organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl-2-p-tolyl-4-[3-(tri­fluoro­meth­yl)phen­yl]pyridazin-3(2H)-one

aState Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: zyq8165@nankai.edu.cn

(Received 12 February 2008; accepted 3 March 2008; online 7 March 2008)

In the title mol­ecule, C19H15F3N2O, the benzene rings of the tolyl and trifluoro­methyl­phenyl groups form dihedral angles of 64.1 (2) and 38.5 (2)°, respectively, with the pyridazine ring. The CF3 group is disordered over two orientations, with site-occupancy factors of ca 0.56 and 0.44.

Related literature

For related literature, see: Heinisch & Kopelent (1992[Heinisch, G. & Kopelent, H. (1992). Prog. Med. Chem. 29, 141-183.]); Kolar & Tisler (1999[Kolar, P. & Tisler, M. (1999). Adv. Heterocycl. Chem. 75, 167-241.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15F3N2O

  • Mr = 344.33

  • Monoclinic, C 2/c

  • a = 20.902 (6) Å

  • b = 4.2898 (13) Å

  • c = 37.683 (11) Å

  • β = 101.534 (5)°

  • V = 3310.6 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 294 (2) K

  • 0.52 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 0.983

  • 7702 measured reflections

  • 2907 independent reflections

  • 1988 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.170

  • S = 1.05

  • 2907 reflections

  • 256 parameters

  • 51 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many pyridazine derivatives have been found to exhibit biological activities such as insecticidal, fungicidal, herbicidal, plant-growth regulatory activity, etc. (Heinisch & Kopelent, 1992). For example, pyridate, credazine and maleic hydrazide (Kolar & Tisler, 1999) have been commercialized as herbicides. In order to discover new biologically active pyridazine compounds, the title compound was synthesized and its structure is reported here.

In the molecule of the title compound (Fig. 1), the central pyridazine ring (C9—C12/N1/N2) forms dihedral angles of 64.1 (2)° and 38.5 (2)°, respectively, with the C1—C6 and C13—C18 benzene rings. The C2—C1—N1—N2, C2—C1—N1—C12, C6—C1—N1—N2, C6—C1—N1—C12, C10—C11—C13—C14, C12—C11—C13—C14, C10—C11—C13—C18 and C12—C11—C13—C18 torsion angles are -115.7 (3), 65.2 (4), 64.5 (4), -114.6 (3), -38.5 (5), 140.2 (3), 141.6 (3) and -39.7 (5)°, respectively. No significant hydrogen bonding interactions are observed in the crystal structure.

Related literature top

For related literature, see: Heinisch & Kopelent (1992); Kolar & Tisler (1999).

Experimental top

A mixture of ethyl 2-(3-trifluoromethylphenyl)-4-oxopentanoate (2.3 mmol) and 4-methylphenylhydrazine (2.3 mmol) and glacial acetic acid (1 ml) was stirred at room temperature for 2 h. The precipitate formed was filtered and recrystallized from ethanol. Single crystals suitable for X-ray analysis were grown from a ethyl acetate-petroleum ether (3:1 v/v) solution at room temperature.

Refinement top

The trifluoromethyl group is disordered over two orienatations (C19/F1/F2/F3 and C19/F1'/F2'/F3') with refined occupancies of 0.564 (15) and 0.436 (15). All C—F distances were restrained to be equal and the Uij components of disordered F atoms were restrained to be approximately isotropic. The H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Only one disorder component is shown.
6-Methyl-2-p-tolyl-4-[3-(trifluoromethyl)phenyl]pyridazin- 3(2H)-one top
Crystal data top
C19H15F3N2OF(000) = 1424
Mr = 344.33Dx = 1.382 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2694 reflections
a = 20.902 (6) Åθ = 2.2–26.2°
b = 4.2898 (13) ŵ = 0.11 mm1
c = 37.683 (11) ÅT = 294 K
β = 101.534 (5)°Block, colourless
V = 3310.6 (17) Å30.52 × 0.20 × 0.16 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2907 independent reflections
Radiation source: fine-focus sealed tube1988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2417
Tmin = 0.945, Tmax = 0.983k = 54
7702 measured reflectionsl = 3644
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0755P)2 + 3.8729P]
where P = (Fo2 + 2Fc2)/3
2907 reflections(Δ/σ)max = 0.002
256 parametersΔρmax = 0.20 e Å3
51 restraintsΔρmin = 0.25 e Å3
Crystal data top
C19H15F3N2OV = 3310.6 (17) Å3
Mr = 344.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.902 (6) ŵ = 0.11 mm1
b = 4.2898 (13) ÅT = 294 K
c = 37.683 (11) Å0.52 × 0.20 × 0.16 mm
β = 101.534 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2907 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1988 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.983Rint = 0.035
7702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05951 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
2907 reflectionsΔρmin = 0.25 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.15529 (10)0.4998 (7)0.16676 (6)0.0680 (8)
N10.22749 (11)0.2163 (6)0.14191 (6)0.0444 (6)
N20.24743 (11)0.0589 (6)0.11419 (7)0.0474 (7)
C10.27804 (13)0.2541 (8)0.17437 (8)0.0423 (7)
C20.27033 (14)0.1120 (9)0.20615 (8)0.0529 (9)
H20.23360.00920.20670.064*
C30.31796 (14)0.1520 (9)0.23731 (8)0.0530 (9)
H30.31270.05670.25870.064*
C40.37291 (14)0.3305 (8)0.23708 (8)0.0498 (8)
C50.37977 (15)0.4657 (9)0.20447 (9)0.0583 (9)
H50.41700.58230.20370.070*
C60.33258 (14)0.4312 (8)0.17308 (8)0.0514 (8)
H60.33770.52560.15160.062*
C70.42303 (18)0.3813 (12)0.27183 (9)0.0780 (12)
H7A0.40270.35200.29230.117*
H7B0.44000.58940.27210.117*
H7C0.45810.23440.27300.117*
C80.22624 (17)0.1579 (10)0.05424 (9)0.0675 (10)
H8A0.26970.23530.06270.101*
H8B0.22610.01660.03450.101*
H8C0.19740.32910.04620.101*
C90.20357 (14)0.0106 (8)0.08460 (8)0.0471 (8)
C100.13750 (14)0.1112 (8)0.08120 (8)0.0475 (8)
H100.10750.06700.06000.057*
C110.11739 (13)0.2704 (8)0.10827 (8)0.0432 (7)
C120.16574 (13)0.3414 (8)0.14129 (8)0.0469 (8)
C130.04906 (13)0.3800 (8)0.10537 (8)0.0445 (8)
C140.01367 (14)0.4972 (7)0.07268 (8)0.0463 (8)
H140.03330.50830.05260.056*
C150.05036 (14)0.5971 (8)0.06965 (9)0.0488 (8)
C160.08032 (16)0.5813 (9)0.09917 (10)0.0613 (10)
H160.12330.64680.09720.074*
C170.04563 (16)0.4667 (11)0.13184 (10)0.0695 (11)
H170.06560.45520.15170.083*
C180.01841 (15)0.3695 (10)0.13515 (9)0.0599 (10)
H180.04130.29660.15730.072*
C190.08649 (16)0.7180 (8)0.03406 (11)0.0651 (10)
F10.0909 (6)0.5095 (13)0.00586 (14)0.100 (3)0.564 (15)
F20.1439 (3)0.841 (3)0.0327 (3)0.119 (4)0.564 (15)
F30.0530 (5)0.943 (2)0.0207 (3)0.083 (3)0.564 (15)
F1'0.1325 (6)0.5147 (17)0.0190 (3)0.100 (4)0.436 (15)
F2'0.1258 (5)0.955 (2)0.0415 (3)0.080 (3)0.436 (15)
F3'0.0510 (6)0.834 (3)0.0126 (3)0.095 (4)0.436 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0453 (12)0.105 (2)0.0480 (14)0.0123 (13)0.0030 (10)0.0287 (14)
N10.0358 (12)0.0615 (17)0.0327 (13)0.0009 (12)0.0004 (10)0.0072 (12)
N20.0439 (14)0.0591 (17)0.0378 (14)0.0016 (12)0.0047 (11)0.0052 (12)
C10.0339 (14)0.056 (2)0.0336 (16)0.0044 (14)0.0004 (12)0.0054 (14)
C20.0406 (16)0.071 (2)0.0455 (19)0.0073 (16)0.0049 (14)0.0000 (17)
C30.0484 (18)0.072 (2)0.0375 (17)0.0012 (17)0.0049 (14)0.0023 (16)
C40.0384 (16)0.067 (2)0.0390 (18)0.0033 (15)0.0039 (13)0.0042 (16)
C50.0400 (16)0.081 (3)0.050 (2)0.0136 (17)0.0008 (15)0.0027 (18)
C60.0443 (17)0.067 (2)0.0405 (17)0.0022 (16)0.0029 (14)0.0062 (16)
C70.061 (2)0.117 (4)0.046 (2)0.017 (2)0.0133 (17)0.003 (2)
C80.066 (2)0.085 (3)0.050 (2)0.006 (2)0.0058 (17)0.019 (2)
C90.0447 (17)0.056 (2)0.0370 (16)0.0016 (15)0.0000 (13)0.0030 (15)
C100.0441 (16)0.057 (2)0.0360 (17)0.0083 (15)0.0044 (13)0.0038 (15)
C110.0370 (15)0.0545 (19)0.0344 (16)0.0029 (14)0.0021 (12)0.0016 (14)
C120.0371 (15)0.064 (2)0.0374 (17)0.0014 (15)0.0011 (13)0.0063 (16)
C130.0344 (15)0.058 (2)0.0372 (16)0.0064 (14)0.0019 (13)0.0015 (15)
C140.0399 (16)0.0546 (19)0.0419 (17)0.0078 (14)0.0021 (13)0.0041 (15)
C150.0392 (16)0.052 (2)0.0497 (19)0.0034 (14)0.0043 (14)0.0023 (15)
C160.0383 (16)0.079 (3)0.065 (2)0.0013 (17)0.0052 (16)0.009 (2)
C170.0475 (19)0.107 (3)0.055 (2)0.001 (2)0.0135 (16)0.000 (2)
C180.0441 (17)0.090 (3)0.0422 (18)0.0023 (18)0.0011 (14)0.0086 (19)
C190.059 (2)0.055 (2)0.071 (3)0.0049 (19)0.010 (2)0.002 (2)
F10.141 (7)0.080 (3)0.056 (3)0.001 (4)0.034 (3)0.005 (2)
F20.044 (3)0.190 (9)0.117 (6)0.025 (4)0.004 (3)0.065 (6)
F30.098 (5)0.083 (4)0.065 (5)0.008 (4)0.012 (3)0.011 (3)
F1'0.098 (6)0.079 (4)0.091 (6)0.012 (4)0.055 (5)0.008 (4)
F2'0.066 (5)0.069 (4)0.094 (5)0.021 (4)0.011 (4)0.005 (3)
F3'0.087 (5)0.155 (9)0.044 (5)0.050 (6)0.016 (4)0.024 (6)
Geometric parameters (Å, º) top
O1—C121.231 (4)C9—C101.428 (4)
N1—N21.377 (3)C10—C111.362 (4)
N1—C121.394 (4)C10—H100.93
N1—C11.457 (3)C11—C121.470 (4)
N2—C91.311 (4)C11—C131.487 (4)
C1—C61.379 (4)C13—C141.398 (4)
C1—C21.382 (4)C13—C181.400 (4)
C2—C31.390 (4)C14—C151.388 (4)
C2—H20.93C14—H140.93
C3—C41.382 (5)C15—C161.383 (5)
C3—H30.93C15—C191.494 (5)
C4—C51.392 (5)C16—C171.388 (5)
C4—C71.520 (4)C16—H160.93
C5—C61.388 (4)C17—C181.384 (5)
C5—H50.93C17—H170.93
C6—H60.93C18—H180.93
C7—H7A0.96C19—F3'1.300 (7)
C7—H7B0.96C19—F21.303 (6)
C7—H7C0.96C19—F1'1.337 (6)
C8—C91.508 (4)C19—F31.347 (6)
C8—H8A0.96C19—F2'1.370 (6)
C8—H8B0.96C19—F11.377 (6)
C8—H8C0.96
N2—N1—C12126.6 (2)O1—C12—N1120.5 (3)
N2—N1—C1114.4 (2)O1—C12—C11125.1 (3)
C12—N1—C1119.0 (2)N1—C12—C11114.3 (3)
C9—N2—N1117.2 (2)C14—C13—C18118.2 (3)
C6—C1—C2120.9 (3)C14—C13—C11120.7 (3)
C6—C1—N1119.9 (3)C18—C13—C11121.2 (3)
C2—C1—N1119.2 (3)C15—C14—C13121.0 (3)
C1—C2—C3119.3 (3)C15—C14—H14119.5
C1—C2—H2120.3C13—C14—H14119.5
C3—C2—H2120.3C16—C15—C14120.2 (3)
C4—C3—C2121.3 (3)C16—C15—C19120.7 (3)
C4—C3—H3119.4C14—C15—C19119.1 (3)
C2—C3—H3119.4C15—C16—C17119.4 (3)
C3—C4—C5118.0 (3)C15—C16—H16120.3
C3—C4—C7120.3 (3)C17—C16—H16120.3
C5—C4—C7121.7 (3)C18—C17—C16120.7 (3)
C6—C5—C4121.8 (3)C18—C17—H17119.6
C6—C5—H5119.1C16—C17—H17119.6
C4—C5—H5119.1C17—C18—C13120.5 (3)
C1—C6—C5118.7 (3)C17—C18—H18119.7
C1—C6—H6120.6C13—C18—H18119.7
C5—C6—H6120.6F3'—C19—F2117.1 (7)
C4—C7—H7A109.5F3'—C19—F1'115.9 (8)
C4—C7—H7B109.5F2—C19—F1'70.8 (5)
H7A—C7—H7B109.5F3'—C19—F324.5 (7)
C4—C7—H7C109.5F2—C19—F3103.7 (7)
H7A—C7—H7C109.5F1'—C19—F3133.8 (7)
H7B—C7—H7C109.5F3'—C19—F2'106.5 (8)
C9—C8—H8A109.5F2—C19—F2'28.5 (5)
C9—C8—H8B109.5F1'—C19—F2'99.3 (6)
H8A—C8—H8B109.5F3—C19—F2'85.6 (6)
C9—C8—H8C109.5F3'—C19—F174.2 (6)
H8A—C8—H8C109.5F2—C19—F1108.3 (5)
H8B—C8—H8C109.5F1'—C19—F147.0 (4)
N2—C9—C10121.9 (3)F3—C19—F197.8 (5)
N2—C9—C8116.7 (3)F2'—C19—F1133.5 (5)
C10—C9—C8121.4 (3)F3'—C19—C15116.2 (6)
C11—C10—C9121.5 (3)F2—C19—C15118.2 (5)
C11—C10—H10119.3F1'—C19—C15110.2 (5)
C9—C10—H10119.3F3—C19—C15112.1 (5)
C10—C11—C12118.4 (3)F2'—C19—C15106.8 (5)
C10—C11—C13122.6 (3)F1—C19—C15114.3 (3)
C12—C11—C13119.0 (3)
C12—N1—N2—C92.8 (5)C10—C11—C12—N14.0 (4)
C1—N1—N2—C9178.3 (3)C13—C11—C12—N1177.3 (3)
N2—N1—C1—C664.5 (4)C10—C11—C13—C1438.5 (5)
C12—N1—C1—C6114.6 (3)C12—C11—C13—C14140.2 (3)
N2—N1—C1—C2115.7 (3)C10—C11—C13—C18141.6 (3)
C12—N1—C1—C265.2 (4)C12—C11—C13—C1839.7 (5)
C6—C1—C2—C30.8 (5)C18—C13—C14—C150.7 (5)
N1—C1—C2—C3178.9 (3)C11—C13—C14—C15179.3 (3)
C1—C2—C3—C40.1 (5)C13—C14—C15—C160.2 (5)
C2—C3—C4—C51.0 (5)C13—C14—C15—C19179.5 (3)
C2—C3—C4—C7177.6 (3)C14—C15—C16—C170.4 (5)
C3—C4—C5—C61.6 (5)C19—C15—C16—C17179.7 (3)
C7—C4—C5—C6177.0 (4)C15—C16—C17—C180.2 (6)
C2—C1—C6—C50.3 (5)C16—C17—C18—C131.1 (6)
N1—C1—C6—C5179.5 (3)C14—C13—C18—C171.3 (5)
C4—C5—C6—C10.9 (5)C11—C13—C18—C17178.7 (3)
N1—N2—C9—C101.1 (5)C16—C15—C19—F3'155.1 (8)
N1—N2—C9—C8179.1 (3)C14—C15—C19—F3'25.6 (9)
N2—C9—C10—C111.9 (5)C16—C15—C19—F27.9 (9)
C8—C9—C10—C11178.3 (3)C14—C15—C19—F2172.7 (8)
C9—C10—C11—C120.8 (5)C16—C15—C19—F1'70.5 (9)
C9—C10—C11—C13179.5 (3)C14—C15—C19—F1'108.8 (8)
N2—N1—C12—O1174.0 (3)C16—C15—C19—F3128.5 (6)
C1—N1—C12—O15.0 (5)C14—C15—C19—F352.2 (6)
N2—N1—C12—C115.2 (5)C16—C15—C19—F2'36.4 (7)
C1—N1—C12—C11175.9 (3)C14—C15—C19—F2'144.3 (6)
C10—C11—C12—O1175.2 (3)C16—C15—C19—F1121.3 (7)
C13—C11—C12—O13.6 (5)C14—C15—C19—F158.0 (7)

Experimental details

Crystal data
Chemical formulaC19H15F3N2O
Mr344.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)20.902 (6), 4.2898 (13), 37.683 (11)
β (°) 101.534 (5)
V3)3310.6 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.52 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.945, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7702, 2907, 1988
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.170, 1.05
No. of reflections2907
No. of parameters256
No. of restraints51
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHeinisch, G. & Kopelent, H. (1992). Prog. Med. Chem. 29, 141–183.  CrossRef PubMed CAS Google Scholar
First citationKolar, P. & Tisler, M. (1999). Adv. Heterocycl. Chem. 75, 167–241.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds