organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(Pyridin-2-yl)ethanone O-acryloyloxime

aDepartment of Chemistry, University of Podlasie, ul. 3 Maja 54, 08-110 Siedlce, Poland, and bInstitute of General and Ecological Chemistry, Technical University, ul. Żwirki 36, 90-924 Łódź, Poland
*Correspondence e-mail: mojzych@ap.siedlce.pl

(Received 13 February 2008; accepted 26 February 2008; online 5 March 2008)

The title compound, C10H10N2O2, was synthesized by the reaction of the oxime of 2-acetyl­pyridine and 3-bromo­propanoyl chloride in the presence of triethyl­amine. The mol­ecule adopts a nearly planar chain-extended conformation with the oxime group in a trans and the acryloyl group in an s-cis conformation. This conformation is stabilized by an intra­molecular C—H⋯N hydrogen bond. The screw-related mol­ecules are linked into C(9) chains by C—H⋯O hydrogen bonds.

Related literature

For general background, see: Robertson, (1995[Robertson, G. M. (1995). Comprehensive Organic Functional Group Transformation, Vol. 3, edited by A. R. Katritzky, O. Meth-Cohn & C. W. Rees, pp. 425-441. Oxford: Elsevier.]). For the biological activity of oximes, see: Van Helden et al. (1996[Van Helden, F. P. M., Busker, R. W., Melchers, B. P. C. & Bruijnzeel, P. L. B. (1996). Arch. Toxicol. 70, 779-786.]). For related structures, see: Mojzych et al. (2007[Mojzych, M., Karczmarzyk, Z., Fruziński, A. & Rykowski, A. (2007). Anal. Sci. (X-Ray Str. Anal. Online), 23, x205-x206.]). For the graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2O2

  • Mr = 190.20

  • Monoclinic, P 21 /n

  • a = 7.0240 (5) Å

  • b = 18.4054 (14) Å

  • c = 7.8642 (6) Å

  • β = 114.043 (1)°

  • V = 928.47 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 (2) K

  • 0.75 × 0.13 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.924, Tmax = 0.993

  • 15216 measured reflections

  • 2209 independent reflections

  • 1951 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.098

  • S = 1.02

  • 2209 reflections

  • 167 parameters

  • All H-atom parameters refined

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯N1 0.94 (2) 2.438 (14) 2.8596 (14) 107 (1)
C1—H1⋯O2i 0.96 (2) 2.588 (15) 3.4581 (14) 150 (1)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Oximes and their derivatives such as O-ethers and esters are important intermediates in organic chemistry and are well known in both analytical and coordination chemistry (Robertson, 1995). These compounds are also of interest as biologically active compounds (Van Helden et al., 1996). In this in mind we have decided to synthesize and structurally characterize a set of O-acryloyl oximes of 6-membered aza-heterocycles as 1,2,4-triazine, pyridine and pyrazine. These compounds were obtained by reaction of appropriate oximes and 3-bromopropanoyl chloride under Staudinger reaction conditions. As a part of our ongoing studies, we report herein the crystal and molecular structure of the title compound.

The geometric parameters (bond lengths, angles and torsion angles) in the title compound are very similar to those observed in a previously reported structure of (E)-1-(3-methylsulfanyl-1,2,4-triazin-5-yl)-ethanone O-acryloyl oxime (Mojzych et al., 2007). The oxime group is in trans and the acryloyl group in s-cis conformation with the torsion angles O1—N2—C6—C5 and O2—C7—C8—C9 of 179.39 (7) and 2.73 (16)°, respectively. The molecule as a whole adopts a nearly planar chain-extended conformation (Fig. 1). This conformation is stabilized by an intramolecular C10—H10B···N1 hydrogen bond leading to the formation of a five-membered ring described by the S(5) graph-set symbol (Bernstein et al., 1995).

In the crystal structure, the screw-related molecules are linked to form C(9) chains along the [010] direction by C1—H1···O2 intermolecular hydrogen bonds (Fig. 2).

Related literature top

For general background, see: Robertson, (1995). For the biological activity of oximes, see: Van Helden et al. (1996). For related structures, see: Mojzych et al. (2007). For the graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a solution of 2-acetylpyridine (204 mg, 1.5 mmol) and triethylamine (454 mg, 4.5 mmol) in dry CH2Cl2 (5 ml) at 233 K was added 3-bromopropionyl chloride (1.5 mmol) in CH2Cl2 (2 ml) dropwise. The reaction mixture was allowed to warm to room temperature and was stirred for 12 h. It was then washed with water (2 × 10 ml), saturated aqueous sodium bicarbonate (3 × 10 ml), brine (1 × 10 ml) and dried over MgSO4. Removal of the solvent yielded the crude product which was then purified by column chromatography on silica gel using CH2Cl2-hexane mixture (2:1) as eluent to afford the title compound as a colourless solid. Yield: 216 mg (76%) and m.p. 338 K. Single crystals suitable for X-ray diffraction analysis were grown by slow evaporation of an ethanol solution. 1H NMR (CDCl3) δ: 2.55 (s, 3H), 5.99–6.02 (d, 1H, J = 10.5 Hz), 6.29–6.38 (dd, 1H, J = 10.5 Hz), 6.59–6.65 (d, 1H, J = 17.4 Hz), 7.34–7.38 (t, 1H, J = 6.6 Hz), 7.72–7.78 (t, 1H, J = 8.1 Hz), 8.12 - 8.15 (d, 1H, J = 8.1 Hz), 8.65–8.67 (d, 1H, J = 6.6 Hz). 13C NMR (CDCl3) δ: 13.11, 122.28, 125.27, 126.72, 132.59, 136.78, 149.34, 152.89, 163.71, 164.28. HR—MS (m/z) for C10H11N2O2: 191.0822 [M++H]; calcd. 191.0821.

Refinement top

All H atoms were located in a difference Fourier map and were refined isotropically [C—H = 0.929 (15)–0.989 (15) Å].

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the molecular packing in the title compound. Dashed lines indicate intermolecular hydrogen bonds.
(E)-1-(Pyridin-2-yl)ethanone O-acryloyloxime top
Crystal data top
C10H10N2O2F(000) = 400
Mr = 190.20Dx = 1.361 Mg m3
Monoclinic, P21/nMelting point: 338 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.0240 (5) ÅCell parameters from 166 reflections
b = 18.4054 (14) Åθ = 3.8–28.0°
c = 7.8642 (6) ŵ = 0.10 mm1
β = 114.043 (1)°T = 100 K
V = 928.47 (12) Å3Prism, colourless
Z = 40.75 × 0.13 × 0.07 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1951 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 99
Tmin = 0.924, Tmax = 0.993k = 2424
15216 measured reflectionsl = 1010
2209 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.098All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.3208P]
where P = (Fo2 + 2Fc2)/3
2209 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C10H10N2O2V = 928.47 (12) Å3
Mr = 190.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0240 (5) ŵ = 0.10 mm1
b = 18.4054 (14) ÅT = 100 K
c = 7.8642 (6) Å0.75 × 0.13 × 0.07 mm
β = 114.043 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2209 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1951 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.993Rint = 0.035
15216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.098All H-atom parameters refined
S = 1.03Δρmax = 0.40 e Å3
2209 reflectionsΔρmin = 0.19 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29133 (11)0.01660 (4)0.63817 (9)0.01600 (18)
O20.12879 (12)0.12207 (4)0.50393 (10)0.02091 (19)
N10.27586 (13)0.17974 (5)0.26737 (12)0.0168 (2)
N20.23265 (12)0.01032 (5)0.45236 (11)0.0149 (2)
C10.22032 (15)0.21070 (6)0.09936 (15)0.0189 (2)
C20.14439 (15)0.17215 (6)0.06672 (15)0.0189 (2)
C30.13150 (15)0.09699 (6)0.06045 (14)0.0176 (2)
C40.19186 (15)0.06379 (6)0.11195 (14)0.0157 (2)
C50.25793 (14)0.10712 (5)0.27155 (14)0.0139 (2)
C60.30844 (14)0.07431 (5)0.45895 (13)0.0137 (2)
C70.22368 (15)0.08629 (5)0.63995 (14)0.0148 (2)
C80.28945 (16)0.10972 (6)0.83633 (15)0.0184 (2)
C90.25144 (17)0.17670 (6)0.87484 (16)0.0212 (2)
C100.43601 (17)0.11625 (6)0.63073 (14)0.0179 (2)
H10.234 (2)0.2626 (8)0.0980 (19)0.023 (3)*
H20.106 (2)0.1958 (8)0.180 (2)0.026 (3)*
H30.081 (2)0.0693 (8)0.173 (2)0.027 (3)*
H40.185 (2)0.0111 (7)0.1226 (18)0.021 (3)*
H80.363 (2)0.0726 (8)0.931 (2)0.030 (4)*
H9A0.293 (2)0.1938 (7)1.002 (2)0.025 (3)*
H9B0.180 (2)0.2100 (7)0.776 (2)0.025 (3)*
H10A0.389 (2)0.1079 (8)0.726 (2)0.038 (4)*
H10B0.429 (2)0.1661 (9)0.605 (2)0.039 (4)*
H10C0.581 (3)0.1023 (8)0.673 (2)0.039 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0177 (4)0.0178 (4)0.0120 (3)0.0008 (3)0.0056 (3)0.0015 (3)
O20.0281 (4)0.0172 (4)0.0168 (4)0.0010 (3)0.0085 (3)0.0012 (3)
N10.0150 (4)0.0154 (4)0.0200 (4)0.0006 (3)0.0072 (3)0.0004 (3)
N20.0158 (4)0.0173 (4)0.0119 (4)0.0022 (3)0.0059 (3)0.0022 (3)
C10.0168 (5)0.0153 (5)0.0244 (5)0.0010 (4)0.0081 (4)0.0033 (4)
C20.0154 (5)0.0227 (5)0.0181 (5)0.0023 (4)0.0064 (4)0.0067 (4)
C30.0152 (5)0.0220 (5)0.0154 (5)0.0014 (4)0.0060 (4)0.0011 (4)
C40.0147 (4)0.0154 (5)0.0176 (5)0.0000 (3)0.0072 (4)0.0004 (4)
C50.0104 (4)0.0162 (5)0.0155 (5)0.0013 (3)0.0058 (3)0.0005 (4)
C60.0115 (4)0.0160 (5)0.0149 (5)0.0024 (3)0.0067 (3)0.0007 (4)
C70.0131 (4)0.0163 (5)0.0169 (5)0.0031 (3)0.0080 (4)0.0013 (4)
C80.0167 (5)0.0237 (5)0.0156 (5)0.0008 (4)0.0073 (4)0.0013 (4)
C90.0212 (5)0.0241 (6)0.0208 (5)0.0039 (4)0.0110 (4)0.0051 (4)
C100.0205 (5)0.0181 (5)0.0154 (5)0.0027 (4)0.0077 (4)0.0025 (4)
Geometric parameters (Å, º) top
O1—C71.3698 (12)C4—C51.3971 (14)
O1—N21.4352 (10)C4—H40.976 (13)
O2—C71.2005 (13)C5—C61.4954 (13)
N1—C11.3426 (14)C6—C101.4957 (13)
N1—C51.3442 (13)C7—C81.4843 (14)
N2—C61.2849 (13)C8—C91.3224 (15)
C1—C21.3879 (15)C8—H80.989 (15)
C1—H10.962 (14)C9—H9A0.972 (15)
C2—C31.3884 (15)C9—H9B0.954 (14)
C2—H20.929 (15)C10—H10A0.947 (17)
C3—C41.3868 (14)C10—H10B0.937 (16)
C3—H30.954 (15)C10—H10C0.969 (16)
C7—O1—N2112.13 (7)N2—C6—C5113.73 (8)
C1—N1—C5116.97 (9)N2—C6—C10126.54 (9)
C6—N2—O1109.45 (8)C5—C6—C10119.74 (8)
N1—C1—C2123.73 (10)O2—C7—O1125.00 (9)
N1—C1—H1116.3 (8)O2—C7—C8126.30 (9)
C2—C1—H1120.0 (8)O1—C7—C8108.69 (8)
C3—C2—C1118.79 (9)C9—C8—C7120.19 (10)
C3—C2—H2120.2 (9)C9—C8—H8124.2 (9)
C1—C2—H2121.0 (9)C7—C8—H8115.5 (9)
C4—C3—C2118.38 (9)C8—C9—H9A122.2 (8)
C4—C3—H3121.3 (8)C8—C9—H9B120.1 (8)
C2—C3—H3120.3 (8)H9A—C9—H9B117.7 (11)
C3—C4—C5118.96 (9)C6—C10—H10A111.0 (10)
C3—C4—H4121.0 (8)C6—C10—H10B110.3 (10)
C5—C4—H4120.0 (8)H10A—C10—H10B109.1 (13)
N1—C5—C4123.07 (9)C6—C10—H10C109.4 (9)
N1—C5—C6116.01 (8)H10A—C10—H10C109.9 (13)
C4—C5—C6120.90 (9)H10B—C10—H10C107.0 (13)
C7—O1—N2—C6176.92 (7)O1—N2—C6—C100.77 (13)
C5—N1—C1—C20.84 (14)N1—C5—C6—N2160.49 (8)
N1—C1—C2—C32.47 (15)C4—C5—C6—N218.13 (12)
C1—C2—C3—C41.12 (14)N1—C5—C6—C1019.37 (12)
C2—C3—C4—C51.61 (14)C4—C5—C6—C10162.02 (9)
C1—N1—C5—C42.13 (14)N2—O1—C7—O20.98 (13)
C1—N1—C5—C6176.46 (8)N2—O1—C7—C8179.69 (7)
C3—C4—C5—N13.38 (14)O2—C7—C8—C92.73 (16)
C3—C4—C5—C6175.14 (8)O1—C7—C8—C9176.58 (9)
O1—N2—C6—C5179.39 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···N10.94 (2)2.438 (14)2.8596 (14)107 (1)
C1—H1···O2i0.96 (2)2.588 (15)3.4581 (14)150 (1)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H10N2O2
Mr190.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.0240 (5), 18.4054 (14), 7.8642 (6)
β (°) 114.043 (1)
V3)928.47 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.75 × 0.13 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.924, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
15216, 2209, 1951
Rint0.035
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.098, 1.03
No. of reflections2209
No. of parameters167
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.40, 0.19

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SIR92 (Altomare et al., 1993), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···N10.94 (2)2.438 (14)2.8596 (14)107 (1)
C1—H1···O2i0.96 (2)2.588 (15)3.4581 (14)150 (1)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMojzych, M., Karczmarzyk, Z., Fruziński, A. & Rykowski, A. (2007). Anal. Sci. (X-Ray Str. Anal. Online), 23, x205–x206.  CSD CrossRef CAS Google Scholar
First citationRobertson, G. M. (1995). Comprehensive Organic Functional Group Transformation, Vol. 3, edited by A. R. Katritzky, O. Meth-Cohn & C. W. Rees, pp. 425–441. Oxford: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Helden, F. P. M., Busker, R. W., Melchers, B. P. C. & Bruijnzeel, P. L. B. (1996). Arch. Toxicol. 70, 779–786.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds