organic compounds
(E)-1-(Pyridin-2-yl)ethanone O-acryloyloxime
aDepartment of Chemistry, University of Podlasie, ul. 3 Maja 54, 08-110 Siedlce, Poland, and bInstitute of General and Ecological Chemistry, Technical University, ul. Żwirki 36, 90-924 Łódź, Poland
*Correspondence e-mail: mojzych@ap.siedlce.pl
The title compound, C10H10N2O2, was synthesized by the reaction of the oxime of 2-acetylpyridine and 3-bromopropanoyl chloride in the presence of triethylamine. The molecule adopts a nearly planar chain-extended conformation with the oxime group in a trans and the acryloyl group in an s-cis conformation. This conformation is stabilized by an intramolecular C—H⋯N hydrogen bond. The screw-related molecules are linked into C(9) chains by C—H⋯O hydrogen bonds.
Related literature
For general background, see: Robertson, (1995). For the biological activity of see: Van Helden et al. (1996). For related structures, see: Mojzych et al. (2007). For the graph-set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808005436/ci2565sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808005436/ci2565Isup2.hkl
To a solution of 2-acetylpyridine (204 mg, 1.5 mmol) and triethylamine (454 mg, 4.5 mmol) in dry CH2Cl2 (5 ml) at 233 K was added 3-bromopropionyl chloride (1.5 mmol) in CH2Cl2 (2 ml) dropwise. The reaction mixture was allowed to warm to room temperature and was stirred for 12 h. It was then washed with water (2 × 10 ml), saturated aqueous sodium bicarbonate (3 × 10 ml), brine (1 × 10 ml) and dried over MgSO4. Removal of the solvent yielded the crude product which was then purified by δ: 2.55 (s, 3H), 5.99–6.02 (d, 1H, J = 10.5 Hz), 6.29–6.38 (dd, 1H, J = 10.5 Hz), 6.59–6.65 (d, 1H, J = 17.4 Hz), 7.34–7.38 (t, 1H, J = 6.6 Hz), 7.72–7.78 (t, 1H, J = 8.1 Hz), 8.12 - 8.15 (d, 1H, J = 8.1 Hz), 8.65–8.67 (d, 1H, J = 6.6 Hz). 13C NMR (CDCl3) δ: 13.11, 122.28, 125.27, 126.72, 132.59, 136.78, 149.34, 152.89, 163.71, 164.28. HR—MS (m/z) for C10H11N2O2: 191.0822 [M++H]; calcd. 191.0821.
on silica gel using CH2Cl2-hexane mixture (2:1) as to afford the title compound as a colourless solid. Yield: 216 mg (76%) and m.p. 338 K. Single crystals suitable for X-ray were grown by slow evaporation of an ethanol solution. 1H NMR (CDCl3)All H atoms were located in a difference Fourier map and were refined isotropically [C—H = 0.929 (15)–0.989 (15) Å].
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).C10H10N2O2 | F(000) = 400 |
Mr = 190.20 | Dx = 1.361 Mg m−3 |
Monoclinic, P21/n | Melting point: 338 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0240 (5) Å | Cell parameters from 166 reflections |
b = 18.4054 (14) Å | θ = 3.8–28.0° |
c = 7.8642 (6) Å | µ = 0.10 mm−1 |
β = 114.043 (1)° | T = 100 K |
V = 928.47 (12) Å3 | Prism, colourless |
Z = 4 | 0.75 × 0.13 × 0.07 mm |
Bruker SMART APEXII CCD diffractometer | 1951 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.035 |
ω scans | θmax = 28.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −9→9 |
Tmin = 0.924, Tmax = 0.993 | k = −24→24 |
15216 measured reflections | l = −10→10 |
2209 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.098 | All H-atom parameters refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0531P)2 + 0.3208P] where P = (Fo2 + 2Fc2)/3 |
2209 reflections | (Δ/σ)max = 0.001 |
167 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C10H10N2O2 | V = 928.47 (12) Å3 |
Mr = 190.20 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.0240 (5) Å | µ = 0.10 mm−1 |
b = 18.4054 (14) Å | T = 100 K |
c = 7.8642 (6) Å | 0.75 × 0.13 × 0.07 mm |
β = 114.043 (1)° |
Bruker SMART APEXII CCD diffractometer | 2209 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 1951 reflections with I > 2σ(I) |
Tmin = 0.924, Tmax = 0.993 | Rint = 0.035 |
15216 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.098 | All H-atom parameters refined |
S = 1.03 | Δρmax = 0.40 e Å−3 |
2209 reflections | Δρmin = −0.19 e Å−3 |
167 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.29133 (11) | −0.01660 (4) | 0.63817 (9) | 0.01600 (18) | |
O2 | 0.12879 (12) | −0.12207 (4) | 0.50393 (10) | 0.02091 (19) | |
N1 | 0.27586 (13) | 0.17974 (5) | 0.26737 (12) | 0.0168 (2) | |
N2 | 0.23265 (12) | 0.01032 (5) | 0.45236 (11) | 0.0149 (2) | |
C1 | 0.22032 (15) | 0.21070 (6) | 0.09936 (15) | 0.0189 (2) | |
C2 | 0.14439 (15) | 0.17215 (6) | −0.06672 (15) | 0.0189 (2) | |
C3 | 0.13150 (15) | 0.09699 (6) | −0.06045 (14) | 0.0176 (2) | |
C4 | 0.19186 (15) | 0.06379 (6) | 0.11195 (14) | 0.0157 (2) | |
C5 | 0.25793 (14) | 0.10712 (5) | 0.27155 (14) | 0.0139 (2) | |
C6 | 0.30844 (14) | 0.07431 (5) | 0.45895 (13) | 0.0137 (2) | |
C7 | 0.22368 (15) | −0.08629 (5) | 0.63995 (14) | 0.0148 (2) | |
C8 | 0.28945 (16) | −0.10972 (6) | 0.83633 (15) | 0.0184 (2) | |
C9 | 0.25144 (17) | −0.17670 (6) | 0.87484 (16) | 0.0212 (2) | |
C10 | 0.43601 (17) | 0.11625 (6) | 0.63073 (14) | 0.0179 (2) | |
H1 | 0.234 (2) | 0.2626 (8) | 0.0980 (19) | 0.023 (3)* | |
H2 | 0.106 (2) | 0.1958 (8) | −0.180 (2) | 0.026 (3)* | |
H3 | 0.081 (2) | 0.0693 (8) | −0.173 (2) | 0.027 (3)* | |
H4 | 0.185 (2) | 0.0111 (7) | 0.1226 (18) | 0.021 (3)* | |
H8 | 0.363 (2) | −0.0726 (8) | 0.931 (2) | 0.030 (4)* | |
H9A | 0.293 (2) | −0.1938 (7) | 1.002 (2) | 0.025 (3)* | |
H9B | 0.180 (2) | −0.2100 (7) | 0.776 (2) | 0.025 (3)* | |
H10A | 0.389 (2) | 0.1079 (8) | 0.726 (2) | 0.038 (4)* | |
H10B | 0.429 (2) | 0.1661 (9) | 0.605 (2) | 0.039 (4)* | |
H10C | 0.581 (3) | 0.1023 (8) | 0.673 (2) | 0.039 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0177 (4) | 0.0178 (4) | 0.0120 (3) | −0.0008 (3) | 0.0056 (3) | 0.0015 (3) |
O2 | 0.0281 (4) | 0.0172 (4) | 0.0168 (4) | −0.0010 (3) | 0.0085 (3) | −0.0012 (3) |
N1 | 0.0150 (4) | 0.0154 (4) | 0.0200 (4) | 0.0006 (3) | 0.0072 (3) | 0.0004 (3) |
N2 | 0.0158 (4) | 0.0173 (4) | 0.0119 (4) | 0.0022 (3) | 0.0059 (3) | 0.0022 (3) |
C1 | 0.0168 (5) | 0.0153 (5) | 0.0244 (5) | 0.0010 (4) | 0.0081 (4) | 0.0033 (4) |
C2 | 0.0154 (5) | 0.0227 (5) | 0.0181 (5) | 0.0023 (4) | 0.0064 (4) | 0.0067 (4) |
C3 | 0.0152 (5) | 0.0220 (5) | 0.0154 (5) | −0.0014 (4) | 0.0060 (4) | −0.0011 (4) |
C4 | 0.0147 (4) | 0.0154 (5) | 0.0176 (5) | 0.0000 (3) | 0.0072 (4) | 0.0004 (4) |
C5 | 0.0104 (4) | 0.0162 (5) | 0.0155 (5) | 0.0013 (3) | 0.0058 (3) | 0.0005 (4) |
C6 | 0.0115 (4) | 0.0160 (5) | 0.0149 (5) | 0.0024 (3) | 0.0067 (3) | −0.0007 (4) |
C7 | 0.0131 (4) | 0.0163 (5) | 0.0169 (5) | 0.0031 (3) | 0.0080 (4) | 0.0013 (4) |
C8 | 0.0167 (5) | 0.0237 (5) | 0.0156 (5) | 0.0008 (4) | 0.0073 (4) | 0.0013 (4) |
C9 | 0.0212 (5) | 0.0241 (6) | 0.0208 (5) | 0.0039 (4) | 0.0110 (4) | 0.0051 (4) |
C10 | 0.0205 (5) | 0.0181 (5) | 0.0154 (5) | −0.0027 (4) | 0.0077 (4) | −0.0025 (4) |
O1—C7 | 1.3698 (12) | C4—C5 | 1.3971 (14) |
O1—N2 | 1.4352 (10) | C4—H4 | 0.976 (13) |
O2—C7 | 1.2005 (13) | C5—C6 | 1.4954 (13) |
N1—C1 | 1.3426 (14) | C6—C10 | 1.4957 (13) |
N1—C5 | 1.3442 (13) | C7—C8 | 1.4843 (14) |
N2—C6 | 1.2849 (13) | C8—C9 | 1.3224 (15) |
C1—C2 | 1.3879 (15) | C8—H8 | 0.989 (15) |
C1—H1 | 0.962 (14) | C9—H9A | 0.972 (15) |
C2—C3 | 1.3884 (15) | C9—H9B | 0.954 (14) |
C2—H2 | 0.929 (15) | C10—H10A | 0.947 (17) |
C3—C4 | 1.3868 (14) | C10—H10B | 0.937 (16) |
C3—H3 | 0.954 (15) | C10—H10C | 0.969 (16) |
C7—O1—N2 | 112.13 (7) | N2—C6—C5 | 113.73 (8) |
C1—N1—C5 | 116.97 (9) | N2—C6—C10 | 126.54 (9) |
C6—N2—O1 | 109.45 (8) | C5—C6—C10 | 119.74 (8) |
N1—C1—C2 | 123.73 (10) | O2—C7—O1 | 125.00 (9) |
N1—C1—H1 | 116.3 (8) | O2—C7—C8 | 126.30 (9) |
C2—C1—H1 | 120.0 (8) | O1—C7—C8 | 108.69 (8) |
C3—C2—C1 | 118.79 (9) | C9—C8—C7 | 120.19 (10) |
C3—C2—H2 | 120.2 (9) | C9—C8—H8 | 124.2 (9) |
C1—C2—H2 | 121.0 (9) | C7—C8—H8 | 115.5 (9) |
C4—C3—C2 | 118.38 (9) | C8—C9—H9A | 122.2 (8) |
C4—C3—H3 | 121.3 (8) | C8—C9—H9B | 120.1 (8) |
C2—C3—H3 | 120.3 (8) | H9A—C9—H9B | 117.7 (11) |
C3—C4—C5 | 118.96 (9) | C6—C10—H10A | 111.0 (10) |
C3—C4—H4 | 121.0 (8) | C6—C10—H10B | 110.3 (10) |
C5—C4—H4 | 120.0 (8) | H10A—C10—H10B | 109.1 (13) |
N1—C5—C4 | 123.07 (9) | C6—C10—H10C | 109.4 (9) |
N1—C5—C6 | 116.01 (8) | H10A—C10—H10C | 109.9 (13) |
C4—C5—C6 | 120.90 (9) | H10B—C10—H10C | 107.0 (13) |
C7—O1—N2—C6 | −176.92 (7) | O1—N2—C6—C10 | −0.77 (13) |
C5—N1—C1—C2 | 0.84 (14) | N1—C5—C6—N2 | 160.49 (8) |
N1—C1—C2—C3 | −2.47 (15) | C4—C5—C6—N2 | −18.13 (12) |
C1—C2—C3—C4 | 1.12 (14) | N1—C5—C6—C10 | −19.37 (12) |
C2—C3—C4—C5 | 1.61 (14) | C4—C5—C6—C10 | 162.02 (9) |
C1—N1—C5—C4 | 2.13 (14) | N2—O1—C7—O2 | 0.98 (13) |
C1—N1—C5—C6 | −176.46 (8) | N2—O1—C7—C8 | −179.69 (7) |
C3—C4—C5—N1 | −3.38 (14) | O2—C7—C8—C9 | 2.73 (16) |
C3—C4—C5—C6 | 175.14 (8) | O1—C7—C8—C9 | −176.58 (9) |
O1—N2—C6—C5 | 179.39 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···N1 | 0.94 (2) | 2.438 (14) | 2.8596 (14) | 107 (1) |
C1—H1···O2i | 0.96 (2) | 2.588 (15) | 3.4581 (14) | 150 (1) |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H10N2O2 |
Mr | 190.20 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 7.0240 (5), 18.4054 (14), 7.8642 (6) |
β (°) | 114.043 (1) |
V (Å3) | 928.47 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.75 × 0.13 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.924, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15216, 2209, 1951 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.098, 1.03 |
No. of reflections | 2209 |
No. of parameters | 167 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.40, −0.19 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SIR92 (Altomare et al., 1993), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···N1 | 0.94 (2) | 2.438 (14) | 2.8596 (14) | 107 (1) |
C1—H1···O2i | 0.96 (2) | 2.588 (15) | 3.4581 (14) | 150 (1) |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Mojzych, M., Karczmarzyk, Z., Fruziński, A. & Rykowski, A. (2007). Anal. Sci. (X-Ray Str. Anal. Online), 23, x205–x206. CSD CrossRef CAS Google Scholar
Robertson, G. M. (1995). Comprehensive Organic Functional Group Transformation, Vol. 3, edited by A. R. Katritzky, O. Meth-Cohn & C. W. Rees, pp. 425–441. Oxford: Elsevier. Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Van Helden, F. P. M., Busker, R. W., Melchers, B. P. C. & Bruijnzeel, P. L. B. (1996). Arch. Toxicol. 70, 779–786. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oximes and their derivatives such as O-ethers and esters are important intermediates in organic chemistry and are well known in both analytical and coordination chemistry (Robertson, 1995). These compounds are also of interest as biologically active compounds (Van Helden et al., 1996). In this in mind we have decided to synthesize and structurally characterize a set of O-acryloyl oximes of 6-membered aza-heterocycles as 1,2,4-triazine, pyridine and pyrazine. These compounds were obtained by reaction of appropriate oximes and 3-bromopropanoyl chloride under Staudinger reaction conditions. As a part of our ongoing studies, we report herein the crystal and molecular structure of the title compound.
The geometric parameters (bond lengths, angles and torsion angles) in the title compound are very similar to those observed in a previously reported structure of (E)-1-(3-methylsulfanyl-1,2,4-triazin-5-yl)-ethanone O-acryloyl oxime (Mojzych et al., 2007). The oxime group is in trans and the acryloyl group in s-cis conformation with the torsion angles O1—N2—C6—C5 and O2—C7—C8—C9 of 179.39 (7) and 2.73 (16)°, respectively. The molecule as a whole adopts a nearly planar chain-extended conformation (Fig. 1). This conformation is stabilized by an intramolecular C10—H10B···N1 hydrogen bond leading to the formation of a five-membered ring described by the S(5) graph-set symbol (Bernstein et al., 1995).
In the crystal structure, the screw-related molecules are linked to form C(9) chains along the [010] direction by C1—H1···O2 intermolecular hydrogen bonds (Fig. 2).