metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(pyrazine-2-carboxyl­ato-κ2N1,O)manganese(II) dihydrate

aSchool of Science, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China, and bDepartment of Chemistry, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: xhd02@mails.thu.edu.cn

(Received 6 January 2008; accepted 7 March 2008; online 14 March 2008)

In the title compound, [Mn(C5H3N2O2)2(H2O)2]·2H2O, the MnII atom, lying on an inversion centre, has a distorted octa­hedral environment and the molecules are linked by O—H⋯O and N—H⋯O hydrogen bonds to form a three-dimensional supra­molecular structure.

Related literature

For related literature, see: Ciurtin et al. (2002[Ciurtin, D. M., Smith, M. D. & zur Loye, H. C. (2002). Solid State Sci. 4, 461-465.]); Dong et al. (2000[Dong, Y.-B., Smith, M. D. & zur Loye, H. C. (2000). Solid State Sci. 2, 861-870.]); Klein et al. (1982[Klein, C. L., Majeste, R. J., Trefonas, L. M. & O'Connor, C. J. (1982). Inorg. Chem. 21, 1891-1897.]); O'Connor & Sinn (1981[O'Connor, C. J. & Sinn, E. (1981). Inorg. Chem. 20, 545-551.]); Ptasiewicz-Bak et al. (1995[Ptasiewicz-Bak, H., Leciejewicz, J. & Zachara, J. (1995). J. Coord. Chem. 36, 317-326.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C5H3N2O2)2(H2O)2]·2H2O

  • Mr = 373.19

  • Monoclinic, P 21 /n

  • a = 7.233 (2) Å

  • b = 13.003 (4) Å

  • c = 8.257 (3) Å

  • β = 102.207 (5)°

  • V = 759.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 293 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.838, Tmax = 0.914

  • 4297 measured reflections

  • 1552 independent reflections

  • 1252 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 1.08

  • 1552 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O3 2.0670 (18)
Mn1—O1 2.0738 (16)
Mn1—N1 2.1246 (19)
O3—Mn1—O1i 90.24 (7)
O3—Mn1—O1 89.76 (7)
O3—Mn1—N1i 91.51 (8)
O1—Mn1—N1i 101.65 (7)
O3—Mn1—N1 88.49 (8)
O1—Mn1—N1 78.35 (7)
Symmetry code: (i) -x, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O4ii 0.85 1.79 2.639 (3) 176
O3—H3A⋯O2iii 0.85 1.87 2.715 (2) 171
O4—H4A⋯O2iv 0.85 1.98 2.806 (3) 164
O4—H4B⋯N2 0.85 2.03 2.865 (3) 170
Symmetry codes: (ii) x-1, y, z-1; (iii) -x+1, -y+1, -z; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, self-assembly processes involving metal ions and organic ligands directed by either metal coordination or hydrogen bonds have received a great deal of attention in the field of supramolecular chemistry and crystal engineering. Pyrazine carboxylic acids, containing O– or N– donors, are excellent bridging ligands when coordinated to transition metals and have been extensively studied as active ligands in the course of electron-transfer and magnetochemistry research (Klein et al., 1982; O'Connor et al., 1981). The cobalt(II), nickel(II), copper(II), zinc(II) and manganese(II) complexes of the 2-pyrazinecarboxylic acid ligand have been reported (Ciurtin et al., 2002; Dong et al., 2000; Ptasiewicz-Bak et al., 1995). Ptasiewicz-Bak et al. reported an orthorhombic manganese(II) dipyrazinate dihydrate complex (space group Fdd2), in which the coordination polyhedron around the MnII atom is a distorted octahedron with cis positioned water molecules. The title complex is another monomeric complex of MnII with the 2-pyrazinecarboxylic acid ligand, which is isostructrual to the cobalt(II) complex (Ptasiewicz-Bak et al., 1995).

The MnII atom sits on an inversion center and the coordination geometry for the MnII atom (Fig. 1) is distorted octahedral (Table 1). Each MnII atom is axially coordinated by water molecules and consists of an equatorial plane of two oxygen donors and two nitrogen donors from two chelating 2-pyrazinecarboxylato group. As a consequence of the reaction the carboxylic groups of the starting diacid in position 3 are decarboxylated while the coordinated carboxylic groups in 2-position are kept and are deprotonated. The title molecules are connected by the O—H···N and O—H···O hydrogen-bonding interactions (Fig. 2); see Table 2 for the geometric parameters describing these interactions.

Related literature top

For related literature, see: Ciurtin et al. (2002); Dong et al. (2000); Klein et al. (1982); O'Connor & Sinn (1981); Ptasiewicz-Bak et al. (1995).

Experimental top

A mixture of manganese(II) chloride tetrahydrate, (0.4 mmol, 79.2 mg), pyrazine-2,3-dicarboxylic acid (0.8 mmol, 134.5 mg), and H2O (1.0 mol, 18.0 ml) in the molar ratio of 1: 2: 2500 was sealed in a 40 ml stainless steel reactor with Teflon liner and directly heated to 160 °C, kept at 160 °C for 72 h, and then directly cooled to the room temperature. Light-yellow block-shaped crystals of the title complex were collected by filtration and washed with ethanol (2×5 ml) for the structural analysis.

Refinement top

All H atoms were initially located in difference Fourier maps and were treated isotropically in the riding-model approximation with C—H = 0.93 Å, O—H = 0.85 Å, Uiso(H) = 1.5Ueq(O), and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound and the atomic numbering scheme, with atom labels and 35% probability displacement ellipsoids for non-H atoms (small spheres for the H atoms).
[Figure 2] Fig. 2. The packing of the title compound viewed down the b axis, showing the hydrogen bond donor-acceptor atoms. H atoms have been omitted for clarity.
Diaquabis(pyrazine-2-carboxylato-κ2N1,O)manganese(II) dihydrate top
Crystal data top
[Mn(C5H3N2O2)2(H2O)2]·2H2OF(000) = 382
Mr = 373.19Dx = 1.633 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 931 reflections
a = 7.233 (2) Åθ = 3.0–26.4°
b = 13.003 (4) ŵ = 0.91 mm1
c = 8.257 (3) ÅT = 293 K
β = 102.207 (5)°Block, light-yellow
V = 759.1 (4) Å30.20 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1552 independent reflections
Radiation source: fine-focus sealed tube1252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 79
Tmin = 0.838, Tmax = 0.914k = 1615
4297 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.3749P]
where P = (Fo2 + 2Fc2)/3
1552 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Mn(C5H3N2O2)2(H2O)2]·2H2OV = 759.1 (4) Å3
Mr = 373.19Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.233 (2) ŵ = 0.91 mm1
b = 13.003 (4) ÅT = 293 K
c = 8.257 (3) Å0.20 × 0.10 × 0.10 mm
β = 102.207 (5)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1552 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1252 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.914Rint = 0.025
4297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
1552 reflectionsΔρmin = 0.23 e Å3
106 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.50000.00000.02497 (15)
C20.3799 (3)0.50843 (18)0.2061 (3)0.0321 (5)
O10.2234 (2)0.40214 (13)0.0110 (2)0.0374 (4)
N10.2126 (3)0.55522 (15)0.1991 (2)0.0344 (5)
C10.3768 (3)0.41836 (17)0.0906 (3)0.0316 (5)
C50.2082 (4)0.6331 (2)0.3022 (3)0.0449 (6)
H50.09400.66610.30150.054*
O20.5231 (2)0.36634 (14)0.1034 (2)0.0461 (5)
N20.5373 (3)0.62300 (17)0.4146 (3)0.0457 (5)
C30.5411 (3)0.5443 (2)0.3121 (3)0.0388 (6)
H30.65610.51230.31190.047*
C40.3699 (4)0.6661 (2)0.4106 (3)0.0495 (7)
H40.36120.72000.48270.059*
O30.0978 (2)0.60221 (15)0.1543 (2)0.0554 (5)
H3A0.21450.61360.14970.083*
H3B0.03280.63260.23860.083*
O40.9068 (3)0.69223 (17)0.5751 (3)0.0703 (7)
H4B0.79310.67980.52660.105*
H4A0.93410.75050.53980.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0141 (2)0.0262 (2)0.0330 (3)0.00080 (19)0.00120 (16)0.0019 (2)
C20.0266 (10)0.0339 (12)0.0354 (12)0.0008 (10)0.0058 (9)0.0064 (10)
O10.0273 (8)0.0382 (10)0.0439 (10)0.0004 (7)0.0009 (7)0.0047 (8)
N10.0285 (10)0.0322 (11)0.0419 (11)0.0015 (8)0.0061 (8)0.0012 (9)
C10.0253 (11)0.0315 (12)0.0388 (13)0.0017 (9)0.0081 (9)0.0025 (10)
C50.0421 (15)0.0396 (15)0.0527 (16)0.0052 (11)0.0098 (12)0.0058 (12)
O20.0262 (9)0.0475 (11)0.0635 (12)0.0075 (8)0.0071 (8)0.0069 (9)
N20.0465 (13)0.0424 (13)0.0438 (13)0.0070 (10)0.0005 (10)0.0009 (10)
C30.0305 (12)0.0406 (13)0.0429 (14)0.0025 (10)0.0022 (10)0.0032 (12)
C40.0584 (17)0.0384 (15)0.0495 (16)0.0011 (13)0.0066 (13)0.0080 (12)
O30.0276 (9)0.0690 (14)0.0664 (13)0.0023 (8)0.0024 (9)0.0293 (11)
O40.0569 (13)0.0736 (16)0.0679 (14)0.0166 (11)0.0148 (11)0.0273 (12)
Geometric parameters (Å, º) top
Mn1—O32.0670 (18)C1—O21.242 (3)
Mn1—O3i2.0670 (18)C5—C41.382 (4)
Mn1—O1i2.0738 (16)C5—H50.9300
Mn1—O12.0738 (16)N2—C41.328 (4)
Mn1—N1i2.1246 (19)N2—C31.332 (3)
Mn1—N12.1246 (19)C3—H30.9300
C2—N11.345 (3)C4—H40.9300
C2—C31.383 (3)O3—H3A0.8500
C2—C11.507 (3)O3—H3B0.8500
O1—C11.259 (3)O4—H4B0.8500
N1—C51.328 (3)O4—H4A0.8501
O3—Mn1—O3i180.0C5—N1—Mn1129.97 (17)
O3—Mn1—O1i90.24 (7)C2—N1—Mn1112.20 (15)
O3i—Mn1—O1i89.76 (7)O2—C1—O1125.5 (2)
O3—Mn1—O189.76 (7)O2—C1—C2118.1 (2)
O3i—Mn1—O190.24 (7)O1—C1—C2116.42 (19)
O1i—Mn1—O1180.0N1—C5—C4121.3 (2)
O3—Mn1—N1i91.51 (8)N1—C5—H5119.3
O3i—Mn1—N1i88.49 (8)C4—C5—H5119.3
O1i—Mn1—N1i78.35 (7)C4—N2—C3116.7 (2)
O1—Mn1—N1i101.65 (7)N2—C3—C2122.2 (2)
O3—Mn1—N188.49 (8)N2—C3—H3118.9
O3i—Mn1—N191.51 (8)C2—C3—H3118.9
O1i—Mn1—N1101.65 (7)N2—C4—C5121.9 (3)
O1—Mn1—N178.35 (7)N2—C4—H4119.1
N1i—Mn1—N1180.00 (8)C5—C4—H4119.1
N1—C2—C3120.4 (2)Mn1—O3—H3A123.4
N1—C2—C1115.55 (19)Mn1—O3—H3B126.9
C3—C2—C1124.1 (2)H3A—O3—H3B109.2
C1—O1—Mn1116.93 (15)H4B—O4—H4A106.2
C5—N1—C2117.5 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O4ii0.851.792.639 (3)176
O3—H3A···O2iii0.851.872.715 (2)171
O4—H4A···O2iv0.851.982.806 (3)164
O4—H4B···N20.852.032.865 (3)170
Symmetry codes: (ii) x1, y, z1; (iii) x+1, y+1, z; (iv) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C5H3N2O2)2(H2O)2]·2H2O
Mr373.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.233 (2), 13.003 (4), 8.257 (3)
β (°) 102.207 (5)
V3)759.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.838, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
4297, 1552, 1252
Rint0.025
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.08
No. of reflections1552
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O32.0670 (18)O1—C11.259 (3)
Mn1—O12.0738 (16)C1—O21.242 (3)
Mn1—N12.1246 (19)
O3—Mn1—O1i90.24 (7)O1—Mn1—N1i101.65 (7)
O3—Mn1—O189.76 (7)O3—Mn1—N188.49 (8)
O3—Mn1—N1i91.51 (8)O1—Mn1—N178.35 (7)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O4ii0.851.792.639 (3)175.8
O3—H3A···O2iii0.851.872.715 (2)170.9
O4—H4A···O2iv0.851.982.806 (3)163.8
O4—H4B···N20.852.032.865 (3)169.5
Symmetry codes: (ii) x1, y, z1; (iii) x+1, y+1, z; (iv) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 50590402).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiurtin, D. M., Smith, M. D. & zur Loye, H. C. (2002). Solid State Sci. 4, 461–465.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, Y.-B., Smith, M. D. & zur Loye, H. C. (2000). Solid State Sci. 2, 861–870.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlein, C. L., Majeste, R. J., Trefonas, L. M. & O'Connor, C. J. (1982). Inorg. Chem. 21, 1891–1897.  CSD CrossRef CAS Web of Science Google Scholar
First citationO'Connor, C. J. & Sinn, E. (1981). Inorg. Chem. 20, 545–551.  CSD CrossRef CAS Web of Science Google Scholar
First citationPtasiewicz-Bak, H., Leciejewicz, J. & Zachara, J. (1995). J. Coord. Chem. 36, 317–326.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds