metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m529-m530

Poly[[aqua-μ3-picolinato-μ2-picolinato-dipicolinatopotassium(I)terbium(III)] 2.5-hydrate]

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193, Aveiro, Portugal, and bDepartment of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, England
*Correspondence e-mail: filipe.paz@ua.pt

(Received 28 November 2007; accepted 29 February 2008; online 7 March 2008)

In the title compound, [KTb(C6H4NO2)4(H2O)]·2.5H2O, each Tb3+ centre is coordinated by four N and five O atoms from five distinct picolinate ligands in a geometry resembling a highly distorted tricapped trigonal prism. One of the ligands establishes a skew bridge between neighbouring Tb3+ centres, leading to the formation of one-dimensional anionic polymeric chains, {[(C6H4NO2)4Tb]}n, running along the direction [010]. Each K+ cation is seven-coordinated by six O atoms from one anionic polymeric chain and one water mol­ecule [K⋯O 2.676 (3)–3.208 (4) Å]. The uncoordinated water mol­ecules are involved in O—H⋯O hydrogen bonding.

Related literature

For recent research on metal–organic frameworks (MOFs) or coordination polymers from our research group, see: Shi et al. (2008[Shi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150-167.]); Cunha-Silva et al. (2007[Cunha-Silva, L., Mafra, L., Ananias, D., Carlos, L. D., Rocha, J. & Paz, F. A. A. (2007). Chem. Mater. 19, 3527-3538.]); Paz & Klinowski (2007[Paz, F. A. A. & Klinowski, J. (2007). Pure Appl. Chem. 79, 1097-1110.]); Soares-Santos et al. (2006[Soares-Santos, P. C. R., Almeida Paz, F. A., Sá Ferreira, R. A., Klinowski, J., Carlos, L. D., Trindade, T. & Nogueira, H. I. S. (2006). Polyhedron, 25, 2471-2482.]); Paz et al. (2005[Paz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113-125.]). For relevant examples of discrete complexes or MOFs incorporating lanthanide centres and pyridine–carboxylic acid derivative ligands, see: Sendor et al. (2003[Sendor, D., Hilder, M., Juestel, T., Junk, P. & Kynast, U. (2003). New J. Chem. 27, 1070-1077.]); Jian-Fang et al. (1996[Jian-Fang, M., Ning-Hai, H. & Jia-Zuan, N. (1996). Polyhedron, 15, 1797-1799.]); Starynowicz (1993[Starynowicz, P. (1993). Acta Cryst. C49, 1895-1897.]).

[Scheme 1]

Experimental

Crystal data
  • [KTb(C6H4NO2)4(H2O)]·2.5H2O

  • Mr = 749.49

  • Hexagonal, P 65 22

  • a = 12.7187 (2) Å

  • c = 62.2321 (9) Å

  • V = 8718.3 (2) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 2.64 mm−1

  • T = 180 (2) K

  • 0.39 × 0.28 × 0.23 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.426, Tmax = 0.582 (expected range = 0.398–0.545)

  • 31023 measured reflections

  • 5031 independent reflections

  • 4488 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.094

  • S = 1.14

  • 5031 reflections

  • 377 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.70 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1938 Friedel pairs

  • Flack parameter: −0.020 (15)

Table 1
Selected bond lengths (Å)

Tb1—O1 2.380 (2)
Tb1—O3 2.354 (2)
Tb1—O5 2.333 (2)
Tb1—O7i 2.352 (3)
Tb1—O8 2.385 (3)
Tb1—N1 2.640 (3)
Tb1—N2 2.575 (3)
Tb1—N3 2.736 (4)
Tb1—N4 2.626 (3)
K1—O1 2.676 (3)
K1—O2 3.208 (4)
K1—O3 2.972 (2)
K1—O5i 2.725 (3)
K1—O6i 2.985 (4)
K1—O8i 2.959 (2)
K1—O3W 2.661 (5)
Symmetry code: (i) x-y, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O4 0.84 2.09 2.858 (4) 152
O2W—H2W⋯O6ii 0.85 2.48 3.219 (5) 146
O3W—H3WA⋯O6iii 0.86 2.09 2.647 (5) 121
O4W—H4WB⋯O2iv 0.86 1.92 2.711 (6) 152
O5W—H5W⋯O4W 0.85 2.34 3.080 (13) 145
Symmetry codes: (ii) x-y+1, -y+1, -z; (iii) [y-1, -x+y, z+{\script{1\over 6}}]; (iv) x+1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last years research on multidimensional Metal-Organic Frameworks (MOFs), or coordination polymers, has received a remarkable interest as consequence of the their fascinating structural architectures which, in many cases, are also associated with interesting potential applications (e.g., gas storage, separation, catalysis, guest exchange, magnetic or optical sensors). Following our ongoing research focused on the preparation and structural characterization of these interesting compounds (for recent examples see: Shi et al., 2008; Cunha-Silva et al., 2007; Paz & Klinowski, 2007; Soares-Santos et al., 2006; Paz et al., 2005), we report in this short communication the crystalline structure of the title compound, K2[Tb2(pic)6(µ-pic)2].7(H2O) [where pic- stands for the picolinate anion, C6H4NO2-].

The crystalline structure of the title compound contains a single crystallographically independent Tb3+site, Tb1, which is coordinated to four N and five O-donor atoms belonging to five distinct picolinate anionic (pic-) ligands, with a nine-coordination sphere {TbN4O5} resembling a highly distorted tricapped trigonal prism (Figure 1). The Tb—O and Tb—N bond distances are found in the 2.333 (2)–2.385 (3) Å and 2.575 (3)–2.736 (4) Å, respectively. The O—Tb—O, O—Tb—N and N—Tb—N angles are ranging from 68.75 (9) to 142.62 (9)°, 62.59 (10) to 142.63 (9)° and 69.62 (10) to 150.65 (10)°, respectively (see Figure 1 and Table 1).

As usually found in related compounds (see for example: Soares-Santos et al., 2006; Sendor et al., 2003; Starynowicz, 1993; Jian-Fang et al., 1996), all pic- ligands are coordinated to the Tb3+ metal centre via the typical N,O-chelation mode (Figure 1). Furthermore, one pic- establishes a skew-bridge (through the O7 atom; Figure 1) with a neighbouring Tb3+, thus completing the nine-coordination environment of the lanthanide centre and leading to the formation of the one-dimensional (one-dimensional) anionic coordination polymer (chain), [Tb2(pic)6(µ-pic)2]n2n-, running along the [010] direction (Figure 2). The skew-bridge is also responsible for the zigzag distribution of the Tb3+centres along the aforementioned crystallographic direction, imposing an intermetallic Tb1···Tb1i distance of 6.4375 (4) Å [symmetry code: (i) 1 + x-y, 1 - y, -z]. Adjacent polymers close pack along the [001] direction of the unit cell with an arrangement resembling a layered-like structure. The water molecules of crystallization and the potassion cations are housed in the interchain empty spaces (Figure 2c with the K+ cations being omitted for clarity).

Related literature top

For recent research on metal–organic frameworks (MOF) or coordination polymers from our research group, see: Shi et al. (2008); Cunha-Silva et al. (2007); Paz & Klinowski (2007); Soares-Santos et al. (2006); Paz et al. (2005). For relevant examples of discrete complexes or MOFs incorporating lanthanide centres and pyridine–carboxilic acid derivative ligands, see: Sendor et al. (2003); Jian-Fang et al. (1996); Starynowicz (1993).

Experimental top

Starting materials were purchased from commercial sources and were used as received without further purification. The title compound has been prepared by adding an aqueous solution (5 ml) of TbCl3.6H2O (1 mmol, 373 mg) to a solution of picolinic acid (Hpic, 4 mmol, 492 mg) and KOH (4 mmol, 220 mg) in distilled water (20 ml, pH = 6.8). After stirring the mixture for 1 h, an aqueous solution (5 ml) of tetrabutylammonium chloride hydrate (nBu4NCl.nH2O, 4 mmol, 1.12 g) was added drop wise. The resulting mixture was heated and the formed white precipitate was collected by vacuum filtering. Colourless crystals suitable for single-crystal X-ray analysis were obtained from the mother solution after three days.

Refinement top

Hydrogen atoms attached to carbon were located at their idealized positions and were included in the refinement in riding-motion approximation with isotropic displacement parameters fixed at 1.2 times Ueq of the carbon atom to which they are attached. The five crystallographically unique water molecules of crystallization were directly located from difference Fourier maps and refined successfully using anisotropic displacement parameters. All H atoms associated with the water molecules were geometrically positioned (and not refined) with O—H distances in the range 0.85–0.89 Å and Uiso fixed at 1.5 times Ueq of the oxygen atom to which they are attached.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Schematic representation of a fragment of the title compound, emphasizing the coordination environment of the crystallographically unique Tb centre, showing the labelling scheme for all atoms composing the first coordination sphere. Displacement ellipsoids are drawn at the 30% probability level and H atoms associated with the water molecules are represented as spheres with arbitrary radii. All H-atoms bound to carbon were omitted for clarity. Symmetry code used to generate equivalent atoms (represented in the ball-and-stick mode): (i) x, 1 + y, z.
[Figure 2] Fig. 2. Perspective views of the one-dimensional anionic [Tb2(pic)6(µ-pic)2]n2n- coordination polymer viewed along the (a) [010] and (b) [001] directions of the unit cell. (c) Crystal packing of the title compound viewed in perspective along the [010] direction of the unit cell (K+ cations and H-atoms were omitted for clarity).
Poly[[aqua-µ3-picolinato-µ2-picolinato- dipicolinatopotassium(I)terbium(III)] 2.5-hydrate] top
Crystal data top
[KTb(C6H4NO2)4(H2O)]·2.5H2ODx = 1.713 Mg m3
Mr = 1498.97Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6522Cell parameters from 28400 reflections
Hall symbol: P 65 2 (0 0 1)θ = 1.0–25.0°
a = 12.7187 (2) ŵ = 2.64 mm1
c = 62.2321 (9) ÅT = 180 K
V = 8718.3 (2) Å3Block, colourless
Z = 120.39 × 0.28 × 0.23 mm
F(000) = 4452
Data collection top
Nonius KappaCCD
diffractometer
4488 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Thin slice ω and ϕ scansθmax = 25.0°, θmin = 3.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1415
Tmin = 0.426, Tmax = 0.582k = 1514
31023 measured reflectionsl = 6773
5031 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.059P)2 + 2.1846P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.004
5031 reflectionsΔρmax = 1.00 e Å3
377 parametersΔρmin = 0.70 e Å3
14 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (15)
Crystal data top
[KTb(C6H4NO2)4(H2O)]·2.5H2OZ = 12
Mr = 1498.97Mo Kα radiation
Hexagonal, P6522µ = 2.64 mm1
a = 12.7187 (2) ÅT = 180 K
c = 62.2321 (9) Å0.39 × 0.28 × 0.23 mm
V = 8718.3 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer
5031 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
4488 reflections with I > 2σ(I)
Tmin = 0.426, Tmax = 0.582Rint = 0.062
31023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.094Δρmax = 1.00 e Å3
S = 1.14Δρmin = 0.70 e Å3
5031 reflectionsAbsolute structure: Flack (1983)
377 parametersAbsolute structure parameter: 0.020 (15)
14 restraints
Special details top

Experimental. Please see the details in the main paper

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.078634 (13)0.533458 (14)0.005432 (2)0.03612 (4)
K10.23692 (8)0.38564 (10)0.040543 (15)0.0593 (3)
O10.0725 (2)0.3470 (2)0.02072 (4)0.0505 (7)
O20.2334 (3)0.1630 (3)0.01703 (6)0.0757 (11)
O30.00810 (19)0.6012 (2)0.03429 (4)0.0404 (6)
O40.0360 (2)0.7288 (3)0.06104 (4)0.0560 (8)
O50.1777 (2)0.6215 (2)0.02676 (4)0.0507 (7)
O60.2602 (3)0.7599 (3)0.05195 (5)0.0925 (10)
O70.4239 (2)0.5234 (2)0.01432 (4)0.0454 (7)
O80.2598 (2)0.5230 (2)0.00168 (4)0.0413 (6)
N10.0152 (3)0.3362 (3)0.01757 (5)0.0512 (9)
N20.2430 (2)0.7330 (3)0.02245 (5)0.0428 (8)
N30.0606 (3)0.7255 (3)0.00984 (5)0.0445 (8)
N40.1596 (2)0.4834 (3)0.04055 (5)0.0423 (8)
C10.1366 (4)0.2477 (4)0.01065 (7)0.0565 (12)
C20.0837 (3)0.2389 (3)0.01096 (7)0.0514 (10)
C30.1393 (4)0.1320 (4)0.02296 (9)0.0729 (14)
H30.21130.06290.01800.087*
C40.0875 (4)0.1287 (5)0.04229 (8)0.0797 (15)
H40.12210.05700.05070.096*
C50.0153 (4)0.2318 (5)0.04897 (8)0.0765 (15)
H50.05270.23260.06220.092*
C60.0631 (4)0.3330 (4)0.03634 (7)0.0663 (13)
H60.13360.40420.04120.080*
C70.0742 (3)0.6955 (4)0.04553 (6)0.0476 (10)
C80.2077 (3)0.7708 (4)0.03953 (6)0.0472 (10)
C90.2864 (4)0.8706 (4)0.05138 (7)0.0605 (13)
H90.25930.89270.06390.073*
C100.4059 (4)0.9384 (4)0.04475 (8)0.0684 (15)
H100.46201.00870.05250.082*
C110.4415 (4)0.9027 (4)0.02702 (8)0.0592 (13)
H110.52280.94820.02200.071*
C120.3585 (3)0.7999 (4)0.01633 (7)0.0489 (11)
H120.38470.77520.00400.059*
C130.1919 (4)0.7149 (4)0.03693 (6)0.0528 (11)
C140.1186 (3)0.7695 (3)0.02886 (7)0.0500 (11)
C150.1069 (4)0.8548 (4)0.04020 (8)0.0673 (13)
H150.14950.88490.05330.081*
C160.0336 (4)0.8974 (5)0.03266 (9)0.0832 (16)
H160.02370.95600.04050.100*
C170.0243 (4)0.8527 (4)0.01355 (10)0.0710 (15)
H170.07580.88020.00790.085*
C180.0092 (3)0.7700 (4)0.00260 (8)0.0546 (12)
H180.04950.74180.01080.066*
C190.3216 (3)0.5129 (3)0.01674 (6)0.0361 (9)
C200.2693 (3)0.4904 (3)0.03900 (6)0.0379 (9)
C210.3275 (3)0.4709 (4)0.05577 (6)0.0529 (10)
H210.40450.47710.05380.063*
C220.2705 (4)0.4417 (5)0.07585 (7)0.0629 (13)
H220.30830.42750.08780.075*
C230.1574 (4)0.4335 (4)0.07812 (7)0.0610 (13)
H230.11650.41450.09160.073*
C240.1061 (3)0.4547 (4)0.05951 (6)0.0539 (11)
H240.02850.44780.06080.065*
O1W0.06278 (19)0.93722 (19)0.08330.0632 (11)
H1W0.06170.89300.07320.095*
O2W0.5413 (3)0.4587 (3)0.08330.134 (2)
H2W0.55400.42850.07220.200*
O3W0.1780 (4)0.5373 (5)0.07365 (6)0.145 (3)
H3WA0.14430.53840.08570.218*
H3WB0.20100.59060.07610.218*
O4W0.7402 (6)0.1052 (5)0.05936 (7)0.188 (4)
H4WA0.73730.16100.06700.282*
H4WB0.77290.14080.04750.282*
O5W0.9314 (6)0.0686 (6)0.08330.262 (6)
H5W0.90210.08470.07230.393*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.03522 (7)0.04700 (8)0.03202 (8)0.02495 (6)0.00027 (6)0.00075 (7)
K10.0491 (4)0.0827 (5)0.0514 (5)0.0369 (4)0.0055 (4)0.0029 (5)
O10.0550 (13)0.0407 (12)0.0521 (15)0.0211 (10)0.0067 (13)0.0005 (11)
O20.0649 (18)0.0485 (16)0.088 (2)0.0088 (14)0.0043 (18)0.0049 (16)
O30.0358 (10)0.0519 (12)0.0356 (12)0.0235 (9)0.0025 (10)0.0050 (10)
O40.0474 (13)0.0689 (15)0.0482 (15)0.0264 (11)0.0052 (12)0.0175 (12)
O50.0628 (12)0.0699 (13)0.0379 (13)0.0471 (10)0.0083 (11)0.0070 (11)
O60.154 (2)0.1116 (19)0.0538 (17)0.0975 (16)0.0544 (17)0.0407 (14)
O70.0386 (10)0.0549 (13)0.0459 (14)0.0257 (9)0.0029 (10)0.0006 (11)
O80.0426 (9)0.0566 (12)0.0356 (12)0.0330 (9)0.0007 (10)0.0010 (10)
N10.0494 (14)0.0641 (16)0.0513 (18)0.0368 (12)0.0120 (14)0.0162 (15)
N20.0384 (13)0.0492 (15)0.0416 (16)0.0226 (11)0.0020 (13)0.0011 (13)
N30.0409 (13)0.0536 (14)0.0439 (16)0.0271 (12)0.0000 (13)0.0008 (13)
N40.0395 (12)0.0607 (16)0.0319 (14)0.0290 (11)0.0025 (12)0.0060 (13)
C10.0606 (19)0.0488 (18)0.066 (3)0.0320 (16)0.021 (2)0.0019 (19)
C20.0586 (17)0.0459 (16)0.063 (2)0.0366 (13)0.0211 (18)0.0112 (16)
C30.082 (2)0.058 (2)0.088 (3)0.0421 (18)0.028 (2)0.021 (2)
C40.090 (3)0.085 (3)0.082 (3)0.057 (2)0.039 (2)0.043 (2)
C50.069 (2)0.111 (3)0.067 (3)0.058 (2)0.023 (2)0.045 (2)
C60.0546 (19)0.084 (2)0.071 (3)0.0421 (18)0.011 (2)0.025 (2)
C70.0425 (16)0.066 (2)0.042 (2)0.0323 (14)0.0012 (16)0.0020 (17)
C80.0493 (18)0.0567 (19)0.0365 (19)0.0271 (15)0.0025 (16)0.0033 (16)
C90.058 (2)0.062 (2)0.062 (3)0.0294 (17)0.006 (2)0.0259 (19)
C100.050 (2)0.058 (2)0.085 (3)0.0187 (19)0.011 (2)0.019 (2)
C110.0401 (18)0.055 (2)0.074 (3)0.0179 (16)0.006 (2)0.005 (2)
C120.0437 (17)0.060 (2)0.044 (2)0.0267 (15)0.0059 (17)0.0056 (18)
C130.069 (2)0.067 (2)0.037 (2)0.0454 (16)0.0036 (17)0.0095 (17)
C140.0554 (19)0.053 (2)0.046 (2)0.0308 (15)0.0032 (17)0.0009 (17)
C150.083 (2)0.068 (2)0.066 (3)0.0491 (18)0.013 (2)0.019 (2)
C160.093 (2)0.087 (2)0.099 (4)0.067 (2)0.026 (3)0.032 (3)
C170.061 (2)0.056 (2)0.110 (4)0.0400 (16)0.015 (2)0.005 (2)
C180.0450 (17)0.0511 (19)0.071 (3)0.0263 (15)0.001 (2)0.0019 (19)
C190.0285 (14)0.0402 (16)0.0403 (19)0.0178 (12)0.0058 (14)0.0015 (14)
C200.0377 (15)0.0406 (16)0.0370 (18)0.0209 (12)0.0009 (14)0.0014 (14)
C210.0492 (16)0.077 (2)0.045 (2)0.0410 (15)0.0004 (16)0.0020 (19)
C220.070 (2)0.093 (3)0.038 (2)0.0504 (19)0.0038 (18)0.008 (2)
C230.059 (2)0.082 (3)0.044 (2)0.0368 (19)0.0064 (18)0.0116 (19)
C240.0479 (17)0.078 (2)0.043 (2)0.0369 (16)0.0033 (16)0.0074 (18)
O1W0.0694 (12)0.0694 (12)0.059 (2)0.0408 (16)0.008 (2)0.008 (2)
O2W0.171 (2)0.171 (2)0.121 (5)0.133 (3)0.048 (4)0.048 (4)
O3W0.102 (3)0.166 (5)0.055 (2)0.018 (3)0.010 (2)0.023 (3)
O4W0.199 (6)0.164 (6)0.119 (4)0.029 (5)0.018 (5)0.028 (4)
O5W0.281 (6)0.281 (6)0.282 (12)0.184 (8)0.151 (8)0.151 (8)
Geometric parameters (Å, º) top
Tb1—O12.380 (2)C3—H30.9500
Tb1—O32.354 (2)C4—C51.373 (7)
Tb1—O52.333 (2)C4—H40.9500
Tb1—O7i2.352 (3)C5—C61.365 (7)
Tb1—O82.385 (3)C5—H50.9500
Tb1—N12.640 (3)C6—H60.9500
Tb1—N22.575 (3)C7—C81.520 (5)
Tb1—N32.736 (4)C8—C91.374 (5)
Tb1—N42.626 (3)C9—C101.383 (6)
K1—O12.676 (3)C9—H90.9500
K1—O23.208 (4)C10—C111.354 (7)
K1—O32.972 (2)C10—H100.9500
K1—O5i2.725 (3)C11—C121.373 (6)
K1—O6i2.985 (4)C11—H110.9500
K1—O8i2.959 (2)C12—H120.9500
K1—O3W2.661 (5)C13—C141.501 (7)
Tb1—K14.1075 (9)C13—K1ii3.204 (5)
Tb1—K1ii4.4471 (10)C14—C151.364 (6)
K1—Tb1i4.4471 (10)C15—C161.374 (8)
O1—C11.274 (5)C15—H150.9500
O2—C11.228 (5)C16—C171.364 (8)
O3—C71.276 (4)C16—H160.9500
O4—C71.246 (5)C17—C181.345 (7)
O5—C131.276 (5)C17—H170.9500
O5—K1ii2.725 (3)C18—H180.9500
O6—C131.207 (5)C19—C201.501 (5)
O6—K1ii2.985 (4)C20—C211.372 (6)
O7—C191.248 (4)C21—C221.398 (6)
O7—Tb1ii2.352 (3)C21—H210.9500
O8—C191.271 (4)C22—C231.397 (7)
O8—K1ii2.959 (2)C22—H220.9500
N1—C21.314 (5)C23—C241.420 (6)
N1—C61.327 (5)C23—H230.9500
N2—C121.333 (5)C24—H240.9500
N2—C81.334 (5)O1W—H1W0.8423
N3—C181.347 (6)O2W—H2W0.8472
N3—C141.358 (5)O3W—H3WA0.8616
N4—C241.319 (5)O3W—H3WB0.8749
N4—C201.356 (5)O4W—H4WA0.8712
C1—C21.532 (6)O4W—H4WB0.8598
C2—C31.394 (6)O5W—H5W0.8517
C3—C41.383 (7)
O5—Tb1—O7i84.54 (9)C1—O1—Tb1126.1 (3)
O5—Tb1—O3133.84 (9)C1—O1—K1103.8 (3)
O7i—Tb1—O391.51 (8)Tb1—O1—K1108.51 (11)
O5—Tb1—O1142.62 (9)C1—O2—K179.9 (3)
O7i—Tb1—O174.24 (9)C7—O3—Tb1124.7 (2)
O3—Tb1—O178.10 (9)C7—O3—K1133.6 (2)
O5—Tb1—O868.75 (9)Tb1—O3—K1100.26 (8)
O7i—Tb1—O8137.81 (8)C13—O5—Tb1131.6 (3)
O3—Tb1—O8130.58 (8)C13—O5—K1ii100.0 (2)
O1—Tb1—O8107.77 (9)Tb1—O5—K1ii122.89 (12)
O5—Tb1—N284.42 (9)C13—O6—K1ii89.2 (3)
O7i—Tb1—N2134.49 (10)C19—O7—Tb1ii147.0 (2)
O3—Tb1—N266.16 (8)C19—O8—Tb1126.7 (2)
O1—Tb1—N2132.14 (9)C19—O8—K1ii118.6 (2)
O8—Tb1—N276.37 (9)Tb1—O8—K1ii112.22 (9)
O5—Tb1—N4130.37 (9)C2—N1—C6119.0 (4)
O7i—Tb1—N4142.63 (9)C2—N1—Tb1114.8 (3)
O3—Tb1—N473.81 (10)C6—N1—Tb1125.4 (3)
O1—Tb1—N469.22 (9)C12—N2—C8117.4 (3)
O8—Tb1—N463.97 (9)C12—N2—Tb1127.1 (3)
N2—Tb1—N470.92 (10)C8—N2—Tb1115.4 (2)
O5—Tb1—N179.95 (10)C18—N3—C14117.1 (4)
O7i—Tb1—N168.57 (9)C18—N3—Tb1128.8 (3)
O3—Tb1—N1140.33 (8)C14—N3—Tb1113.5 (3)
O1—Tb1—N163.84 (10)C24—N4—C20116.9 (3)
O8—Tb1—N174.85 (9)C24—N4—Tb1126.9 (3)
N2—Tb1—N1150.65 (10)C20—N4—Tb1116.1 (2)
N4—Tb1—N1101.03 (11)O2—C1—O1125.0 (4)
O5—Tb1—N362.59 (10)O2—C1—C2120.2 (4)
O7i—Tb1—N366.11 (8)O1—C1—C2114.7 (3)
O3—Tb1—N373.80 (9)O2—C1—K178.1 (3)
O1—Tb1—N3129.94 (10)O1—C1—K153.7 (2)
O8—Tb1—N3122.04 (8)C2—C1—K1148.5 (3)
N2—Tb1—N369.62 (10)N1—C2—C3122.1 (4)
N4—Tb1—N3136.35 (9)N1—C2—C1117.0 (3)
N1—Tb1—N3122.56 (10)C3—C2—C1120.9 (4)
O5—Tb1—K1147.78 (7)C4—C3—C2118.6 (4)
O7i—Tb1—K164.31 (7)C4—C3—H3120.7
O3—Tb1—K145.40 (5)C2—C3—H3120.7
O1—Tb1—K138.16 (8)C5—C4—C3118.4 (4)
O8—Tb1—K1140.97 (6)C5—C4—H4120.8
N2—Tb1—K1111.00 (7)C3—C4—H4120.8
N4—Tb1—K181.85 (6)C6—C5—C4119.2 (5)
N1—Tb1—K195.11 (7)C6—C5—H5120.4
N3—Tb1—K195.42 (6)C4—C5—H5120.4
O5—Tb1—K1ii30.97 (7)N1—C6—C5122.7 (4)
O7i—Tb1—K1ii108.39 (7)N1—C6—H6118.6
O3—Tb1—K1ii147.55 (5)C5—C6—H6118.6
O1—Tb1—K1ii131.21 (7)O4—C7—O3123.9 (3)
O8—Tb1—K1ii38.02 (6)O4—C7—C8118.6 (3)
N2—Tb1—K1ii81.83 (7)O3—C7—C8117.5 (3)
N4—Tb1—K1ii101.43 (6)N2—C8—C9122.7 (4)
N1—Tb1—K1ii71.99 (7)N2—C8—C7116.1 (3)
N3—Tb1—K1ii90.77 (6)C9—C8—C7121.3 (4)
K1—Tb1—K1ii167.044 (5)C8—C9—C10118.8 (4)
O3W—K1—O1121.80 (14)C8—C9—H9120.6
O3W—K1—O5i100.66 (15)C10—C9—H9120.6
O1—K1—O5i132.75 (8)C11—C10—C9118.8 (4)
O3W—K1—O8i116.68 (14)C11—C10—H10120.6
O1—K1—O8i85.12 (8)C9—C10—H10120.6
O5i—K1—O8i55.72 (8)C10—C11—C12119.2 (4)
O3W—K1—O369.35 (11)C10—C11—H11120.4
O1—K1—O363.49 (7)C12—C11—H11120.4
O5i—K1—O3122.62 (9)N2—C12—C11123.1 (4)
O8i—K1—O378.10 (8)N2—C12—H12118.5
O3W—K1—O6i95.03 (12)C11—C12—H12118.5
O1—K1—O6i136.98 (9)O6—C13—O5124.0 (5)
O5i—K1—O6i44.88 (8)O6—C13—C14120.4 (4)
O8i—K1—O6i98.24 (8)O5—C13—C14115.6 (3)
O3—K1—O6i159.29 (9)O6—C13—K1ii68.7 (3)
O3W—K1—C13i101.29 (14)O5—C13—K1ii56.9 (2)
O1—K1—C13i136.87 (9)C14—C13—K1ii163.7 (3)
O5i—K1—C13i23.10 (9)N3—C14—C15121.7 (4)
O8i—K1—C13i76.45 (9)N3—C14—C13115.9 (4)
O3—K1—C13i144.73 (10)C15—C14—C13122.4 (4)
O6i—K1—C13i22.14 (9)C14—C15—C16120.2 (5)
O3W—K1—O2150.45 (16)C14—C15—H15119.9
O1—K1—O243.17 (8)C16—C15—H15119.9
O5i—K1—O2105.46 (9)C17—C16—C15117.7 (5)
O8i—K1—O289.76 (8)C17—C16—H16121.2
O3—K1—O2106.46 (8)C15—C16—H16121.2
O6i—K1—O293.82 (9)C18—C17—C16120.6 (5)
C13i—K1—O297.47 (10)C18—C17—H17119.7
O3W—K1—C1142.75 (15)C16—C17—H17119.7
O1—K1—C122.56 (8)C17—C18—N3122.7 (4)
O5i—K1—C1116.01 (9)C17—C18—H18118.6
O8i—K1—C181.64 (9)N3—C18—H18118.6
O3—K1—C184.75 (9)O7—C19—O8124.3 (3)
O6i—K1—C1115.13 (10)O7—C19—C20118.1 (3)
C13i—K1—C1114.93 (10)O8—C19—C20117.6 (3)
O2—K1—C122.01 (9)N4—C20—C21124.4 (3)
O3W—K1—Tb1102.90 (10)N4—C20—C19114.9 (3)
O1—K1—Tb133.33 (5)C21—C20—C19120.6 (3)
O5i—K1—Tb1123.64 (6)C20—C21—C22118.3 (4)
O8i—K1—Tb167.93 (5)C20—C21—H21120.9
O3—K1—Tb134.34 (5)C22—C21—H21120.9
O6i—K1—Tb1160.91 (7)C23—C22—C21119.2 (4)
C13i—K1—Tb1143.12 (7)C23—C22—H22120.4
O2—K1—Tb173.72 (6)C21—C22—H22120.4
C1—K1—Tb151.71 (7)C22—C23—C24117.2 (4)
O3W—K1—Tb1i108.22 (14)C22—C23—H23121.4
O1—K1—Tb1i112.36 (6)C24—C23—H23121.4
O5i—K1—Tb1i26.14 (6)N4—C24—C23124.1 (4)
O8i—K1—Tb1i29.77 (5)N4—C24—H24118.0
O3—K1—Tb1i100.94 (6)C23—C24—H24118.0
O6i—K1—Tb1i70.27 (6)K1—O3W—H3WA130.1
C13i—K1—Tb1i48.14 (7)K1—O3W—H3WB127.8
O2—K1—Tb1i101.31 (7)H3WA—O3W—H3WB101.2
C1—K1—Tb1i102.51 (8)H4WA—O4W—H4WB104.4
Tb1—K1—Tb1i97.539 (19)
O5—Tb1—K1—O3W117.41 (19)K1—Tb1—O8—C1939.4 (3)
O7i—Tb1—K1—O3W133.39 (16)K1ii—Tb1—O8—C19161.4 (3)
O3—Tb1—K1—O3W12.35 (17)O5—Tb1—O8—K1ii4.91 (9)
O1—Tb1—K1—O3W129.46 (18)O7i—Tb1—O8—K1ii49.58 (15)
O8—Tb1—K1—O3W91.20 (17)O3—Tb1—O8—K1ii135.11 (9)
N2—Tb1—K1—O3W2.97 (16)O1—Tb1—O8—K1ii135.50 (9)
N4—Tb1—K1—O3W62.91 (16)N2—Tb1—O8—K1ii94.16 (10)
N1—Tb1—K1—O3W163.36 (16)N4—Tb1—O8—K1ii169.33 (13)
N3—Tb1—K1—O3W73.19 (15)N1—Tb1—O8—K1ii80.00 (10)
K1ii—Tb1—K1—O3W168.59 (15)N3—Tb1—O8—K1ii39.22 (13)
O5—Tb1—K1—O1113.13 (17)K1—Tb1—O8—K1ii159.19 (3)
O7i—Tb1—K1—O197.15 (12)O5—Tb1—N1—C2157.6 (3)
O3—Tb1—K1—O1141.81 (14)O7i—Tb1—N1—C269.6 (3)
O8—Tb1—K1—O138.26 (14)O3—Tb1—N1—C25.0 (4)
N2—Tb1—K1—O1132.43 (13)O1—Tb1—N1—C212.8 (3)
N4—Tb1—K1—O166.55 (12)O8—Tb1—N1—C2131.9 (3)
N1—Tb1—K1—O133.90 (13)N2—Tb1—N1—C2143.5 (3)
N3—Tb1—K1—O1157.35 (12)N4—Tb1—N1—C272.9 (3)
K1ii—Tb1—K1—O139.13 (14)N3—Tb1—N1—C2109.5 (3)
O5—Tb1—K1—O5i5.0 (2)K1—Tb1—N1—C29.8 (3)
O7i—Tb1—K1—O5i21.03 (9)K1ii—Tb1—N1—C2171.5 (3)
O3—Tb1—K1—O5i100.01 (12)O5—Tb1—N1—C611.7 (3)
O1—Tb1—K1—O5i118.18 (13)O7i—Tb1—N1—C699.7 (4)
O8—Tb1—K1—O5i156.44 (11)O3—Tb1—N1—C6164.4 (3)
N2—Tb1—K1—O5i109.39 (11)O1—Tb1—N1—C6177.9 (4)
N4—Tb1—K1—O5i175.27 (11)O8—Tb1—N1—C658.8 (4)
N1—Tb1—K1—O5i84.28 (11)N2—Tb1—N1—C647.2 (5)
N3—Tb1—K1—O5i39.17 (10)N4—Tb1—N1—C6117.8 (4)
K1ii—Tb1—K1—O5i79.04 (12)N3—Tb1—N1—C659.8 (4)
O5—Tb1—K1—O8i3.57 (15)K1—Tb1—N1—C6159.6 (3)
O7i—Tb1—K1—O8i19.55 (8)K1ii—Tb1—N1—C619.2 (3)
O3—Tb1—K1—O8i101.48 (11)O5—Tb1—N2—C1234.9 (3)
O1—Tb1—K1—O8i116.70 (11)O7i—Tb1—N2—C12111.6 (3)
O8—Tb1—K1—O8i154.96 (5)O3—Tb1—N2—C12178.4 (4)
N2—Tb1—K1—O8i110.87 (10)O1—Tb1—N2—C12136.4 (3)
N4—Tb1—K1—O8i176.75 (9)O8—Tb1—N2—C1234.6 (3)
N1—Tb1—K1—O8i82.81 (9)N4—Tb1—N2—C12101.4 (4)
N3—Tb1—K1—O8i40.64 (8)N1—Tb1—N2—C1223.0 (5)
K1ii—Tb1—K1—O8i77.57 (10)N3—Tb1—N2—C1297.7 (4)
O5—Tb1—K1—O3105.06 (16)K1—Tb1—N2—C12174.3 (3)
O7i—Tb1—K1—O3121.03 (11)K1ii—Tb1—N2—C123.8 (3)
O1—Tb1—K1—O3141.81 (14)O5—Tb1—N2—C8146.8 (3)
O8—Tb1—K1—O3103.56 (13)O7i—Tb1—N2—C870.0 (3)
N2—Tb1—K1—O39.39 (12)O3—Tb1—N2—C83.2 (3)
N4—Tb1—K1—O375.26 (12)O1—Tb1—N2—C842.0 (3)
N1—Tb1—K1—O3175.71 (12)O8—Tb1—N2—C8143.8 (3)
N3—Tb1—K1—O360.84 (11)N4—Tb1—N2—C877.0 (3)
O5—Tb1—K1—O6i42.1 (3)N1—Tb1—N2—C8155.3 (3)
O7i—Tb1—K1—O6i26.1 (2)N3—Tb1—N2—C884.0 (3)
O3—Tb1—K1—O6i147.2 (2)K1—Tb1—N2—C84.1 (3)
O1—Tb1—K1—O6i71.0 (2)K1ii—Tb1—N2—C8177.8 (3)
O8—Tb1—K1—O6i109.3 (2)O5—Tb1—N3—C18171.9 (3)
N2—Tb1—K1—O6i156.6 (2)O7i—Tb1—N3—C1875.5 (3)
N4—Tb1—K1—O6i137.6 (2)O3—Tb1—N3—C1823.6 (3)
N1—Tb1—K1—O6i37.1 (2)O1—Tb1—N3—C1834.8 (3)
N3—Tb1—K1—O6i86.3 (2)O8—Tb1—N3—C18151.8 (3)
K1ii—Tb1—K1—O6i31.9 (3)N2—Tb1—N3—C1893.7 (3)
O5—Tb1—K1—C13i12.37 (19)N4—Tb1—N3—C1867.2 (3)
O7i—Tb1—K1—C13i3.61 (14)N1—Tb1—N3—C18116.3 (3)
O3—Tb1—K1—C13i117.43 (16)K1—Tb1—N3—C1816.7 (3)
O1—Tb1—K1—C13i100.76 (17)K1ii—Tb1—N3—C18174.7 (3)
O8—Tb1—K1—C13i139.01 (15)O5—Tb1—N3—C141.4 (2)
N2—Tb1—K1—C13i126.81 (15)O7i—Tb1—N3—C1495.1 (2)
N4—Tb1—K1—C13i167.31 (15)O3—Tb1—N3—C14165.8 (2)
N1—Tb1—K1—C13i66.86 (15)O1—Tb1—N3—C14135.8 (2)
N3—Tb1—K1—C13i56.59 (14)O8—Tb1—N3—C1437.7 (3)
K1ii—Tb1—K1—C13i61.62 (17)N2—Tb1—N3—C1495.7 (2)
O5—Tb1—K1—O292.95 (15)N4—Tb1—N3—C14122.3 (2)
O7i—Tb1—K1—O276.97 (9)N1—Tb1—N3—C1454.3 (3)
O3—Tb1—K1—O2161.99 (12)K1—Tb1—N3—C14153.9 (2)
O1—Tb1—K1—O220.18 (13)K1ii—Tb1—N3—C1414.7 (2)
O8—Tb1—K1—O258.43 (11)O5—Tb1—N4—C24166.3 (3)
N2—Tb1—K1—O2152.61 (11)O7i—Tb1—N4—C2438.5 (4)
N4—Tb1—K1—O286.73 (10)O3—Tb1—N4—C2431.9 (3)
N1—Tb1—K1—O213.72 (11)O1—Tb1—N4—C2451.2 (3)
N3—Tb1—K1—O2137.17 (9)O8—Tb1—N4—C24174.5 (4)
K1ii—Tb1—K1—O218.96 (12)N2—Tb1—N4—C24101.7 (3)
O5—Tb1—K1—C193.33 (16)N1—Tb1—N4—C24107.5 (3)
O7i—Tb1—K1—C177.35 (12)N3—Tb1—N4—C2475.4 (3)
O3—Tb1—K1—C1161.61 (13)K1—Tb1—N4—C2413.9 (3)
O1—Tb1—K1—C119.80 (14)K1ii—Tb1—N4—C24178.8 (3)
O8—Tb1—K1—C158.05 (13)O5—Tb1—N4—C2012.3 (3)
N2—Tb1—K1—C1152.23 (13)O7i—Tb1—N4—C20142.9 (2)
N4—Tb1—K1—C186.35 (12)O3—Tb1—N4—C20146.7 (3)
N1—Tb1—K1—C114.10 (12)O1—Tb1—N4—C20130.2 (3)
N3—Tb1—K1—C1137.55 (11)O8—Tb1—N4—C206.9 (2)
K1ii—Tb1—K1—C119.34 (13)N2—Tb1—N4—C2076.9 (3)
O5—Tb1—K1—Tb1i6.69 (14)N1—Tb1—N4—C2073.8 (3)
O7i—Tb1—K1—Tb1i22.67 (6)N3—Tb1—N4—C20103.2 (3)
O3—Tb1—K1—Tb1i98.37 (9)K1—Tb1—N4—C20167.5 (3)
O1—Tb1—K1—Tb1i119.82 (10)K1ii—Tb1—N4—C200.2 (3)
O8—Tb1—K1—Tb1i158.07 (9)K1—O2—C1—O127.6 (4)
N2—Tb1—K1—Tb1i107.75 (8)K1—O2—C1—C2152.4 (4)
N4—Tb1—K1—Tb1i173.63 (7)Tb1—O1—C1—O2159.8 (4)
N1—Tb1—K1—Tb1i85.92 (8)K1—O1—C1—O234.2 (5)
N3—Tb1—K1—Tb1i37.53 (6)Tb1—O1—C1—C220.2 (5)
K1ii—Tb1—K1—Tb1i80.68 (9)K1—O1—C1—C2145.8 (3)
O5—Tb1—O1—C12.5 (4)Tb1—O1—C1—K1125.6 (3)
O7i—Tb1—O1—C155.4 (3)O3W—K1—C1—O2125.6 (3)
O3—Tb1—O1—C1150.4 (4)O1—K1—C1—O2152.0 (4)
O8—Tb1—O1—C180.5 (4)O5i—K1—C1—O265.4 (3)
N2—Tb1—O1—C1168.0 (3)O8i—K1—C1—O2110.6 (3)
N4—Tb1—O1—C1132.6 (4)O3—K1—C1—O2170.7 (3)
N1—Tb1—O1—C118.1 (3)O6i—K1—C1—O215.4 (3)
N3—Tb1—O1—C193.6 (4)C13i—K1—C1—O239.8 (3)
K1—Tb1—O1—C1123.6 (4)Tb1—K1—C1—O2179.0 (3)
K1ii—Tb1—O1—C145.5 (4)Tb1i—K1—C1—O289.3 (3)
O5—Tb1—O1—K1126.14 (15)O3W—K1—C1—O126.4 (4)
O7i—Tb1—O1—K168.28 (10)O5i—K1—C1—O1142.6 (2)
O3—Tb1—O1—K126.73 (9)O8i—K1—C1—O197.4 (2)
O8—Tb1—O1—K1155.83 (9)O3—K1—C1—O118.7 (2)
N2—Tb1—O1—K168.33 (16)O6i—K1—C1—O1167.3 (2)
N4—Tb1—O1—K1103.74 (12)C13i—K1—C1—O1168.2 (2)
N1—Tb1—O1—K1141.77 (14)O2—K1—C1—O1152.0 (4)
N3—Tb1—O1—K130.01 (15)Tb1—K1—C1—O129.0 (2)
K1ii—Tb1—O1—K1169.16 (4)Tb1i—K1—C1—O1118.8 (2)
O3W—K1—O1—C1161.6 (3)O3W—K1—C1—C2104.4 (5)
O5i—K1—O1—C148.0 (3)O1—K1—C1—C278.0 (5)
O8i—K1—O1—C179.9 (2)O5i—K1—C1—C264.6 (5)
O3—K1—O1—C1159.1 (3)O8i—K1—C1—C219.4 (5)
O6i—K1—O1—C116.9 (3)O3—K1—C1—C259.3 (5)
C13i—K1—O1—C115.7 (3)O6i—K1—C1—C2114.6 (5)
O2—K1—O1—C114.9 (2)C13i—K1—C1—C290.2 (5)
Tb1—K1—O1—C1136.1 (3)O2—K1—C1—C2130.0 (6)
Tb1i—K1—O1—C167.7 (3)Tb1—K1—C1—C249.0 (4)
O3W—K1—O1—Tb162.31 (18)Tb1i—K1—C1—C240.8 (5)
O5i—K1—O1—Tb188.12 (13)C6—N1—C2—C30.6 (7)
O8i—K1—O1—Tb156.19 (10)Tb1—N1—C2—C3170.7 (4)
O3—K1—O1—Tb122.93 (8)C6—N1—C2—C1179.1 (4)
O6i—K1—O1—Tb1153.05 (10)Tb1—N1—C2—C19.1 (5)
C13i—K1—O1—Tb1120.40 (13)O2—C1—C2—N1174.9 (4)
O2—K1—O1—Tb1151.06 (18)O1—C1—C2—N15.1 (6)
C1—K1—O1—Tb1136.1 (3)K1—C1—C2—N155.1 (7)
Tb1i—K1—O1—Tb168.45 (10)O2—C1—C2—C34.9 (7)
O3W—K1—O2—C186.7 (3)O1—C1—C2—C3175.1 (4)
O1—K1—O2—C115.3 (2)K1—C1—C2—C3124.7 (5)
O5i—K1—O2—C1122.0 (3)N1—C2—C3—C40.6 (7)
O8i—K1—O2—C167.8 (3)C1—C2—C3—C4179.6 (5)
O3—K1—O2—C19.7 (3)C2—C3—C4—C51.2 (8)
O6i—K1—O2—C1166.1 (3)C3—C4—C5—C60.5 (8)
C13i—K1—O2—C1144.1 (3)C2—N1—C6—C51.4 (7)
Tb1—K1—O2—C10.8 (3)Tb1—N1—C6—C5170.3 (4)
Tb1i—K1—O2—C195.4 (3)C4—C5—C6—N10.8 (8)
O5—Tb1—O3—C757.5 (3)Tb1—O3—C7—O4178.5 (3)
O7i—Tb1—O3—C7141.4 (3)K1—O3—C7—O414.8 (6)
O1—Tb1—O3—C7145.1 (3)Tb1—O3—C7—C81.3 (5)
O8—Tb1—O3—C741.8 (3)K1—O3—C7—C8165.0 (3)
N2—Tb1—O3—C72.3 (3)C12—N2—C8—C93.4 (7)
N4—Tb1—O3—C773.5 (3)Tb1—N2—C8—C9175.2 (4)
N1—Tb1—O3—C7161.4 (3)C12—N2—C8—C7177.6 (4)
N3—Tb1—O3—C776.8 (3)Tb1—N2—C8—C73.9 (5)
K1—Tb1—O3—C7168.1 (3)O4—C7—C8—N2178.2 (4)
K1ii—Tb1—O3—C712.3 (4)O3—C7—C8—N22.0 (6)
O5—Tb1—O3—K1134.46 (10)O4—C7—C8—C92.7 (7)
O7i—Tb1—O3—K150.57 (9)O3—C7—C8—C9177.0 (4)
O1—Tb1—O3—K122.98 (9)N2—C8—C9—C103.3 (8)
O8—Tb1—O3—K1126.28 (9)C7—C8—C9—C10177.7 (5)
N2—Tb1—O3—K1170.42 (12)C8—C9—C10—C111.1 (8)
N4—Tb1—O3—K194.53 (9)C9—C10—C11—C120.7 (8)
N1—Tb1—O3—K16.70 (19)C8—N2—C12—C111.4 (7)
N3—Tb1—O3—K1115.13 (10)Tb1—N2—C12—C11177.0 (3)
K1ii—Tb1—O3—K1179.60 (5)C10—C11—C12—N20.6 (8)
O3W—K1—O3—C70.7 (4)K1ii—O6—C13—O514.1 (4)
O1—K1—O3—C7144.1 (4)K1ii—O6—C13—C14165.0 (3)
O5i—K1—O3—C790.3 (4)Tb1—O5—C13—O6169.0 (3)
O8i—K1—O3—C7125.4 (4)K1ii—O5—C13—O615.7 (4)
O6i—K1—O3—C743.6 (5)Tb1—O5—C13—C1410.1 (5)
C13i—K1—O3—C780.9 (4)K1ii—O5—C13—C14163.4 (3)
O2—K1—O3—C7148.4 (4)Tb1—O5—C13—K1ii153.3 (3)
C1—K1—O3—C7152.0 (4)C18—N3—C14—C150.0 (5)
Tb1—K1—O3—C7166.4 (4)Tb1—N3—C14—C15171.7 (3)
Tb1i—K1—O3—C7106.2 (4)C18—N3—C14—C13177.8 (3)
O3W—K1—O3—Tb1167.12 (17)Tb1—N3—C14—C136.0 (4)
O1—K1—O3—Tb122.31 (8)O6—C13—C14—N3169.3 (4)
O5i—K1—O3—Tb1103.24 (11)O5—C13—C14—N39.9 (5)
O8i—K1—O3—Tb168.14 (8)K1ii—C13—C14—N348.9 (10)
O6i—K1—O3—Tb1149.9 (2)O6—C13—C14—C1513.0 (6)
C13i—K1—O3—Tb1112.70 (15)O5—C13—C14—C15167.9 (4)
O2—K1—O3—Tb118.03 (11)K1ii—C13—C14—C15133.4 (8)
C1—K1—O3—Tb114.40 (11)N3—C14—C15—C161.0 (6)
Tb1i—K1—O3—Tb187.37 (8)C13—C14—C15—C16176.6 (4)
O7i—Tb1—O5—C1370.9 (3)C14—C15—C16—C170.9 (7)
O3—Tb1—O5—C1315.9 (4)C15—C16—C17—C180.2 (7)
O1—Tb1—O5—C13125.9 (3)C16—C17—C18—N31.3 (7)
O8—Tb1—O5—C13142.4 (3)C14—N3—C18—C171.2 (5)
N2—Tb1—O5—C1364.8 (3)Tb1—N3—C18—C17169.1 (3)
N4—Tb1—O5—C13123.9 (3)Tb1ii—O7—C19—O849.3 (6)
N1—Tb1—O5—C13140.1 (3)Tb1ii—O7—C19—C20132.6 (4)
N3—Tb1—O5—C135.1 (3)Tb1—O8—C19—O7170.3 (2)
K1—Tb1—O5—C1356.5 (4)K1ii—O8—C19—O79.9 (4)
K1ii—Tb1—O5—C13148.2 (4)Tb1—O8—C19—C207.8 (4)
O7i—Tb1—O5—K1ii140.81 (13)K1ii—O8—C19—C20168.2 (2)
O3—Tb1—O5—K1ii132.34 (12)C24—N4—C20—C210.7 (6)
O1—Tb1—O5—K1ii85.86 (18)Tb1—N4—C20—C21178.0 (3)
O8—Tb1—O5—K1ii5.88 (10)C24—N4—C20—C19175.1 (3)
N2—Tb1—O5—K1ii83.41 (13)Tb1—N4—C20—C196.2 (4)
N4—Tb1—O5—K1ii24.35 (19)O7—C19—C20—N4178.1 (3)
N1—Tb1—O5—K1ii71.65 (13)O8—C19—C20—N40.1 (5)
N3—Tb1—O5—K1ii153.31 (15)O7—C19—C20—C215.9 (5)
K1—Tb1—O5—K1ii155.24 (5)O8—C19—C20—C21175.9 (3)
O5—Tb1—O8—C19156.5 (3)N4—C20—C21—C220.2 (6)
O7i—Tb1—O8—C19149.0 (2)C19—C20—C21—C22175.4 (4)
O3—Tb1—O8—C1926.3 (3)C20—C21—C22—C230.1 (7)
O1—Tb1—O8—C1963.1 (3)C21—C22—C23—C240.6 (7)
N2—Tb1—O8—C1967.3 (3)C20—N4—C24—C231.3 (6)
N4—Tb1—O8—C197.9 (2)Tb1—N4—C24—C23177.3 (3)
N1—Tb1—O8—C19118.6 (3)C22—C23—C24—N41.2 (7)
N3—Tb1—O8—C19122.2 (3)
Symmetry codes: (i) xy, y+1, z; (ii) xy+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O40.842.092.858 (4)152
O2W—H2W···O6ii0.852.483.219 (5)146
O3W—H3WA···O6iii0.862.092.647 (5)121
O4W—H4WB···O2iv0.861.922.711 (6)152
O5W—H5W···O4W0.852.343.080 (13)145
Symmetry codes: (ii) xy+1, y+1, z; (iii) y1, x+y, z+1/6; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[KTb(C6H4NO2)4(H2O)]·2.5H2O
Mr1498.97
Crystal system, space groupHexagonal, P6522
Temperature (K)180
a, c (Å)12.7187 (2), 62.2321 (9)
V3)8718.3 (2)
Z12
Radiation typeMo Kα
µ (mm1)2.64
Crystal size (mm)0.39 × 0.28 × 0.23
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.426, 0.582
No. of measured, independent and
observed [I > 2σ(I)] reflections
31023, 5031, 4488
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.094, 1.14
No. of reflections5031
No. of parameters377
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.70
Absolute structureFlack (1983)
Absolute structure parameter0.020 (15)

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Tb1—O12.380 (2)Tb1—N42.626 (3)
Tb1—O32.354 (2)K1—O12.676 (3)
Tb1—O52.333 (2)K1—O23.208 (4)
Tb1—O7i2.352 (3)K1—O32.972 (2)
Tb1—O82.385 (3)K1—O5i2.725 (3)
Tb1—N12.640 (3)K1—O6i2.985 (4)
Tb1—N22.575 (3)K1—O8i2.959 (2)
Tb1—N32.736 (4)K1—O3W2.661 (5)
Symmetry code: (i) xy, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O40.842.092.858 (4)151.9
O2W—H2W···O6ii0.852.483.219 (5)146.2
O3W—H3WA···O6iii0.862.092.647 (5)121.4
O4W—H4WB···O2iv0.861.922.711 (6)151.9
O5W—H5W···O4W0.852.343.080 (13)144.9
Symmetry codes: (ii) xy+1, y+1, z; (iii) y1, x+y, z+1/6; (iv) x+1, y, z.
 

Acknowledgements

The authors are grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) for general financial support (grant No. POCI-PPCDT/QUI/58377/2004 supported by FEDER), for specific funding towards the purchase of the single-crystal diffractometer and also for the postdoctoral research grants referenced as SFRH/BPD/14410/2003 (to LC-S) and SFRH/BPD/14954/2004 (to PCRS-S).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCunha-Silva, L., Mafra, L., Ananias, D., Carlos, L. D., Rocha, J. & Paz, F. A. A. (2007). Chem. Mater. 19, 3527–3538.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJian-Fang, M., Ning-Hai, H. & Jia-Zuan, N. (1996). Polyhedron, 15, 1797–1799.  CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2007). Pure Appl. Chem. 79, 1097–1110.  Web of Science CrossRef CAS Google Scholar
First citationPaz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113–125.  Web of Science CrossRef CAS Google Scholar
First citationSendor, D., Hilder, M., Juestel, T., Junk, P. & Kynast, U. (2003). New J. Chem. 27, 1070–1077.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150–167.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSoares-Santos, P. C. R., Almeida Paz, F. A., Sá Ferreira, R. A., Klinowski, J., Carlos, L. D., Trindade, T. & Nogueira, H. I. S. (2006). Polyhedron, 25, 2471–2482.  Web of Science CSD CrossRef CAS Google Scholar
First citationStarynowicz, P. (1993). Acta Cryst. C49, 1895–1897.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m529-m530
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds