O7vi0.82 (2)2.46 (2)3.223 (3)154 (3)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
 

Acknowledgements

The authors thank the UGC for the SAP programme and the DST for the FIST programme.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGartland, G. L., Freeman, G. R. & Bugg, C. E. (1974). Acta Cryst. B30, 1841–1849.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHerbstein, F. H., Kapon, M. & Wielinski, S. (1977). Acta Cryst. B33, 649–654.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLiu, C., Shi, X., Du, B., Wu, C. & Zhang, M. (2008). Acta Cryst. E64, m270–m271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaartmann-Moe, K. (1969). Acta Cryst. B25, 1452–1460.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Zhang, T. L., Feng, C. G., Zhang, J. G. & Yu, K. B. (2001). Energ. Mater. 9, 37–39.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds