metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tetra­phenyl­phospho­nium) tetra­sulfido­tungstate(VI)

aDepartment of Chemistry, Heriot–Watt University, Edinburgh EH14 4AS, Scotland
*Correspondence e-mail: chepv@hw.ac.uk

(Received 27 February 2008; accepted 18 March 2008; online 29 March 2008)

The crystal structure of the title compound, (C24H20P)2[WS4], which was prepared under hydro­thermal conditions, contains tetra­phenyl­phospho­nium cations linked by supra­molecular inter­actions into chains running along the [110] and [[\overline{1}]10] directions. The [WS4]2−anions, which lie on twofold axes, are located in the cavities created between the cation chains.

Related literature

Isostructural compounds include [Ph4P]2[MoSe4] and [Ph4P]2[WSe4] (O'Neal & Kolis, 1988[O'Neal, S. C. & Kolis, J. W. (1988). J. Am. Chem. Soc. 110, 1971-1973.]), [Ph4P]2[NiCl4] (Ruhlandt-Senge & Müller, 1990[Ruhlandt-Senge, K. & Müller, U. (1990). Z. Naturforsch. Teil B, 45, 995-999.]), and [Ph4P]2[CdBr4] and [Ph4P]2[HgBr4] (Hasselgren et al., 1997[Hasselgren, D., Dean, P. A. W., Scudder, M. L., Craig, D. C. & Dance, I. G. (1997). J. Chem. Soc. Dalton Trans. pp. 2019-2027.]). The related compounds [NH4]2[WS4] and [Ph4P][W(HS)S3] were reported by Sasvári (1963[Sasvári, K. (1963). Acta Cryst. 16, 719-724.]) and Parvez et al. (1997[Parvez, M., Boorman, P. M. & Wang, M. (1997). Acta Cryst. C53, 413-414.]), respectively. For a review on thio­metalates, see Müller et al. (1981[Müller, A., Diemann, E., Jostes, R. & Bögge, H. (1981). Angew. Chem. Int. Ed. Engl. 20, 934-955.]). Supra­molecular inter­actions between tetra­phenyl­phospho­nium cations have been discussed by Dance & Scudder (1995[Dance, I. G. & Scudder, M. L. (1995). J. Chem. Soc. Chem. Commun. pp. 1039-1040.], 1996[Dance, I. G. & Scudder, M. L. (1996). J. Chem. Soc. Dalton Trans. pp. 3755-3769.]).

[Scheme 1]

Experimental

Crystal data
  • (C24H20P)2[WS4]

  • Mr = 990.86

  • Monoclinic, C 2/c

  • a = 11.1069 (4) Å

  • b = 19.4557 (6) Å

  • c = 20.2373 (6) Å

  • β = 91.242 (2)°

  • V = 4372.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.94 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Bruker–Nonius APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.351, Tmax = 0.414

  • 26702 measured reflections

  • 6646 independent reflections

  • 4008 reflections with I > 3σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.031

  • S = 1.11

  • 4008 reflections

  • 249 parameters

  • H-atom parameters constrained

  • Δρmax = 1.47 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected geometric parameters (Å, °)

W1—S2i 2.1962 (10)
W1—S3i 2.1915 (9)
W1—S2 2.1962 (10)
W1—S3 2.1915 (9)
S2i—W1—S2 110.82 (7)
S3i—W1—S2 108.59 (4)
S3i—W1—S3 110.02 (6)
S2—W1—S3 109.40 (4)
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ATOMS (Dowty, 2000[Dowty, E. (2000). ATOMS. Version 6.1. Shape Software, Hidden Valley Road, Kingsport, Tennessee, USA.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The ability of tetrathiometallates to act as multidentate ligands has resulted in a rich coordination chemistry, which includes both discrete multimetal clusters such as [A(MS4)2]2- (A = Fe, Co, Ni, Pd, Pt, Zn, Cd; M = Mo, W) and extended structures such as NH4Cu[WS4] (Müller et al., 1981). The compound reported here is the result of our ongoing research efforts on the synthesis of novel transition metal thiometallates.

The title compound, which was prepared under hydrothermal conditions, contains discrete WS42- anions and tetraphenylphosphonium [Ph4P]+ cations. The local coordination and the atom-labelling scheme are shown in Figure 1. Each tungsten atom is surrounded by four sulfur atoms in a tetrahedral coordination. The S—W—S bond angles range from 108.59 (4) to 110.82 (7) whilst the four W—S distances are nearly identical ranging from 2.1915 (9) to 2.1962 (10) Å, and are similar to those found in [NH4]2[WS4] (Sasvári, 1963).

The [Ph4P]+ cations are arranged into zigzag chains (Figure 2) in which each phenyl group points towards another phenyl group in a neighbouring cation, with the H atoms of a given ring oriented towards the π electron density of the second phenyl ring. It has been proposed that attractive interactions between the phenyl groups of [Ph4P]+cations play a major role in the crystal packing of compounds of this type (Dance & Scudder, 1995). In particular, the so-called sextuple phenyl embrace, in which three phenyl groups of a [Ph4P]+ cation face three phenyl groups of an adjacent [Ph4P]+ cation in an edge-to-face conformation, is a frequently observed supramolecular motif (Dance & Scudder, 1996). As illustrated by Figure 2, the zigzag chains of [Ph4P]+cations found in the title compound could be described by considering each [Ph4P]+cation to interact with its two neighbours through sextuple phenyl embraces. The P···P distances within the chain are ca 6.5 Å, comparable to those observed in compounds containing this type of chain (Dance & Scudder, 1996). The structure of the title compound contains zigzag [Ph4P]+ chains running along the [110] and [110] directions (Figure 3). There are relatively short P···P distances, of ca 7.3 Å, between [Ph4P]+cations from different chains, which involve two face-to-face phenyl interactions, suggesting that there may be additional interchain supramolecular interactions. This type of interaction has been reported previously (Dance & Scudder,1996), and has been termed quadruple phenyl embrace. The tetrathiotungstate anions are located in the cavities created between the cation chains (Figure 3). A number [Ph4P]+ salts, containing chemically diverse tetrahedral anions, adopt a similar crystal structure. Isostructural compounds that have been reported include selenometallates such as [Ph4P]2[MoSe4] (O'Neal & Kolis, 1988) and [Ph4P]2[WSe4] (O'Neal & Kolis, 1988), and halometalates like [Ph4P]2[NiCl4] (Ruhlandt-Senge & Müller, 1990), [Ph4P]2[CdBr4] and [Ph4P]2[HgBr4] (Hasselgren et al., 1997).

Related literature top

Isostructural compounds include [Ph4P]2[MoSe4] and [Ph4P]2[WSe4] (O'Neal & Kolis, 1988), [Ph4P]2[NiCl4] (Ruhlandt-Senge & Müller, 1990), and [Ph4P]2[CdBr4] and [Ph4P]2[HgBr4] (Hasselgren et al., 1997). The related compounds [NH4]2[WS4] and [Ph4P][W(HS)S3] were reported by Sasvári (1963) and Parvez et al. (1997) respectively. For a review on thiometalates, see Müller et al. (1981). Supramolecular interactions between tetraphenylphosphonium cations have been discussed by Dance & Scudder (1995, 1996).

Experimental top

A mixture of [NH4]2[WS4] (0.348 g; 1 mmol) and [Ph4P]Br (0.21 g; 0.5 mmol) was loaded into a 23 ml Teflon-lined stainless autoclave, 2 ml of deionized water and 2 ml of ethylenediamine were added to the mixture. After stirring the mixture, the container was closed, heated at 443 K for 4 days, and cooled to room temperature at a cooling rate of 1 K min-1. The product was filtered, washed with deionized water, methanol and acetone and dried in air at room temperature. The product consists of large number of yellow crystals of the title compound (approximately 80% yield).

Refinement top

The H atoms were positioned geometrically, with Uiso(H) = 1.2Ueq(carbon).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Local coordination diagram for [Ph4P]2[WS4] showing the atom labelling scheme and displacement ellipsoids at 50% probability for non-H atoms. H atoms are shown as circles of arbitrary radii. [Symmetry code: (i) -x, y, 3/2 - z]
[Figure 2] Fig. 2. Zigzag chain of [Ph4P]+cations, running along the b axis, illustrating the supramolecular edge-to-face phenyl interactions. Short P···P distances (ca 6.5 Å) are shown as red lines.
[Figure 3] Fig. 3. View of the [Ph4P]2[WS4] structure along the [110] direction. The relatively short P···.P distances within the zigzag chains are shown as red lines. H atoms have been omitted for clarity.
Bis(tetraphenylphosphonium) tetrasulfidotungstate top
Crystal data top
(C24H20P)2[WS4]F(000) = 1984
Mr = 990.86Dx = 1.505 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.1069 (4) ÅCell parameters from 6646 reflections
b = 19.4557 (6) Åθ = 2.0–30.5°
c = 20.2373 (6) ŵ = 2.94 mm1
β = 91.242 (2)°T = 293 K
V = 4372.1 (2) Å3Block, yellow
Z = 40.40 × 0.30 × 0.30 mm
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
4008 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.044
ω/2θ scansθmax = 30.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.351, Tmax = 0.414k = 2726
26702 measured reflectionsl = 2828
6646 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.031 Method, part 1, Chebychev polynomial, [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 2.09 -0.539 1.80
S = 1.11(Δ/σ)max = 0.003
4008 reflectionsΔρmax = 1.47 e Å3
249 parametersΔρmin = 0.63 e Å3
0 restraints
Crystal data top
(C24H20P)2[WS4]V = 4372.1 (2) Å3
Mr = 990.86Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.1069 (4) ŵ = 2.94 mm1
b = 19.4557 (6) ÅT = 293 K
c = 20.2373 (6) Å0.40 × 0.30 × 0.30 mm
β = 91.242 (2)°
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
6646 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4008 reflections with I > 3σ(I)
Tmin = 0.351, Tmax = 0.414Rint = 0.044
26702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.031H-atom parameters constrained
S = 1.11Δρmax = 1.47 e Å3
4008 reflectionsΔρmin = 0.63 e Å3
249 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.00000.543792 (10)0.75000.0336
S20.10243 (10)0.60787 (6)0.82067 (6)0.0600
S30.12468 (8)0.47920 (5)0.69500 (5)0.0484
P40.40710 (8)0.63367 (4)0.57674 (4)0.0388
C50.3781 (3)0.70067 (18)0.63526 (17)0.0437
C60.3089 (5)0.6844 (2)0.6898 (2)0.0563
C70.2841 (6)0.7352 (3)0.7362 (2)0.0707
C80.3290 (5)0.8004 (2)0.7288 (2)0.0686
C90.3984 (5)0.8169 (2)0.6756 (3)0.0689
C100.4229 (4)0.7669 (2)0.6283 (2)0.0573
C110.5148 (4)0.66260 (19)0.5171 (2)0.0487
C120.4796 (5)0.7113 (2)0.4705 (2)0.0628
C130.5591 (6)0.7353 (3)0.4247 (3)0.0736
C140.6755 (6)0.7104 (3)0.4251 (2)0.0784
C150.7125 (4)0.6610 (3)0.4694 (3)0.0736
C160.6318 (4)0.6367 (3)0.5169 (2)0.0587
C170.4672 (3)0.56172 (17)0.62141 (17)0.0385
C180.5678 (4)0.5713 (2)0.6630 (2)0.0510
C190.6220 (4)0.5167 (3)0.6945 (2)0.0565
C200.5746 (4)0.4515 (3)0.68513 (19)0.0595
C210.4726 (4)0.44106 (19)0.6465 (2)0.0550
C220.4181 (3)0.49626 (19)0.61360 (18)0.0445
C230.2728 (3)0.60850 (18)0.53184 (17)0.0396
C240.2857 (4)0.5749 (2)0.4718 (2)0.0528
C250.1833 (4)0.5528 (2)0.43687 (19)0.0583
C260.0705 (4)0.5641 (2)0.4617 (2)0.0538
C270.0588 (4)0.5965 (2)0.5217 (2)0.0542
C280.1588 (3)0.6183 (2)0.55694 (18)0.0471
H610.27730.63680.69570.0679*
H710.23370.72410.77500.0853*
H810.31080.83630.76240.0823*
H910.43120.86440.67080.0827*
H1010.47250.77880.58930.0687*
H1210.39550.72940.47020.0758*
H1310.53290.77060.39150.0887*
H1410.73380.72870.39260.0950*
H1510.79610.64230.46810.0883*
H1610.65830.60140.55000.0706*
H1810.60070.61860.67000.0612*
H1910.69460.52370.72370.0677*
H2010.61520.41140.70680.0719*
H2110.43760.39400.64210.0663*
H2210.34500.48890.58480.0533*
H2410.36750.56660.45380.0636*
H2510.19180.52870.39360.0699*
H2610.00270.54890.43620.0647*
H2710.02310.60430.53980.0652*
H2810.14940.64120.60070.0565*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.03259 (9)0.03114 (9)0.03738 (10)0.00000.00442 (6)0.0000
S20.0597 (6)0.0606 (6)0.0602 (6)0.0175 (5)0.0126 (5)0.0253 (5)
S30.0416 (4)0.0516 (5)0.0522 (5)0.0069 (3)0.0016 (4)0.0151 (4)
P40.0428 (4)0.0362 (4)0.0375 (4)0.0004 (3)0.0005 (3)0.0010 (3)
C50.0527 (19)0.0390 (17)0.0391 (17)0.0021 (14)0.0030 (14)0.0012 (13)
C60.080 (3)0.0410 (19)0.048 (2)0.0067 (18)0.0104 (19)0.0017 (16)
C70.106 (4)0.059 (3)0.047 (2)0.010 (3)0.015 (2)0.0086 (19)
C80.104 (4)0.048 (2)0.054 (2)0.010 (2)0.006 (2)0.0130 (19)
C90.097 (4)0.039 (2)0.070 (3)0.008 (2)0.011 (3)0.0022 (19)
C100.073 (3)0.043 (2)0.056 (2)0.0090 (18)0.0019 (19)0.0008 (17)
C110.056 (2)0.0402 (17)0.050 (2)0.0044 (15)0.0076 (16)0.0003 (15)
C120.082 (3)0.049 (2)0.058 (2)0.004 (2)0.016 (2)0.0115 (19)
C130.107 (4)0.051 (2)0.064 (3)0.009 (3)0.021 (3)0.009 (2)
C140.094 (4)0.086 (4)0.057 (3)0.044 (3)0.024 (3)0.005 (3)
C150.051 (2)0.100 (4)0.070 (3)0.016 (2)0.011 (2)0.004 (3)
C160.052 (2)0.069 (3)0.055 (2)0.0096 (19)0.0031 (18)0.000 (2)
C170.0371 (15)0.0405 (17)0.0380 (15)0.0014 (12)0.0021 (12)0.0007 (12)
C180.0441 (18)0.063 (2)0.0460 (19)0.0070 (17)0.0037 (15)0.0060 (17)
C190.0375 (17)0.086 (3)0.046 (2)0.0089 (18)0.0010 (15)0.0100 (19)
C200.064 (2)0.070 (3)0.0445 (18)0.030 (2)0.0064 (16)0.014 (2)
C210.073 (3)0.041 (2)0.051 (2)0.0101 (17)0.0088 (18)0.0020 (15)
C220.0474 (18)0.0428 (18)0.0432 (18)0.0004 (14)0.0007 (14)0.0007 (14)
C230.0432 (17)0.0389 (16)0.0367 (16)0.0049 (13)0.0013 (13)0.0034 (13)
C240.0441 (19)0.067 (2)0.048 (2)0.0043 (17)0.0033 (15)0.0106 (18)
C250.065 (2)0.068 (3)0.0409 (18)0.002 (2)0.0046 (16)0.0115 (18)
C260.057 (2)0.061 (2)0.0439 (19)0.0073 (17)0.0063 (16)0.0061 (16)
C270.0419 (18)0.067 (2)0.054 (2)0.0001 (17)0.0058 (16)0.0019 (18)
C280.0487 (19)0.054 (2)0.0388 (17)0.0032 (16)0.0029 (14)0.0019 (15)
Geometric parameters (Å, º) top
W1—S2i2.1962 (10)C14—H1410.999
W1—S3i2.1915 (9)C15—C161.409 (6)
W1—S22.1962 (10)C15—H1510.998
W1—S32.1915 (9)C16—H1610.999
P4—C51.795 (4)C17—C181.396 (5)
P4—C111.807 (4)C17—C221.393 (5)
P4—C171.788 (3)C18—C191.371 (6)
P4—C231.797 (4)C18—H1810.999
C5—C61.395 (5)C19—C201.384 (7)
C5—C101.390 (5)C19—H1910.999
C6—C71.394 (6)C20—C211.378 (7)
C6—H610.998C20—H2010.998
C7—C81.374 (7)C21—C221.395 (6)
C7—H710.997C21—H2110.999
C8—C91.376 (8)C22—H2210.999
C8—H810.998C23—C241.390 (5)
C9—C101.394 (7)C23—C281.388 (5)
C9—H910.999C24—C251.393 (6)
C10—H1010.999C24—H2410.999
C11—C121.388 (6)C25—C261.378 (6)
C11—C161.394 (6)C25—H2511.000
C12—C131.375 (7)C26—C271.377 (6)
C12—H1210.999C26—H2610.998
C13—C141.380 (9)C27—C281.374 (6)
C13—H1310.999C27—H2710.999
C14—C151.371 (9)C28—H2810.999
S2i—W1—S3i109.40 (4)C14—C15—C16119.6 (5)
S2i—W1—S2110.82 (7)C14—C15—H151120.2
S3i—W1—S2108.59 (4)C16—C15—H151120.2
S2i—W1—S3108.59 (4)C15—C16—C11119.2 (4)
S3i—W1—S3110.02 (6)C15—C16—H161120.4
S2—W1—S3109.40 (4)C11—C16—H161120.4
C5—P4—C11110.19 (17)P4—C17—C18119.1 (3)
C5—P4—C17107.77 (16)P4—C17—C22121.2 (3)
C11—P4—C17109.65 (17)C18—C17—C22119.7 (3)
C5—P4—C23111.88 (17)C17—C18—C19121.0 (4)
C11—P4—C23107.53 (18)C17—C18—H181119.6
C17—P4—C23109.81 (16)C19—C18—H181119.5
P4—C5—C6117.8 (3)C18—C19—C20119.0 (4)
P4—C5—C10122.5 (3)C18—C19—H191120.6
C6—C5—C10119.7 (4)C20—C19—H191120.4
C5—C6—C7119.5 (4)C19—C20—C21121.2 (4)
C5—C6—H61120.3C19—C20—H201119.3
C7—C6—H61120.2C21—C20—H201119.5
C6—C7—C8120.2 (4)C20—C21—C22120.0 (4)
C6—C7—H71120.0C20—C21—H211120.0
C8—C7—H71119.8C22—C21—H211120.0
C7—C8—C9120.8 (4)C21—C22—C17119.0 (4)
C7—C8—H81119.6C21—C22—H221120.4
C9—C8—H81119.7C17—C22—H221120.6
C8—C9—C10119.7 (4)P4—C23—C24118.0 (3)
C8—C9—H91120.1P4—C23—C28122.1 (3)
C10—C9—H91120.2C24—C23—C28119.8 (3)
C9—C10—C5120.1 (4)C23—C24—C25119.3 (4)
C9—C10—H101119.9C23—C24—H241120.3
C5—C10—H101120.0C25—C24—H241120.3
P4—C11—C12119.1 (3)C24—C25—C26120.3 (4)
P4—C11—C16121.3 (3)C24—C25—H251119.8
C12—C11—C16119.5 (4)C26—C25—H251119.9
C11—C12—C13121.0 (5)C25—C26—C27119.9 (4)
C11—C12—H121119.6C25—C26—H261120.0
C13—C12—H121119.5C27—C26—H261120.0
C12—C13—C14119.4 (5)C26—C27—C28120.5 (4)
C12—C13—H131120.3C26—C27—H271119.7
C14—C13—H131120.3C28—C27—H271119.8
C13—C14—C15121.2 (4)C23—C28—C27120.1 (3)
C13—C14—H141119.4C23—C28—H281120.0
C15—C14—H141119.4C27—C28—H281119.9
Symmetry code: (i) x, y, z+3/2.

Experimental details

Crystal data
Chemical formula(C24H20P)2[WS4]
Mr990.86
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.1069 (4), 19.4557 (6), 20.2373 (6)
β (°) 91.242 (2)
V3)4372.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.94
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerBruker–Nonius APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.351, 0.414
No. of measured, independent and
observed [I > 3σ(I)] reflections
26702, 6646, 4008
Rint0.044
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.031, 1.11
No. of reflections4008
No. of parameters249
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.47, 0.63

Computer programs: APEX2 (Bruker, 2005), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ATOMS (Dowty, 2000).

Selected geometric parameters (Å, º) top
W1—S2i2.1962 (10)W1—S22.1962 (10)
W1—S3i2.1915 (9)W1—S32.1915 (9)
S2i—W1—S3i109.40 (4)S2i—W1—S3108.59 (4)
S2i—W1—S2110.82 (7)S3i—W1—S3110.02 (6)
S3i—W1—S2108.59 (4)S2—W1—S3109.40 (4)
Symmetry code: (i) x, y, z+3/2.
 

Acknowledgements

The authors thank ScotCHEM for a studentship for PLB and the UK EPSRC for an Advanced Research Fellowship for PV.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2. Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDance, I. G. & Scudder, M. L. (1995). J. Chem. Soc. Chem. Commun. pp. 1039–1040.  CrossRef Web of Science Google Scholar
First citationDance, I. G. & Scudder, M. L. (1996). J. Chem. Soc. Dalton Trans. pp. 3755–3769.  CrossRef Web of Science Google Scholar
First citationDowty, E. (2000). ATOMS. Version 6.1. Shape Software, Hidden Valley Road, Kingsport, Tennessee, USA.  Google Scholar
First citationHasselgren, D., Dean, P. A. W., Scudder, M. L., Craig, D. C. & Dance, I. G. (1997). J. Chem. Soc. Dalton Trans. pp. 2019–2027.  CSD CrossRef Web of Science Google Scholar
First citationMüller, A., Diemann, E., Jostes, R. & Bögge, H. (1981). Angew. Chem. Int. Ed. Engl. 20, 934–955.  CrossRef Web of Science Google Scholar
First citationO'Neal, S. C. & Kolis, J. W. (1988). J. Am. Chem. Soc. 110, 1971–1973.  CSD CrossRef CAS Web of Science Google Scholar
First citationParvez, M., Boorman, P. M. & Wang, M. (1997). Acta Cryst. C53, 413–414.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRuhlandt-Senge, K. & Müller, U. (1990). Z. Naturforsch. Teil B, 45, 995–999.  CAS Google Scholar
First citationSasvári, K. (1963). Acta Cryst. 16, 719–724.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds